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This book is dedicated to a lynx I saw in
Maridalen in the vicinity of Oslo in April
2006.

Without having read this book (so far), yet
maybe it hunts according to an optimized
piecewise deterministic process.



Preface

This book contains an introduction to three topics in stochastic control: discrete time

stochastic control, i.e., stochastic dynamic programming (Chapter 1), piecewise de-

terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4).

The chapters include treatments of optimal stopping problems. An Appendix re-

calls material from elementary probability theory and gives heuristic explanations

of certain more advanced tools in probability theory.

The book will hopefully be of interest to students in several fields: economics,

engineering, operations research, finance, business, mathematics. In economics and

business administration, graduate students should readily be able to read it, and

the mathematical level can be suitable for advanced undergraduates in mathemat-

ics and science. The prerequisites for reading the book are only a calculus course

and a course in elementary probability. (Certain technical comments may demand a

slightly better background.)

As this book perhaps (and hopefully) will be read by readers with widely differ-

ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs,

comments, or remarks contain material of a seemingly more technical nature that

you don’t understand. Just skip such material and continue reading, it will surely

not be needed in order to understand the main ideas and results.

The presentation avoids the use of measure theory. At certain points, mainly in

Chapter 4, certain measure theoretical concepts are used, they are then explained in

a heuristic manner, with more detailed but still heuristic explanations appearing in

Appendix. The chosen manner of exposition is quite standard, except in Chapter 3,

where a slightly unusual treatment is given that can be useful for the elementary

types of problems studied there. In all chapters, problems with terminal restrictions

are included.

One might doubt if Ito-diffusions can at all be presented in a useful way without

using measure theory. One then has to strike a balance between being completely

intuitive and at least giving some ideas about where problems lie hidden, how proofs

can be constructed, and directions in which a more advanced treatment must move.

I hope that my choices in this respect are not too bad.
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viii Preface

A small chapter (Chapter 2) treats deterministic control problems and has been

included because it makes possible a very simple exposition of ideas that later on

reappear in Chapters 3 and 4. In addition, and more formally, certain proofs in Chap-

ter 3 make use of proven results in Chapter 2.

The level of rigor varies greatly. Formal results should preferably be stated will

full rigor, but certain compromises have been unavoidable, especially in Chapter 4,

but in fact in all chapters. The degree of rigor in the proofs varies even more. Some

proofs are completely heuristic (or even omitted), other ones are nearly, or essen-

tially, rigorous. Quite frequently, first nonrigorous proofs are presented, and then,

perhaps annoyingly often, some comment on what is lacking in the proofs, or how

they might be improved upon, are added.

Hopefully, what might be called introductory proofs of the most central results

are easy to read. Other proofs of more technical material may be quite compact, and

then more difficult to read. So the reader may feel that readability varies a lot. In a

book of this type and length, it was difficult to avoid this variability in the manner

of exposition.

Altogether, there are a great number of remarks in the text giving refinements

or extension of results. On (very) first reading, it is advisable to skip most of the

remarks and concentrate on the main theory and the examples. Asterisks, usually

one (*), are used to indicate material that can be jumped over at first reading; when

two asterisks (**) are used, it indicates in addition that somewhat more advanced

mathematical tools are used.

Solved examples, examples with analytical (or closed form) solutions, play a big

role in the text. The aim is to give the reader a firmer understanding of the theoret-

ical results. It will also equip him or her with a better knowledge of how to solve

similar, simple problems, and an idea of how solutions may look like in slightly

more complicated problems where analytical solutions cannot be found. The reader

should get to know, however, that most problems cannot be solved analytically, they

need numerical methods, not treated in the current book.

On the whole, sufficient conditions for optimality are proved with greater rigor

(sometimes even with full rigor) compared with proofs of necessary conditions.

Even if the latter proofs are heuristic, the necessary conditions that they seem to

provide can be compared with the sufficient conditions established, and the former

(slightly imprecise) conditions can tell how useful the latter conditions are, in other

words how frequently we can hope that the sufficient conditions can help us solve

the optimization problems we consider.

A number of exercises, with answers provided (except for a few theoretical prob-

lems), have been included in the book.

For the reader wanting to continue studying some of the themes of this book, or

who wants to consult alternative expositions of the theory, a small selection of books

and articles are provided in the References. These works are also referred to at the

ends of the chapters. The few titles provided can only give some hints as to where

one can seek more information; for more extensive lists of references, one should

look into more specialized works.
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Chapter 1
Stochastic Control over Discrete Time

This chapter describes the optimal governing of certain discrete time stochastic pro-

cesses over time. First, solution tools for finite horizon problems are presented, the

most important being the dynamic programming equation, but also a stochastic max-

imum principle is rendered. In three sections, infinite horizon problems are treated.

Optimal stopping problems are discussed, where when to stop is a — or the —

central question, both for a finite and infinite horizon. Problems of incomplete ob-

servations, where we learn more the longer the process runs, are also discussed,

and we end this part by presenting stochastic control with Kalman filtering. Finally,

some approximation methods are briefly discussed, and an extension to stochastic

time periods is presented.

1.1 Stochastic Dynamic Programming

What is the best way of controlling a system governed by a difference equation that

is subject to random disturbances? Stochastic dynamic programming is a central

tool for tackling this question.

In deterministic dynamic programming, the state develops according to a differ-

ence equation xt+1 = f (t1,xt ,ut), controlled by appropriate choices of the control

variables ut . In the current chapter, the function f is also influenced by random

disturbances, so that xt+1 is a stochastic quantity. Following common practice, we

often (but not always) use capital letters instead of lower-case letters for stochastic

quantities, e.g., Xt instead of xt .

