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Preface

Molecules, galaxies, art galleries, sculpture, viruses, crystals, architecture, and more: Shaping Space:
exploring polyhedra in nature, art, and the geometrical imagination is an exuberant survey of
polyhedra in nature and art. It is at the same time hands-on, mind-turned-on introduction to one of
the oldest and most fascinating branches of mathematics. In these pages you will meet some of the
world’s leading geometers, and learn what they do and why they do it. In short, Shaping Space is as
many-faceted as polyhedra themselves.

Shaping Space is a treasury of ideas, history, and culture. For students and teachers, from
elementary school to graduate school, it is a text with context. For the multitude of polyhedra
hobbyists, an indispensable handbook. Shaping Space is a resource for professionals—architects and
designers, painters and sculptors, biologists and chemists, crystallographers and physicists and earth
scientists, engineers and model builders, mathematicians and computer scientists. If you are intrigued
by the exquisite shapes of crystals and want to know how nature builds them, if you marvel at domes
and wonder why most stay up but some fall down, if you wonder why Plato thought earth, air, fire
and water were made of polyhedral particles, if you wonder what geometry is and are willing to try
it yourself, this book is for you. In Shaping Space you will see that polyhedra are as new as they are
old, and that they continue to shape our spaces in new and exciting ways, from computer games to
medical imaging.

The computer revolution has catalyzed new research on polyhedra. A quarter century ago, discrete
and computational geometry (the branch of mathematics to which polyhedra belong) was less a
field in its own right than—in the eyes of many people, even many mathematicians—a grab-box
of mathematical games. Today an international journal, Discrete and Computational Geometry,
publishes six issues a year with the latest research on configurations and arrangements, spatial
subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric
probability, geometric range searching, combinatorial and computational topology, probabilistic
techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning,
and papers with a distinct geometric flavor in such areas as graph theory, mathematical programming,
real algebraic geometry, matroids, solid modeling, computer graphics, combinatorial optimization,
image processing, pattern recognition, crystallography, VLSI design, and robotics.

vii



viii Preface

Figure 1. An icosahedron built and decorated by elementary school children. Photograph by Stan Sherer.

Figure 2. Sculptures by Morton Bradley. Photograph by Stan Sherer.

Yet, it is also true, as the saying goes, plus ça change, plus c’est la même chose. The more things
change, the more they stay the same, especially in school mathematics curricula. Despite its central
importance in the sciences, the arts, in mathematics and in engineering, solid geometry has all but
vanished from the schools, plane geometry is being squeezed to a minimum, and model-building is
relegated to kindergarten. Reasons for this unfortunate (and, unfortunately, long-term) trend include
a lack of teacher training and pressures to teach testable skills. But educators will realize, sooner
rather than later, that “technology in the classroom” is more than clicking the latest gadgets, it
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means understanding our technological world. Geometry will reappear as a blend of model-building,
engineering and fundamental math and science.

Meanwhile, the internet is helping to bring geometry back to life and with it a community of
geometers. You can explore polyhedra in nature, art, and the geometrical imagination on the world
wide web by yourself, with Shaping Space as your guide, and share your findings and frustrations with
the like-minded through chat groups. Keep pencils, paper, a ruler, scissors, and tape handy: Confucius
got it right 2500 years ago:

I hear and I forget,
I read and I remember,
I do and I understand.

Shaping Space will evolve as the subject grows. The notes and references at the end of this book are
also on my website, http://www.marjoriesenechal.com. Authors will post updates there; you will also
find links to instructional and recreational materials, and to websites of polyhedra-minded scientists,
artists and hobbyists. Visit often!

Indeed, Shaping Space has grown already. Its ancestor, Shaping Space: a polyhedral approach
was inspired by a three-day festival of workshops, exhibitions and lectures on polyhedra held at
Smith College in 1984. Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical
Imagination includes the best of the past and new chapters by Robert Connelly, Erik Demaine (with
Martin Demaine and Vi Hart), George Hart, Joseph O’Rourke, Ileana Streinu, and Günter Ziegler
(with Moritz Schmidt).

Figure 3. H. S. M. Coxeter (1907–2003). Photograph by Stan Sherer.

http://www.marjoriesenechal.com
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Figure 4. Arthur L. Loeb (1923–2002). Photograph by Stan Sherer.

Shaping Space: exploring polyhedra in nature, art, and the geometrical imagination is dedicated
to the memory of two friends and colleagues, the legendary geometer H. S. M. Coxeter and the
many-faceted design scientist Arthur L. Loeb. Without their enthusiasm, encouragement, support and
participation, the Shaping Space Conference could not have been held and the first edition of this book
might never have appeared. They continue to inspire us.

Northampton, MA, USA Marjorie Senechal
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Introduction to the Polyhedron Kingdom

Marjorie Senechal

What is a polyhedron? The question is short, the
answer is long. Although you may never have
heard of the Polyhedron Kingdom before, it is
nearly as vast and as varied as the animal, min-
eral, and vegetable kingdoms (and it overlaps all
three of them). There are aristocrats and workers,
families and individuals, old polyhedra with long
and interesting histories and young polyhedra
born yesterday or the day before. In this king-
dom you can take a walking tour of polyhedral
architecture, visit a nature preserve and an art
gallery and an artisans’ polyhedra fair. As you
stroll along you may even glimpse polyhedral
ghosts from four-dimensional space.

The boundaries of the Polyhedron Kingdom
are in dispute (as are those of most kingdoms)
but it is safe to visit the border areas. You need
not worry about the nature of the disputes until
the last part of this book.

The language of the Polyhedron Kingdom is
mathematics but, for this brief first visit, you can
get by if you learn three important words: face,
edge, and vertex. The word polyhedron comes
from the Greek word for “many” and an Indo-
European word for “seat.” To geometers, it means
an object with many faces. In Figures 1.1 and
1.2 we see polyhedra with faces. But this is
not what we mean when we speak of the faces

M. Senechal
Department of Mathematics and Statistics,
Smith College,
Northampton, MA 01063, USA
e-mail: senechal@smith.edu; http://math.smith.edu/�
senechal; http://www.marjoriesenechal.com

Figure 1.1. Cube with face, by a fifth-grade student at
the Smith College Campus School.

of a polyhedron. For our purposes the faces of
a polyhedron are the polygons from which its
surface is constructed. The edges of a polyhedron
are the lines bounding its faces; its vertices are
the corners where three or more faces (and thus
three or more edges) meet (Figure 1.3). You will
see as we go along that these terms can have
more general meanings, but these definitions will
do for the moment. As you tour the Polyhedron
Kingdom you will become more comfortable
with an increasing vocabulary and a wider range
of common usages.

We begin our tour, of course, with a visit to the
rulers of the Kingdom.

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 1,
© Marjorie Senechal 2013
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4 M. Senechal

Figure 1.2. A polyhedral monster, also by Campus
School student.

EDGE

VERTEX

FACE

Figure 1.3. The cube has six faces, twelve edges, and
eight vertices.

The Regular “Solids”

At the gates of the Kingdom live its rulers, the
famous and venerable regular “solids” pictured
in Figure 1.4. Each of these polyhedra is called

a

b

c

d

e

Figure 1.4. Left: the five regular polyhedra. Right: the
same, “unfolded” into planar nets (For more about nets for
polyhedra and some unsolved problems concerning them,
see Chapters 6 and 22).

regular because of certain very special properties:
its faces are identical regular polygons, and the
same number of polygons meet at each vertex.
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(Remember that regular polygons are polygons
whose edges have equal lengths and whose angles
have equal measure: a regular polygon of three
edges is an equilateral triangle, of four edges a
square, and so on.) So the faces of each regular
polyhedron are all alike and their vertices (or,
more precisely, the arrangements of polygons at
their vertices) are all alike too.