Suppose then that the state equation is of the form

Xt+1 = f (t,Xt ,ut ,Vt+1), X0 = x0, V0 = v0, x0, v0 given ,ut ∈U, (1.1)

where, for each t, Vt+1 is a random variable that takes values in a finite set V . The

probability that Vt+1 = v ∈ V is written Pt(v|vt); it is assumed that it may depend

on the outcome vt at time t, as well as explicitly on time t. We may allow Vt+1 to

A. Seierstad, Stochastic Control in Discrete and Continuous Time, 1
DOI: 10.1007/978-0-387-76617-1_1,
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2 1 Stochastic Control over Discrete Time

be a continuous variable that takes values anywhere in R. Then the distributions

of Vt+1 are often given by densities pt(v|vt), separately piecewise continuous in v
and vt . Mostly, we speak as if the Vt’s are discrete random variables. However, the

solution tools presented can also be used for continuous stochastic variables. We

assume that t = 0,1, . . . ,T , T a given positive integer, that xt belongs to R
n, and

that ut is required to belong to a given subset U of R
r. The vectors ut are subject to

choice, and these choices, as well as the stochastic disturbances Vt+1 determine the

development of the state Xt .

Example 1.1. Suppose that Z1, Z2, . . . are independently distributed stochastic vari-

ables that take a finite number of positive values (or a continuum of positive values)

with specified probabilities independent of both the state and the control. The state

Xt develops according to:

Xt+1 = Zt+1(Xt −ut), ut ∈ [0,∞). (i)

Here ut is consumption, Xt − ut is investment, and Zt+1 is the return per invested

dollar. Moreover, the utility of the terminal state xT is β T Bx1−γ
T and the utility of the

current consumption is β tu1−γ
t for t < T , where β is a discount factor, and 0 < γ < 1.

The development of the state xt is now uncertain (stochastic). The objective function

to be maximized is the sum of expected discounted utility, given by

T−1

∑
t=0

β tEu1−γ
t +β T BEX1−γ

T . (ii)

�

Let us, for a moment, consider a two-stage decision problem. Assume that one wants

to maximize the criterion:

E { f0(0,X0,u0)+ f0(1,X1,u1)} = f0(0,X0,u0)+E f0(1,X1,u1),

where E denotes expectation and f0 is some given function. Here the initial state

X0 = x0 and an initial outcome v0 are given and X1 is determined by the difference

equation (1.1), i.e., X1 = f (0,x0,u0,V1). To find the maximum, the following method

works: We can first maximize with respect to u1, and then with respect to u0. When

choosing u1, we simply maximize f0(1,X1,u1), assuming that X1 is known before

the maximization is carried out. The maximum point u∗1 becomes a function u∗1(X1)
of X1. Imagine that this function is inserted for u1 in the criterion, and that the

two occurrences of X1 are replaced by f (0,x0,u0,V1). Then the criterion becomes

equal to

f0(0,X0,u0)+E { f0(1, f (0,x0,u0,V1),u∗1( f (0,x0,u0,V1)))} ,

i.e., u0 occurs in both terms in the criterion. A maximizing value of u0 is then chosen,

taking both these occurrences into account.

When there are more than two stages, this process is continued backwards, as we

shall see.
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To see why it matters that we can observe X1 before choosing u1, consider the

following problem: Let T = 1, f0(0,x1,u1) = 0, f0(1,x1,u1) = X1u1, X1 =V1, where

V1 takes the values 1 and −1 with probabilities 1/2, and where u can take the values

1 and −1. Then, EX1u1 = 0 if we have to choose u1 before observing X1 (hence

a constant u1), but if we can first observe X1, then we can let u1 depend on X1. If

we choose u1 = u1(X1) = X1, then EX1u1 = 1, which yields a better value of the

objective. In Sections 1.1–1.6, we shall assume that Xt , in fact both Xt and Vt , can

be observed before choosing ut .

Let us turn to the general problem. The process Xt , determined by (1.1) and the

random variables Vt , is to be controlled in the best possible manner by appropriate

choices of the variables ut . The objective function is now the expectation

T

∑
t=0

E[ f0(t,Xt ,ut(Xt ,Vt))]. (1.2)

Here several things have to be explained. Each control ut , t = 0,1, . . . ,T is a func-

tion, ut(xt ,vt), of the current state xt and the outcome vt . Such a function is called

a policy (or more specifically a Markov policy or a Markov control). For a large

class of stochastic optimization problems, including the one we are now studying,

this is the natural class of controls to consider in order to achieve an optimum. Both

Vt and Xt are random variables, the Xt ’s arising from the state equation when the

functions us(Xs,Vs) are inserted in the equation. The letter E, as before, denotes ex-

pectation. For completeness, a detailed description of its calculation follows in the

next paragraph, but because it will not be much used later on, readers may want to

skip reading it.

To compute the expectation requires specifying the probabilities that are needed

in the calculation of the expectation. Given v0, recall that the probability for the

events V1 = v1 and V2 = v2 jointly to occur equals the conditional probability for

V2 = v2 to occur, given V1 = v1, times the probability for V1 = v1 to occur, given

V0 = v0. Hence it equals P1(v2|v1) times P0(v1|v0). Similarly, given v0, the probabil-

ity of the joint event V1 = v1, V2 = v2, . . . , Vt = vt , is given by

p∗(v1, . . . ,vt) := P0(v1|v0) ·P1(v2|v1) · . . . ·Pt−1(vt |vt−1). (1.3)

(This is actually a conditional probability, v0 given.) Now, given the policies ut(xt ,vt),
the sequence Xt , t = 1, . . . ,T , in (1.2) is the solution of (1.1), found by calculating,

successively, X1,X2, . . . , when, successively, V1,V2, . . . . and u1 = u1(X1,V1), u2 =
u2(X2,V2), . . . are inserted. Hence Xt depends on V1, . . . , Vt and, for each t, the

expectation E f0(t,Xt ,ut(Xt ,Vt)) is calculated by means of the probabilities specified

in (1.3).