If we try to build polyhedra with the regular-
ity property just described, we will quickly find
that there are only five possibilities. We start by
constructing polyhedra whose faces are equilat-
eral triangles. First, we can put three triangles
together to form one vertex of a polyhedron. If we
continue this pattern at all the other corners, we
obtain a pyramid that has four triangular faces,
four vertices, and six edges; this is the regular
tetrahedron (Figure 1.4a). If we put four trian-
gles at each vertex, we can build an octahedron
(Figure 1.4b); if we put five together then we
get the icosahedron (Figure 1.4c). Six equilaterial
triangles fit together around a point to form a
flat surface, so that arrangement is out. And if
we try to fit seven or more together—well, try it
and see what happens! So these three polyhedra
are the only regular ones that can be built out of
equilateral triangles.

Now let us try to build a regular polyhedron
out of squares. We see that there is just one
possibility, the cube (Figure 1.4d), in which three
faces meet at each vertex, because four squares in
a plane lie flat around a point. (What happens if
we try to fit five?) If we use regular pentagons, we
can again build just one solid, the dodecahedron
(Figure 1.4e). We cannot continue this procedure
with regular polygons with a greater number of
sides because three regular hexagons lie flat, three
or more heptagons or octagons buckle, and so
forth. We conclude that there are no other regular
polyhedra.

The regular polyhedra are also known as the
“Platonic solids” because the Greek philosopher
Plato (427–347 B.C.E.) immortalized them in
his dialogue Timaeus. In this dialogue Plato dis-
cussed his ideas about the “elements” of which
he believed the universe to be composed: earth,
air, fire, and water. Today when we think of “ele-
ment,” we usually think of the chemical elements

in the Periodic Table. (We recognize the solid,
gas, plasma, and liquid states of matter.) But
notice that we still speak of needing protec-
tion from the “elements,” and when we say this
we mean snow, wind, lightning, and rain. In
Timaeus, Plato argued that the geometric forms
of the smallest particles of these elements are
the cube, the octahedron, the tetrahedron, and
the icosahedron, respectively. (The fifth regular
solid, the dodecahedon, was assigned to the Great
All, the cosmos.) This association of the regular
solids with the elements captured the imagina-
tion of many people from Plato’s time to our
own. The twentieth century artist M.C. Escher
presented them in various ways; Figure 1.5 might
be subtitled “Platonic Puzzle,” because all of the
five Platonic solids appear in it in one form or
another! Figure 1.6 shows an icosahedral candy
box decorated by Escher.

Plato aside, do the regular polyhedra have
any special significance outside the Polyhedra
Kingdom? Maybe not. The astronomer Johannes
Kepler (1571–1630) believed that he had at last
discovered their true meaning: the spheres in
which they can be inscribed, nested one inside
another, are the divine model for the orbits of the
six planets! This explained why there could be
only six! (Kepler’s ideas are discussed in detail
by H.S.M. Coxeter in Chapter 3.) The beauty of
the regular polyhedra has led scientists astray in
our own time as well. In 1936 Dorothy Wrinch

Figure 1.5. Reptiles. Woodcut by M.C. Escher.
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Figure 1.6. Icosahedron with Starfish and Shells, a
candy box by M.C. Escher.

Figure 1.7. Soap films, made by dipping a tetrahedral
wire frame into a soapy solution. Notice that the tetrahe-
dral bubble has curved faces.

proposed a patterned octahedron as the first
model for the molecular structure of proteins
(Figure 1.8); unfortunately the structures of
proteins have turned out to be much less elegant.

The regular polyhedra may not solve the riddle
of the universe or reveal the secret of life, but
they do crop up in the most unexpected places:
for example, in the soap films shown in Fig-
ure 1.7 (if we agree that a polyhedron can have
curved faces and edges), in decorative ornament
(Figure 1.9), and as the shapes of many viruses.

The shapes of many molecules are thought
to be closely related to the regular polyhedra
(Figure 1.10). Many crystals have cubic,

Figure 1.8. The model for protein structure proposed by
Dorothy Wrinch in 1936.

Figure 1.9. The icosahedron and other polyhedra often
appear as decorative elements in Baroque architecture;
here, the church of Santissimi Apostoli by Borromini.

octahedral, or dodecahedral forms; others are
tetrahedral or icosahedral. But most dodecahedral
(and icosahedral) crystals, like the pyrite crystals
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in Figure 1.11, are not regular. (Indeed, until
November 1984, it was believed that regular
dodecahedral and icosahedral crystals could not

Figure 1.10. An artist’s conception of a methane
molecule.

Figure 1.11. Pyrite crystals.

exist, because their symmetry is theoretically
impossible for a crystal. Then some crystals with
this symmetry were discovered, posing some
challenging problems for symmetry theory!)
Perhaps to make up for its limited role in the
mineral kingdom, the regular dodecahedron with
its twelve faces has been used by people in
imaginative ways, such as street corner recycling
bins in France (Figure 1.12).

Today we believe that it is not the classical
form of the regular polyhedra that is significant:
instead it is the high degree of order which they
represent. Indeed, as Figure 1.4 suggests, the reg-
ular “solids” are not always found in solid form.
In some contexts, they have hollow interiors;
in others, they have perforated surfaces; in yet
others they have no faces, but appear as skeletons
made of edges and vertices. Still, they are usually
recognizable because of their high degree of
symmetry. For example, all of the regular poly-
hedra have mirror symmetry: they can be divided
into mirror-image halves in many different ways.
They also have rotational symmetry: there are
many ways in which they can be rotated without
changing their apparent position. Both mirror
symmetry and rotational symmetry are due to the
fact that, for each of these polyhedra, every face,
every vertex, and every edge is like every other.
In other words, they are repetitively organized;
this is one of the reasons that they are found
so often in nature. This organization is also

Figure 1.12. Dodecahedral recycling bin for glass, on
a street corner in Paris, France. Photograph by Marjorie
Senechal.
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aesthetically pleasing, and it is largely because
of their symmetry that they are considered to
be beautiful. The regular solids have the highest
possible symmetry among polyhedra that are
finite in extent. This is one reason why we can
justly say that the regular solids are the rulers of
the Polyhedron Kingdom. As you read through
this book you will learn a great deal about
symmetry.

Direct Descendants

There are many variations on the theme of the
regular polyhedra. First let us meet the eleven
(in Figure 1.13) which can be made by cutting
off (truncating) the corners, and in some cases
the edges, of the regular polyhedra so that all
the faces of the faceted polyhedra obtained in
this way are regular polygons. These polyhedra
were first discovered by Archimedes (287–212
B.C.E.) and so they are often called Archimedean
solids. Notice that vertices of the Archimedean
polyhedra are all alike, but their faces, which
are regular polygons, are of two or more differ-

Figure 1.13. The Archimedean or semiregular polyhe-
dra; The first eleven can be obtained from the regular
polyhedra by truncation.

ent kinds. For this reason they are often called
semiregular. (Archimedes also showed that in ad-
dition to the eleven obtained by truncation, there
are two more semiregular polyhedra: the snub
cube and the snub dodecahedron. (Also shown in
Figure 1.13.)

By this definition, prisms (see Figure 1.14)
with regular polygonal bases and square sides
are semiregular solids too. Prisms are quite
common in nature and in architecture, as we
will see later (Chapter 7). Antiprisms also
have two identical polygonal faces, but the
“top” face is rotated relative to the “bottom”
one, so that the two polygons are joined by
triangles (see Figure 1.15); when its faces are
regular polygons, an antiprism is a semiregular
polyhedron.

Perhaps the most elaborate variations on the
theme of the regular polyhedra are those of the
sixteenth-century Nuremberg goldsmith Wenzel
Jamnitzer, who engraved a fascinating and exten-
sive series of polyhedra in honor of Plato’s theory
of matter. In his book Perspectiva Corporum
Regularium, published in 1568, each of the five
regular solids is presented in exquisite variation.
Can you tell which solid is being varied in Fig-
ure 1.16? Jamnitzer’s figures show us that poly-
hedra need not be convex; that is, they can have
indentations. Regular polygons that are not con-
vex, such as the famous pentagram (Figure 1.17),
are familiar to most of us. Such “star polygons”

Figure 1.14. The three semiregular prisms.