Though not always necessary, we shall assume that f0 and f are continuous in

(x,u), (in (x,u,v) if Vt takes values in a nondiscrete set).

The optimization problem is to find a sequence of policies u∗0(x0,v0), . . . ,
u∗T (xT ,vT ) that gives the expression in (1.2) the largest possible value. Such a policy

sequence is called an optimal policy sequence.
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We now define the optimal value function

J(t,xt ,vt) = maxE

[
T

∑
s=t

f0(s,Xs,us(Xs,Vs))
∣∣ xt ,vt

]
, (1.4)

where the maximum is taken over all policy sequences us = us(xs,vs),s = t, . . . ,T ,

given vt and given that we “start the equation” (1.1) at the state xt at time t, as indi-

cated by “| xt ,vt” in (1.4) and apply the controls us from the sequence when using

(1.1) to calculate all the Xs’s. The computation of the expectation in (1.4), (or expec-

tations, when E is taken inside the sum), is now based on conditional probabilities

of the form p∗(vt+1, . . . ,vs|vt) = Pt(vt+1|vt) · . . . ·Ps−1(vs|vs−1).
The central tool in solving optimization problems of the type (1.1), (1.2) is the

following optimality (or dynamic programming) equation:

J(t −1,xt−1,vt−1) = max
ut−1

{
f0(t −1,xt−1,ut−1)+E [J(t,Xt ,Vt) | xt−1,vt−1]

}
(1.5)

where Xt = f (t − 1,xt−1,ut−1,Vt) is to be inserted. The “xt−1” in the symbol

“|xt−1,vt−1]” is just a reminder that xt−1 occurs in the expression to be inserted.

After the insertion, the equation becomes J(t −1,xt−1,vt−1) =

max
ut−1

{
f0(t −1,xt−1,ut−1)+E [J(t, f (t −1,xt−1,ut−1,Vt),Vt) | vt−1]

}
,

t = 1, . . . ,T . Moreover, at time T , we have

J(T,xT ,vT ) = J(T,xT ) = max
uT

f0(T,xT ,uT ). (1.6)

The equations (1.5), (1.6) are, essentially, both necessary and sufficient. They are

sufficient in the sense that if u∗t−1(xt−1,vt−1) maximizes the right-hand side of (1.5)

for t = 1, . . . , T and the right-hand side of (1.6) for t = T +1, then u∗t−1(xt−1,vt−1),
t = 1, . . . ,T + 1, are optimal policies. On the other hand, they are necessary in

the sense that, for every xt−1,vt−1, an optimal control u∗t−1(xt−1,vt−1), t = 1, . . . ,T ,

yields a maximum on the right-hand side of (1.5), and, for t = T + 1, on the right-

hand side of (1.6). To be a little more precise, it is necessary that the optimal control

u∗t−1(xt−1,vt−1) yields a maximum on the right-hand side of (1.5), (1.6) for all values

of xt−1,vt−1 that can occur with positive probability, given {u∗s}s.

The solution method is thus as follows: The relation (1.6) is used to find the func-

tions u∗T (xT ,vT ) and J(T,xT ,vT ), and then (1.5) is used to find first u∗T−1(xT−1,vT−1)
and J(T − 1,xT−1,vT−1) (then J(T,xT ,vT ) is needed), and then u∗T−2(xT−2,vT−2)
and J(T − 2,xT−2,vT−2) (then J(T − 1,xT−1,vT−1) is needed), and so on, going

backwards in time until u0(x0,v0) and J(0,x0,v0) have been constructed. At any

time t, the optimal control to use, given that (xt ,vt) has been observed, is then

ut(xt ,vt).
The intuitive argument for (1.5) is as follows: Suppose the system is in a

given state xt−1, and vt−1 is given. For a given ut−1, the “instantaneous” reward

is f0(t,xt−1,ut−1). In addition, the maximal expected sum of rewards at all later
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times is E[J(t,Xt ,Vt)|xt−1,vt−1] when Xt = f (t−1,xt−1,ut−1,Vt). When using ut−1,

the total expected maximum value gained over all future time points (now including

even t −1), is the sum in (1.5). The largest expected gain comes from choosing ut−1

to maximize this sum.

Note that when Pt(v|vt) does not depend on vt , then vt can be dropped in the func-

tions Jt(xt ,vt),ut(xt ,vt), and in (1.5),(1.6). Then in (1.5) the conditioning on vt−1

drops out, and J(t−1,xt−1,vt−1), and the maximizing vector ut−1 = ut−1(xt−1,vt−1)
will not depend on vt−1. (In some later sections, f0(t, ., .) will depend also on vt and

then this simplification does not hold.) In examples below, this simplification is

employed.

Example 1.2. Consider the following example

maxE

[
T−1

∑
t=0

(1/2)t((1−ut)xt)1/2 +(1/2)T 21/2(XT )1/2

]
,

subject to

Xt+1 = utXtVt+1, X0 = 1,Vt ∈ {0,8}, Pr[Vt = 8] = 1/2, ut ∈ [0,1].

This problem is closely related to Example 1.1.

Solution. Evidently, J(T,xT ) = (1/2)T 21/2(xT )1/2.

Next, let us find the optimal u = uT−1 and J(T −1,xT−1), where J(T −1,xT−1) =

max
u

{(1/2)T−1((1−u)xT−1)1/2 +E[(1/2)T 21/2(uxT−1VT )1/2]} =

max
u

{(1/2)T−1((1−u)xT−1)1/2 +(1/2)T 21/2(1/2)81/2(uxT−1)1/2} =

max
u

{(1/2)T−1(xT−1)1/2[(1−u)1/2 +u1/2]}.