Figure 1.15. Three semiregular antiprisms.
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Figure 1.16. Plate D.II. from Wenzel Jamnitzer, Per-
spectiva Corporum Regularium, 1568.

Figure 1.17. The pentagram has equal sides and equal
angles.

can be used to build regular “star polyhedra.”
There are exactly four regular star polyhedra (see
Figure 1.18). Notice that all their faces are regular
polygons and the same number of faces meet
at each vertex. In this case, however, either the
faces or the vertex arrangements are pentagrams.
The lineage of these polyhedra can be traced to
fifteenth-century Venice (see Figure 1.19), but
no general theory seems to have been developed
at that time. Later Kepler investigated regular
star polyhedra and found two of them; after that

Figure 1.18. The four regular star polyhedra.

Figure 1.19. Marble tarsia (1425–1427) in the Basilica
of San Marco, Venice, attributed to Paolo Uccello.

star-shaped polyhedra (not necessarily regular)
became ubiquitous (see for instance Figure 1.20).
But it was not until the early nineteenth century
that two more regular star polyhedra were found
and the French mathematician Augustin-Louis
Cauchy (1789–1857) showed that there are no
others (see Chapter 4).

The uniform polyhedra are polyhedra, star or
otherwise, whose vertices are all symmetrically
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Figure 1.20. Courtyard of Borromini church.

equivalent. (They are generalizations of the
Archimedean polyhedra.) Perhaps the most
spectacular uniform polyhedron is the Yog-
Sothoth, shown in Figure 1.21. Although its
existence had been predicted (on theoretical
grounds) for many years, no one had ever
seen it before Bruce Chilton’s was presented
to society for the first time at the Shaping
Space Conference. The debut was a spectacular
success. The Yog-Sothoth has 112 faces: 12 are
pentagrams, 40 are triangles of one type, and 60
are triangles of another. Yet despite its complexity
its symmetry is that of the icosahedron and
dodecahedron, no more no less!

There are many other interesting lines of de-
scent from the regular solids. For example, there
are polyhedra whose faces are all alike but whose

vertices are not. Closely related to the semiregu-
lar solids, these polyhedra are especially impor-
tant in the study of crystal forms.

Impossible Polyhedra

Despite its diversity, the Polyhedra Kingdom is
exclusive. You will not find polyhedra with any
number of faces, edges, and vertices you might
think up; only certain combinations are permit-
ted. In the eighteenth century a Swiss Mathemati-
cian named Leonhard Euler discovered why. He
found a curious relation among the numbers of
faces, edges, and vertices of any convex poly-
hedron. (Convex means that the surface has no
bumps or dents.) For example, a cube has six
faces, twelve edges, and eight vertices; a tetrahe-
dron has four faces, six edges, and four vertices.
In both cases, the sum of the numbers of faces and
vertices is two more than the number of edges. If
we write F for the number of faces of a given
polyhedron, V for the number of its vertices, and
E for the number of its edges, we have a simple
formula: E D F C V C 2.

This means, for example, that there is no
polyhedron with four faces, six vertices, and nine
edges. Nor—though this is harder to prove—can
you build a “soccer ball” out of hexagons.

Next Steps

But before losing yourself in contemplation of
the impossible, you should build some possible
polyhedra with your own hands.
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Figure 1.21. Three plan views of the Yog-Sothoth, along five-, three-, and twofold axes, drawn by Bruce L. Chilton.
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Six Recipes for Making Polyhedra

Marion Walter, Jean Pedersen, Magnus Wenninger,
Doris Schattschneider, Arthur L. Loeb, Erik Demaine,
Martin Demaine, and Vi Hart

This chapter includes six “recipes” for making
polyhedra, devised by famous polyhedrachefs.
Some recipes are for beginners, others are inter-
mediate or advanced. You can use these recipes,
or devise your own. Building models is fun,
and will give you a deeper understanding of the
chapters that follow.
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Constructing Polyhedra Without
Being Told How To!