When differentiating to obtain the maximum point (we have a concave function in

u), we get

(1/2)T−1(xT−1)1/2[−(1/2)(1−u)−1/2 +(1/2)u−1/2] = 0,

which gives (1−u)−1/2 = u−1/2, or 1−u = u, i.e., u = uT−1 = 1/2. Inserting in the

maximand, we get

J(T −1,xT−1) = (1/2)T−1(xT−1)1/22(1/2)1/2 = (1/2)T−121/2(xT−1)1/2.

We now guess that, generally, J(t,xt) = (1/2)t21/2(xt)1/2. Let us try this guess,

hence let us find J(t−1,xt−1) and the optimal u = ut−1 from the optimality equation

(we now see that we can repeat the above calculations for T replaced by t):
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J(t −1,xt−1) = max
u

{(1/2)t−1((1−u)xt−1)1/2 +E[(1/2)t21/2(uxt−1Vt)1/2]}
= max

u
{(1/2)t−1(xt−1)1/2[(1−u)1/2 +u1/2]}

= (1/2)t−121/2(xt−1)1/2,

the last equality because when differentiating to obtain the maximum point, we get

(1/2)t−1(xt−1)1/2[(−1/2)(1−u)−1/2 +(1/2)u−1/2] = 0, which gives (1−u)−1/2 =
u−1/2, i.e., u = ut−1 = 1/2 again.

In this example, incidentally, ut−1 came out as independent of xt−1. �

In the next example, the outcome of the stochastic variable depends on its value

one period earlier.

Example 1.3. We want to solve the problem

maxE[XT +VT ], Xt+1 = utXtVt+1 +(1−ut)Xt(1−Vt+1),
X0 = 1,ut ∈ [0,1],

Vt ∈ {0,1},Pr[Vt+1 = 1|Vt = 1] = 3/4,Pr[Vt+1 = 1|Vt = 0] = 1/4.

Solution. Formally, we need to work with a second state variable, say Yt governed

by Yt+1 = Vt+1. Then, f0(T,xT ,yT ) = xT + yT , while f0(t, ., .) vanishes for t < T .

However, below we write xT +vT and J(t,xt ,vt) instead of xT +yT and J(t,xt ,yt ,vt).
Note that, by necessity, Xt ≥ 0 for all t.

Now, J(T,xT ,vT ) = xT + vT . Let us next find J(T −1,xT−1,vT−1).
For vT−1 = 1, J(T −1,xT−1,vT−1) =

max
u

E{uxT−1VT +(1−u)xT−1(1−VT )+VT |vT−1 = 1}
= max

u
{(3/4)uxT−1 +3/4+(1/4)(1−u)xT−1} = (3/4)xT−1 +3/4.

Here, u = uT−1 = 1 is optimal.

For vT−1 = 0, J(T −1,xT−1,vT−1) =

max
u

E{uxT−1VT +(1−u)xT−1(1−VT )+VT |vT−1 = 0}
= max

u
{(1/4)uxT−1 +1/4+(3/4)(1−u)xT−1} = (3/4)xT−1 +1/4.

Here, u = uT−1 = 0 is optimal.

Let us now find J(T − 2,xT−2,vT−2). We can write J(T − 1,xT−1,vT−1) =
(3/4)xT−1 +3vT−1/4+(1− vT−1)/4.

For vT−2 = 1, J(T −2,xT−2,vT−2) =

max
u

{E[(3/4)(uxT−2VT−1 +(1−u)xT−2(1−VT−1))+3VT−1/4

+(1−VT−1)/4|vT−2]}
= max

u
{(3/4)[(3/4)uxT−2 +3/4]+ (1/4)[(3/4)(1−u)xT−2 +1/4]}
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= (3/4)2xT−2 +(3/4)2 +(1/4)2

= (3/4)2xT−2 +10/16.

Here, u = uT−2 = 1 is optimal.

For vT−2 = 0, J(T −2,xT−2,vT−2) =

max
u

{E[(3/4)(uxT−2VT−1 +(1−u)xT−2(1−VT−1))+3VT−1/4

+(1−VT−1)/4|vT−2]}
= max

u
{(1/4)[(3/4)uxT−2 +3/4]+ (3/4)[(3/4)(1−u)xT−2 +1/4]}

= (3/4)2xT−2 +6/16.

Here, u = uT−2 = 0 is optimal.

We now guess that J(t,xt ,vt) is of the form J(t,xt ,vt) = (3/4)T−t xt +at when vt =
1,J(t,xt ,vt) = (3/4)T−t xt +bt when vt = 0. We can write J(t,xt ,vt) = (3/4)T−t xt +
atvt +bt(1− vt). Then, J(t −1,xt−1,vt−1) =

max
u

E{(3/4)T−t(uxt−1Vt +(1−u)xt−1(1−Vt))+atVt +bt(1−Vt)|vt−1}.

For vt−1 = 1 this expression equals

max
u

{(3/4)[(3/4)T−tuxt−1 +at ]+ (1/4)[3/4)T−t(1−u)xt−1 +bt ]}
= (3/4)T−(t−1)xt−1 +(3/4)at +(1/4)bt ,

with u = ut−1 = 1 optimal, and for vt−1 = 0 , we get J(t −1,xt−1,vt−1) =

max
u

{(1/4)[(3/4)T−tuxt−1 +at ]+ (3/4)[3/4)T−t(1−u)xt−1 +bt ]}
= (3/4)T−(t−1)xt−1 +(1/4)at +(3/4)bt ,

with u = ut−1 = 0 optimal.

Note that for all t, the optimal ut equals vt .

The entities at and bt are governed by the backwards difference equations at−1 =
(3/4)at + (1/4)bt , bt−1 = (1/4)at + (3/4)bt , aT = 1, bT = 0, and so are known.

In fact, it is easy to find a formula for them. Adding the right-hand side of the

equations, we see that at−1 +bt−1 = at +bt , so using aT +bT = 1 yields at +bt ≡ 1.
So at−1 = (1/2)at + 1/4, which has the solution at = (1/2)T−(t−1) + 1/2, while

bt = 1−at = 1/2− (1/2)T−(t−1). �

Remark 1.4 (State- and time-dependent control region*). The theory above holds

also if the control region depends on t,x in the manner that U = U(t,x) = {u :

hi(t,x,u) ≥ 0, i = 1, . . . , i∗}, for some given functions hi’s that are continuous in

(x,u). If U(t,x) is empty, then, by convention, the maximum over U(t,x) is set equal
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to −∞. Hence, now ut(xt ,vt) has to take values in U(t,xt), and the maximization in

(1.5), respectively (1.6), is carried out over U(t −1,xt−1), respectively, U(T,xT ) �

An additional comment is perhaps needed to make quite clear what the problem

now is: A maximum of the criterion is sought in the set of all pairs of sequences

{Xs}s, {us(x,v)}s that satisfy the state equation and the condition us(Xs,Vs) ∈
U(s,Xs) a.s. for s = 0, . . . ,T . If the set of such pairs is empty, the problem has no

solution.

Example 1.5. Let us solve the problem in Example 1.1:

maxE

[
T−1

∑
t=0

β tu1−γ
t +β T BX1−γ

T

]
, (i)

Xt+1 = Zt+1(Xt −ut), ut ∈ (0,xt), (ii)

where 0 < γ < 1, 0 < β < 1,B > 0, and Zt , t = 0,1, . . . are independently distributed

non-negative random variables, EZ1−γ
t < ∞.

Solution. Here J(T,xT ) = β T Bx1−γ
T . To find J(T − 1,xT−1), we use the optimality

equation

J(T −1,xT−1) = max
u

(
β T−1u1−γ +E

[
β T B(ZT (xT−1 −u))1−γ]) . (iii)

The expectation must be calculated by using the probability distribution for ZT . Now

the expectation in (iii) is equal to

β T BDT (xT−1 −u)1−γ , Dt = E
[
Z1−γ

t

]
. (iv)

Hence, the expression to be maximized in (iii) is β T−1u1−γ +β T BDT (xT−1−u)1−γ .

If we put u = wx, w ∈ (0,1), and let ϕ(w) := w1−γ +h(1−w)1−γ , where h = βBDT ,

then J(T − 1,xT−1) = β T−1x1−γ maxw ϕ(w), and we see that we need to solve the

maximization problem

max
w∈(0,1)

ϕ(w) = max
w∈(0,1)

[
w1−γ +h(1−w)1−γ]. (v)

We find the maximum of the concave function ϕ , by solving

ϕ ′(w) = (1− γ)w−γ − (1− γ)h(1−w)−γ = 0,

which yields w−γ = h(1−w)−γ . Solving for w yields

w =
1

1+h1/γ . (vi)

Inserting this in ϕ gives its maximal value

max
w

ϕ(w) = 1/(1+h1/γ)1−γ +h[h1/γ/(1+h1/γ)]1−γ = (1+h1/γ)γ . (vii)



1.2 Infinite Horizon 9

Define CT := B,C1/γ
T−1 := 1+(βBDT )1/γ = 1+h1/γ , and generally,

C1/γ
t := 1+(βCt+1Dt+1)1/γ . (viii)

Then, the optimal uT−1 = wxT−1 = xT−1/C1/γ
T−1 and J(T − 1,xT−1) =

β T−1x1−γ
T−1 maxϕ(w) = β T−1CT−1x1−γ

T−1. As J(T − 1,xT−1) has the same form as

J(T,xT ), then, to find the optimal uT−2 and J(T − 2,xT−2), (vi) and (vii) are

used for h = βCT−1DT−1. This yields uT−2 = xT−2/C1/γ
T−2 and J(T − 2,xT−2) =

β T−2CT−2x1−γ
T−2. This continues backwards, so evidently we obtain generally

ut = xt/C1/γ
t ∈ (0,xt), (C1/γ

t > 1), and J(t,xt) = β tCtx
1−γ
t .

Note that Ct is a known sequence; it is determined by CT = B and backwards

recursion, using (viii). �

1.2 Infinite Horizon

Suppose that Pt(vt+1|vt) and f are independent of t, and that f0 can be written

f0(t,x,u) = g(x,u)α t , α ∈ (0,1] ( f and g continuous). The problem is often called

stationary,orautonomous, if thesepropertieshold.Putπ = ((u0(x0,v0),u1(x1,v1) . . .).
The problem is now

max
π

E

[
∞

∑
t=0

α tg(Xt ,ut(Xt ,Vt))

]
, ut(Xt ,Vt) ∈U, Pr[Vt+1 = v|vt ] = P(v|vt), (1.7)

where Xt is governed by the stochastic difference equation

Xt+1 = f (Xt ,ut(Xt ,Vt),Vt+1), (1.8)

with X0,V0 given, (g, f ,P(v|vt) given entities, the control ut subject to choice in

U , U given). Again, Vt+1 can also be allowed to be a continuous random variable,

governed by a density p(v|vt), separately piecewise continuous in v and vt , but in-

dependent of t. The maximum in (1.7) is sought when considering all sequences

π := (u0(x0,v0),u1(x1,v1), . . .) and selecting the best. We base our discussion upon

condition (1.11) below, or P., or N. in Remark 1.6 below, implying that the infi-

nite sum in (1.7) always exists in [−∞,∞], for condition (1.11), the sum belongs to