Marion Walter

Getting Started: How to Attach
Polygons

Put some cut-out regular polygons on a table. Put
a little glue on a flat tile, a plastic lid, or a piece of
plastic, and spread out the glue a little so that you
can dip a whole edge of a polygon into the glue.

Choose two polygons that you want to glue
together along an edge, and dip one of these edges
in the glue. Dip lightly; if polygons don’t stick
well it is usually because there is too much glue
(Figure 2.1).

Hold the two edges together firmly. The joint
will remain flexible but the polygons will stick
together (Figure 2.2).

If you find later that you need extra glue on an
edge of a polygon that you have already attached,
you can (lightly) dip a toothpick or applicator
stick in the glue to smear some along an edge.

What Shape Are You Going to Make?

It is most fun and most rewarding to make a
shape you yourself create rather than following
someone else’s plans. How can you do this?

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 2,
© Marjorie Senechal 2013
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Figure 2.1.

Figure 2.2.

Figure 2.3.

There are many ways to start. One way is to
limit yourself to using only one or two different
shapes — say triangles, or triangles and pen-

Figure 2.4.

Figure 2.5.

tagons, or triangles and squares. What shapes can
you make using triangles and only one pentagon?
(See Figure 2.3).

The first shape the boy shown in Figure 2.4
made has a pentagon for its base and triangles
for sides. It is called a pentagonal pyramid. Now
make up another question of your own. What will
your first shape look like? When you experiment
freely, you may get a few surprises and you will
learn a lot. For example, six triangles lie flat.

What a surprise: the shape in Figure 2.5 lies
flat too! Notice that the twelve triangles that
surround the hexagon help to make a bigger
hexagon. The student shown in the photograph
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Figure 2.6.

Figure 2.7.

also had a surprise after she attached only six
triangles to the hexagon. Do you think it will
make a pyramid with a hexagonal base?

What shapes can you make with hexagons and
squares? (See Figures 2.6 and 2.7).

Making shapes requires thinking ahead. Try
to make a shape using only pentagons. What a
relief: the two edges in Figure 2.8 really do seem
to meet! How will the boy shown go on? Do the
girls in Figures 2.9 and 2.10 seem to be making
the same shape?

The shape in Figure 2.11 is made entirely of
pentagons: how many of them were used? Turn
it around and look at it. How many edges does it
have? How many corners? How many edges meet
at one corner? How many faces meet at a corner?
This shape is a dodecahedron.

Figure 2.8.

Figure 2.9.

When you are experimenting, don’t expect
that your shape will always close! (Figure 2.12).
Some shapes may have holes that you cannot fill
with the shapes that we have; remember that we
are using only regular polygons.

Shapes You Can Make with Triangles

The shape in Figure 2.13 is only one of the many
you can make using just triangles. It is an icosa-
hedron. Look at it from many sides. How many
faces, edges, and corners does it have? Compare
these numbers to the corresponding numbers you
found for the dodecahedron.

In Figure 2.14 the girl is placing one five-sided
pyramid over the base of another one. How many
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Figure 2.10.

faces will this polyhedron have? What other
shapes can you make with triangles?

A Note to the Teacher

Every problem leads to new observations and
questions. For example, even the simple problem
“Make all possible convex shapes using only
equilateral triangles” is very rich in possibilities.
These shapes are called deltahedra, after the
triangular Greek letter �. Usually after some
experimentation, students will discover the tetra-
hedron, the octahedron, the triangular and pen-
tagonal bipyramids, and the icosahedron. Later
the search also yields the 12-, 14-, and 16-sided
deltahedra. Figure 2.15 shows a 14-sided deltahe-
dron made of applicator sticks. Use sticks all of
the same length. Some drugstores sell applicator
sticks which are ideal; be sure to get the kind
without cotton at each end. Hobby and craft

Figure 2.11.