(−∞,∞). For a given sequence π := (u0(x0,v0),u1(x1,v1), . . .), let us write

Jπ(s,xs,vs) = E
[ ∞

∑
t=s

α tg(Xt ,ut(Xt ,Vt))
∣∣ xs,vs

]
, (1.9)

where we now start the difference (state) equation at Xs = xs. Let J(s,xs,vs) =
supπ Jπ(s,xs,vs). We now prove that J(1,x0,v0) = αJ(0,x0,v0). The intuitive argu-

ment is as follows. Let Jk
π(x,v) = ∑∞

t=k E[α t−kg(Xt ,ut(Xt ,Vt))|x,v] and let Jk(x,v) =
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supπ Jk
π(x,v). Then Jk(x,v) is the maximal expected present value of future rewards

discounted back to t = k, given that the process starts at (x,v) at time t = k. When

starting at (x,v) at time t = 0, and discounting back to t = 0, the corresponding max-

imal expected value is J0(x,v) = J(0,x,v). Because time does not enter explicitly in

P(v|vt),g and f , the future looks exactly the same at times t = 0, and t = k, hence

Jk(x,v) = J(0,x,v). As Jπ(k,x0,v0) = αkJk
π(x0,v0) (in the definition of Jπ(k,x0,v0)

we discount back to t = 0) and hence J(k,x0,v0) = αkJk(x0,v0) = αkJ(0,x0,v0) and

in particular J(1,x0,v0) = αJ(0,x0,v0).
The heuristic argument for the optimality equation can be repeated in the in-

finite horizon case. So (1.5) still holds. Using (1.5) for t = 1, and then inserting

αJ(0,x,v)) = J(1,x,v) and writing J(x,v) = J(0,x,v),x = x0,v = v0, gives the fol-

lowing optimality equation, or equilibrium optimality equation or Bellman equation

J(x,v) = max
u

{
g(x,u)+αE[J(X1,V1) | x,v]

}
, (1.10)

where X1 = f (x,u,V1).
Observe that (1.10) is a “functional equation,” an equation (hopefully) determin-

ing the unknown function J (J occurs on both sides of the equality sign). Once J is

known, the optimal Markov control is obtained from the maximization in the opti-

mality equation. Evidently, the maximization yields a control function u(x,v), not

dependent on t, and this is what we should expect of an optimal control function:

If we have observed x,v at time 0 and time t, the optimal choice of control should

be the same in the two situations, because then the future looks exactly the same at

these two points in time.

It can be shown that the optimal value function J(x,v) = supπ Jπ(0,x,v) is de-

fined and satisfies the equilibrium optimality equation in three cases to be discussed

below, (1.11), as well as P. and N. in Remark 1.6. (At least this is so when “max” is

replaced by “sup” in the equation.) Let us first consider the following case.

M1 ≤ g(x,u) ≤ M2 for all (x,u) ∈ R
n ×U , (1.11)

where M1 and M2 are given numbers. In case of the boundedness condition (1.11),

it is known that the equilibrium optimality equation has a unique bounded solution

J(x,v) (when “max” is replaced by “sup,” if necessary). Furthermore, J(x,v) is au-

tomatically the optimal value function in the problem, and a control u(x,v) giving

maximum in the optimality equation, given J(x,v), is the optimal control.

Remark 1.6 (Alternative boundedness conditions*). Complications arise when the

boundedness condition (1.11) fails to hold. Then we cannot know for sure that

the optimal value function is bounded, so we may have to look for unbounded

solutions of the Bellman equation. But then false solutions can occur (bounded

or not bounded), not equal to the optimal value function. Even in the case where

(1.11) holds, allowing unbounded solutions may lead to nonunique solutions, even

a plethora of solutions (see Exercise 1.48 and the following even simpler problem,

where g = 0, f = x/α , and where J(x) = ax satisfies the Bellman equation for all a).
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We shall consider two cases, P. and N., where some results can be obtained. In

both cases, we must allow for infinite values for the optimal value function J(x,v),
+∞ in case P, and −∞ in case N.

P. Either g(x,u)≥ 0 for all (x,u)∈R
n×U, and α = 1, or for some negative number

γ , g(x,u) ≥ γ for all (x,u) ∈ R
n ×U and α ∈ (0,1).

Let Ju(x,v) be the value function arising from using u(., .) all the time. In the cur-

rent case, if u(x,v) yields the maximum in the Bellman equation when Ju(x,v) is

inserted, then u(., .) is optimal. (In other words, if we have been able to find a con-

trol u(x,v) such that the pair (u(x,v),Ju(x,v)) behaves in this way, then u(x., .) is

optimal.)

Most often, it can be imagined that first the Bellman equation were solved and

a pair (u(x,v), Ĵ(x,v)) satisfying it were found (in particular, then, u(x,v) yields the

maximum in the equation). Next, if we are lucky enough to be able to prove that

Ju(x,v) = Ĵ(x,v), then all is well.

Sometimes it is useful to know the fact that if Ju(s,x,v,T ) is the value function

arising from using u = u(x,v) all the time from s until t = T when starting at (s,x,v),
then Ju(0,x,v,T )→ Ju(x,v) as T → ∞. Also J(0,x,v,T )→ J(x,v) as T → ∞, where

J(s,x,v,T ) is the optimal value function in the problem with finite horizon T , and

where we start at (s,x,v).
Note that, in the current case, the optimal value function J is ≤ Ĵ for any other

solution Ĵ of the Bellman equation for which Ĵ ≥ M̂(1−α) for some M̂ ≤ 0.

N. Either g(x,u)≤ 0 for all (x,u)∈R
n×U, and α = 1, or for some positive number

γ , g(x,u) ≤ γ for all (x,u) ∈ R
n ×U and α ∈ (0,1).

In this case, it is known that if u(., .) satisfies the Bellman equation with the optimal

value function inserted, then u(., .) is optimal. It is also known that if U is compact,

then J(0,x,v,T ) → J(x,v) as T → ∞. (In fact, for this result, we now do need that

f and g are continuous and V is finite. For other assumptions on V , see Section 1.6

below.)

How can this information be used? Assume that we have found a function Ĵ(x,v)
satisfying Ĵ ≤ M̂(1−α) for some M̂ ≥ 0, together with a function u(x,v) satisfying

the Bellman equation. If we are able to prove that the Bellman equation has only one

such solution Ĵ(x,v), then this is the optimal value function J(x,v) (because J(x,v)
is known to satisfy the Bellman equation, both in case P. and N.), and then u(x,v)
is optimal. Another possibility is the following: Suppose that U is compact and that

we can apply the limit result limT→∞ J(0,x,v,T ) = J(x,v) mentioned above. If we

then find that lim
T→∞

J(0,x,v,T ) = Ĵ(x,v), then Ĵ(x,v) is the optimal value function

and u(x) is optimal.

Note that in case N., the optimal value function J is ≥ Ĵ for any other solution

Ĵ of the Bellman equation for which Ĵ ≤ M̂(1−α) for some M̂ ≥ 0. (This fact lies

behind the uniqueness argument in the last paragraph.) �

Remark 1.7 (Modified boundedness conditions*). The boundedness condition (1.11)

and the conditions in P. and N. need only hold for x in X (x0) := ∪sXs(x0), where
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Xs(x0) is the set of states that can be reached at time s, when starting at x0 at time 0,

considering all outcomes and all controls.

The conclusions drawn in the case where (1.11) is satisfied also hold if the fol-

lowing alternative condition holds: There exist positive constants M, M∗, β , and

δ such that for all x ∈ X (x0), all u ∈ U and all V , | f (x,u,V )| ≤ M + δ |x| and

|g(x,u)| ≤ M∗(1 + |x|β ), with αδ β < 1, and α ∈ (0,1). Moreover, the conclusions

in case P. (respectively, case N.) hold if the next to last inequality is replaced by

g(x,u) ≥−M∗(1+ |x|β ) (respectively, g(x,u) ≤ M∗(1+ |x|β )). Note that J needs to

be defined only for x in X (x0), this set having the property that if x belongs to the

set, also f (x,u,v) belongs to it. �

Example 1.8. Consider the problem

max
ut∈(0,1)

E

[
∞

∑
t=0

β t x1−γ
t u1−γ

t

]
(i)

xt+1 = Vt+1(1−ut)xt , x0 is a positive constant. (ii)

Here, V1,V2, . . . are identically and independently distributed non-negative stochas-

tic variables, with D = EV 1−γ < ∞, where V is any of the Vt’s. We may think of xt
as the assets of, say, some timeless institution. At each point in time an amount utxt
is spent on some useful purpose, and the total effect is measured by the expectation

in (i). (For a comment on (ii), see Example 1.1.) It is assumed that

ρ = (βD)1/γ < 1, β ∈ (0,1), γ ∈ (0,1) (iii)

Solution. In the notation of problem (1.7), (1.8), g(x,u) = x1−γ u1−γ and f (x,u,V ) =
V (1−u)x. The equilibrium optimality equation (1.10) yields

J(x) = max
u∈(0,1)

[
x1−γ u1−γ +βEJ(V (1−u)x)

]
(iv)

We guess that J(x) had the form J(x) = kx1−γ for some constant k (the optimal value

function had a similar form in the finite horizon version of this problem discussed

in the previous section). Then, canceling the factor x1−γ , (iv) reduces to

k = max
u∈(0,1)

[
u1−γ +βkD(1−u)1−γ], (v)

where D = EV 1−γ . Using the result from Example 1.5 (the maximization of ϕ) gives

that the maximum in (v) is obtained for u =

u∗ =
1

1+ρk1/γ , ρ = (βD)1/γ (vi)

and the maximum value in (v) equals (1 + ρk1/γ)γ , so k is determined by the

equation

k = (1+ρk1/γ)γ .
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Raise each side to the power 1/γ , and solve for k1/γ to obtain k1/γ = 1/(1−ρ), or

k = (1−ρ)−γ . Hence, the solution is J(x) = (1−ρ)−γx1−γ , with u = 1−ρ .

In this example, the boundedness condition (1.11) is not satisfied for x ∈ X (x0).
One method out is to use the transformation yt = xt/zt , zt+1 = Vt+1zt ,z0 = 1, which

gives that yt+1 = (1− u)yt ,y0 = x0. Replacing xt by ytzt , as Zt = V1 · . . . ·Vt , tak-

ing the expectation inside the sum in the criterion (using actually what is called the

monotone convergence theorem), the problem can be transformed into a determin-

istic one. The deterministic difference equation yt+1 = (1−u)yt ,y0 = x0 is the state

equation, we have a new discount factor β̂ = βEV 1−γ and a new g-function equal to

y1−γ u1−γ ∈ [0,x1−γ
0 ] for all y ∈X (y0)⊂ [0,x0]. In this problem, the modified bound-

edness condition in Remark 1.7 is satisfied. Another way out is the following: Let

us use P. in Remark 1.6: Then we need to know that Ju∗(x) = J(x). It is fairly easy to

carry out the explicit calculation of Ju∗(x), by taking the expectation inside the sum

and summing the arising geometric series. But we don’t need to do that. Noting that

xt = x0ρ tV1 · . . . ·Vt , evidently, we must have that Ju∗(x0) = kx1−γ
0 , for some k. We

must also have that Ju∗(x0) satisfies the equilibrium optimality equation with u = u∗
and the maximization deleted, (in the problem where U = u∗, u∗ is optimal!). But

the only value of k for which this equation is satisfied we found above. Thus the test

in P. works and u∗ as specified in (vi) is optimal. �

1.3 State and Control-Dependent Probabilities

Suppose that the state equation is still of the form

Xt+1 = f (t,Xt ,ut ,Vt+1), x0,v0 are given (1.12)

where Vt+1 takes values in a finite set V = {v̄0, . . . , v̄m}, whose elements have prob-

abilities Pr[Vt+1 = v̄0] = P(0)(t,xt ,ut ,vt), . . . , Pr[Vt+1 = v̄m] = P(m)(t,xt ,ut ,vt), re-