Figure 2.12.

stores often sell small-diameter wooden dowel
rods which work well. Put a small amount of
contact glue on the ends of the sticks and let it
dry for about 15 minutes, until the glue is tacky.
Then the sticks will join well and yet stay flexible.
Don’t be surprised if a cube or dodecahedron
made of applicator sticks won’t stand up, how-
ever. Unlike structures built entirely of triangles,
these structures are nonrigid.
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Figure 2.13.

Figure 2.14.

The observation that each deltahedron has an
even number of faces leads to the question of why
this should be so. The reason is straightforward
once one sees it! Each triangle has three edges. If
the shape has F faces, then there are 3F edges
altogether. These 3F edges are glued in pairs, so
there must be an even number of edges. Hence
3F and therefore F must be be even. Noticing
that there exist 4-, 6-, 8-, 10-, 12-, 14-, 16-, and
20-sided deltahedra immediately sets off a search
for an 18-sided one. Can an 18-sided deltahedron

Figure 2.15.

be made? It was not until 1947 that the answer
was proved to be no.

Looking at deltahedra is one thing; visualizing
them without models is quite another. I found it
difficult to close my eyes and visualize the 12-,
14-, 16-sided deltahedra. One day while I was
looking at a cube made from applicator sticks
and glue, I decided to pose problems by using
the What-If-Not Strategy. The idea is that one
starts with a situation, a theorem, a diagram,
or in our case an object, lists as many of its
attributes as one can, and then asks, “What if
not?” For example, among the many attributes
(not necessarily independent) of a cube that I had
listed were the following:

1. All edges are equal.
2. All faces are squares.
3. The object is not rigid.
4. The top vertices are directly above the bottom

ones.
5. Opposite faces are parallel.
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Figure 2.16.

a b

Figure 2.17.

While working on attribute 4, I asked myself:
“What if the top vertices were not directly above
the bottom ones?” And because the contact glue
gives movable joints, it was easy to give the top
square a twist. As my twist approached 45 ı,
I began to see an antiprism emerge. I attached
sticks to complete the antiprism, but the shape
wasn’t rigid. The obvious thing to do to make it
rigid was to add diagonals to the top and bottom
squares. Since all the applicator sticks are of
the same length, I had to squeeze the squares
into “diamonds.” The resulting shape was rigid-
and was built of 12 equilateral triangles! (See
Figure 2.16).

How else could I have made the antiprism
rigid? I hastily removed the top diagonal, and
added four sticks that meet above the square to
form a square pyramid (Figure 2.17a.) Lo and
behold, I had made a 14-sided deltahedron! From

Figure 2.18. Alice Shearer beginning construction of a
model.

there it was a quick step to remove the bot-
tom diagonal also, build another four-sided pyra-
mid, and thus obtain the 16-sided deltahedron
(Figure 2.17b).

Not only have these deltahedral “villains” now
become friends, I see now that they are closely
related to one another. One can also place the
icosahedron in this family, since it is a pentagonal
antiprism capped with two pentagonal pyramids.
(Indeed the octahedron itself is an antiprism, and
the tetrahedron can be viewed as an antiprism in
which the two bases have shrunk to an edge. Two
opposite edges may be considered degenerate
polygons, which are here in antiprism orienta-
tion.) That leaves us only with the 6- and 10-sided
deltahedra as “odd ones out,” but they are both
bipyramids and are easy to visualize.
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Figure 2.19. Jane B. Phipps contemplating a polyhedron constructed from MATs.

A Word About Materials

Cardboard always works well; you should
experiment with different weights. I prefer
MATs, described in the next paragraph. All the
polygons shown in these photographs are MATs.
A glue used for carpets, such as Flexible Mold
Compound – Mold It R� is excellent, as is the
English Copydex.

Adrien Pinel found that hexagonal cardboard
beer mats (used in English pubs) were excel-
lent for making polyhedra with holes and, when
augmented by triangles and squares cut from the

hexagons, became even more useful. It was not
long before the Association of Teachers of Math-
ematics of Great Britain had regular polygons
of three, four, five, six and eight sides produced
from the same easy-to-glue material as the beer
mats. They call them Mathematics Activity Tiles
(MATs for short). They also produce rectangles
and isosceles triangles. The polygons may be
ordered separately or in two different kits: Kit
A has 100 each of equilateral triangles, squares,
pentagons, and hexagons, and Kit B has 200
each of triangles and squares and 50 each of
pentagons, hexagons and octagons.
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Constructing Pop-Up Polyhedra

Jean Pedersen

Required Materials

• One 22 � 28 inch piece of brightly colored
heavyweight posterboard

• Six rubber bands
• One yard stick or meter stick
• One ballpoint pen
• One pair of scissors

General Instructions for Preparing the
Pattern Pieces

Begin by drawing the pattern pieces on the
posterboard as shown in Figure 2.20. Press hard
with the ballpoint pen so that the posterboard will
fold easily and accurately in the final assembly.
Label the points indicated. Be certain to put
the labels on what will become the cube (or
octahedron) when the model is finished — not
on the paper that surrounds it. Cut out the pattern

snip

snip

snip

snip

4 1
84 1

8

4 1
8

5 3
4

1
8

3
8

1
8

1
8

1
8

4 1
8

4 1
8

4 1
8

4 1
4

4
1
4

4 1
4

4 1
4

4 1
4

1 1
8

1 1
8

2 7
16

4 1
4

A

A

B

B

C

C C

C

D

D

D

D

Figure 2.20.

pieces and snip the notches at A and B (but not
the notches at C and D).

Constructing the Cube

1. Crease the pattern piece with square faces on
all of the indicated fold lines, remembering
that the unmarked side of the paper should be
on the outside of the finished cube. Thus each
individual fold along a marked line should
hide that marked line from view.

2. Position the pattern piece so that it forms a
cube with flaps opening from the top and the
bottom, as shown in Figure 2.21.

3. Temporarily attach the two rectangles together
inside the cube with paper clips. Then, with
the cube still in its “up” position, cut through
both thicknesses of paper at once to produce
the notches at the positions which you already
labeled C and D.

4. Connect three rubber bands together, as shown
in Figure 2.22.

5. Slide one end-loop of this chain of rubber
bands through the slot which you labeled A,
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Figure 2.21.

Figure 2.22.

and the other end-loop through the slot la-
beled B, leaving the knots on the outside of
the cube.

6. Stretch the end loops of the rubber bands so
that they hook into slots C and D, as shown
in Figure 2.23. The bands must produce
the right amount of tension for the model
to work. If they are too tight the model
will not go flat and if they are too loose
the model won’t pop up. You may need to
do some experimenting to obtain the best
arrangement.

7. Remove the paper clips when you are satisfied
that the rubber bands are performing their
function.

8. To flatten the model push the edges labeled
E and F toward each other as shown in Fig-
ure 2.23b and wrap the flaps over the flattened
portion as in Figure 2.23c.

9. Holding the flaps flat, toss the model into the
air and watch it pop up. If you want it to make
a louder noise when it snaps into position, glue
an additional square onto each visible face of

Edge F

Edge E
a

b

c

Figure 2.23.

the cube in its “up” position. This also allows
you to make the finished model very colorful.

Constructing the Octahedron

1. Crease on all the indicated fold lines so that
the marked lines will be on the inside of the
finished model.

2. Position the pattern piece so that it forms
an octahedron with triangular flaps opening
on the top and bottom, as shown in Fig-
ure 2.24a. Don’t be discouraged by the com-
plicated look of the illustration; the construc-
tion is so similar to the cube that once you
have the pattern piece in hand, it becomes
clear how to proceed.

3. Secure the quadrilaterals inside the octahe-
dron with paper clips and cut through both
thicknesses of paper to make the notches at C
and D. Angle these cuts toward the center of
the octahedron (so that the rubber bands will
hook more securely). Gluing the quadrilaterals
inside the model to each other in their proper
position produces a sturdier model.