spectively, hence these probabilities are conditional ones, also written Pt(v|xt ,ut ,vt),
v ∈ V . Thus, the probability Pr [Vt+1 = v] = Pt(v|xt ,ut ,vt) of the event Vt+1 = v, is

supposed to depend on the time t, the outcome vt , the state xt , and the control ut
we select at time t. We may allow V instead to be all R

n̂, for some n̂, thus allowing

the Vt’s to be continuous stochastic variables. Then the distribution of Vt+1 is often

given by a density pt(v|xt ,ut ,vt), separately piecewise continuous in each compo-

nent of v,xt ,ut and vt . In the main theoretical discussions, we mostly stick to discrete

random variables. However, the solution tools presented can also be used for contin-

uous stochastic variables. Again it is assumed that xt belongs to R
n, that ut belongs

to a given subset U of R
r, and that t = 0, . . . , T .

Example 1.9. A machine is supposed to be in one of three states. Either “as good

as new,” denoted by (2), or “functioning” (1), or “broken” (0). After having been

used all day, the machine is checked in the evening and its state is determined. The

following table describes the “transition probabilities” of the state from one evening

to the next one (it is an example of a so-called Markov process).
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(1)

The state next evening

0 1 2

0 1 0 0
The state when the

machine is checked
1 0.4 0.6 0

2 0.2 0.4 0.4

The table should be understood as follows. The first column lists the three possible

states of the machine, when it is checked in the evening. The uppermost row shows

the possible states of the machine after it has run for one day. If the machine is,

say, “as good as new,” i.e., in state 2, then the last row says that upon checking the

machine the next evening there is a probability of 0.2 of finding that it is “broken”

(state 0), a probability of 0.4 of finding that it is functioning (state 1), and a proba-

bility of 0.4 of finding that it is as good as new (state 2). The other two rows below

the bar are read similarly. If we use the symbols above, we let v̄0 = 0, v̄1 = 1, v̄2 = 2,

Xt+1 = f (t,xt ,ut ,Vt+1) = Vt+1, where xt+1 ∈ {0,1,2} and vt ∈ {0,1,2}. Moreover,

ut ∈ {0,1}, ut = 0 means that we do not repair the machine after the evening check,

whereas ut = 1 means that we repair it. The above table describes the situation the

next evening if we do not repair the machine. The elements in the matrix in (1)

are hence the probabilities P(i)(t,xt ,0) = P(i)
t (t,xt ,ut = 0), i = 0, 1, 2, xt = 0, 1, 2,

where i gives the column number and xt the row number.

If the machine is repaired one evening, then it is simply assumed that it is as good

as new (in state 2) the next evening. Thus, P(2)
t (t,xt ,1) = 1 and P(i)

t (t,xt ,1) = 0 for

i = 0, 1, regardless of xt . �

Let us return to the general problem. The process determined by (1.12) and the

random events V1, V2, . . . , is to be controlled in the best possible manner by appro-

priate choices of the variables ut . The criterion to be maximized is the expectation

E

[
T

∑
t=0

f0(t,Xt ,ut(Xt ,Vt),Vt)

]
. (1.13)

Again, each control ut , t = 0,1,2, . . . ,T should be a function, ut(xt ,vt), t = 0, . . . ,

T , of the current state xt and the current outcome vt . To compute the expectation in

(1.13), i.e., to calculate E[ f0(t,Xt ,ut(Xt ,Vt),Vt)] for any given t, requires specifying

the probabilities that lie behind the calculation of this expectation. Let us consider

the case where V is discrete. Given that the policies u0(x0,x0), . . . , uT (xT ,vT ) are

used, note first that Xs = Xs(V1, . . . ,Vs) in other words, Xs depends on the outcomes

of V1, . . . ,Vs. The probability of the joint event V1 = v1, V2 = v2, . . . , Vt = vt , is given

by p∗(v1, . . . ,vt) =

P0(v1|x0,u0,v0) ·P1(v2|x1,u1,v1) · . . . ·Pt−1(vt |xt−1,ut−1,vt−1) (1.14)

where u0 = u0(x0,v0), u1 = u1(x1,v1),. . . , uT−1 = uT−1(xT−1,vT−1) and where each

xs = xs(v1, . . . ,vs) (the xs’s forming a solution sequence of the state equation for

the specified control sequence), so the expression in (1.14) is a function (only) of
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(v1, . . . ,vt). Similarly, when inserting Xt = Xt(V1, ..,Vt) in f0(t,Xt ,ut(Xt ,Vt),Vt), this

function becomes a function only of (V1, . . . ,Vt) and the probabilities for the various

outcomes (v1, . . . ,vt) we have already specified, so E[ f0(t,Xt ,ut(Xt ,Vt),Vt)] can be

calculated. Thus, the expression in (1.13) is equal to(
T

∑
t=0

∑
v1,...,vt

f0(t,xt ,ut(xt ,vt),vt)

)
p∗(v1, . . . ,vt), (1.15)

where the inner sum is taken over all combinations of values (v1, . . . ,vt). The proba-

bilities p∗(v1, . . . ,vt), and hence the expected value, depend on the policies chosen,

so sometimes we write Eu0,...,uT instead of E in (1.13).

Though not always necessary, we shall assume that f0 and f are continuous in

(x,u), even in (x,u,v) if V is nondiscrete.

The optimization problem is to find a sequence of policies u∗0(x0,v0), . . . ,
u∗T (xT ,vT ), which gives the expression in (1.13) the largest possible value, subject

to the difference equation (1.12).

We now define

J(t,xt ,vt) = supEut ,...,uT

[
T

∑
s=t

f0(s,Xs,us(Xs,Vs),Vs)
∣∣ xt ,vt

]
, (1.16)

where the supremum is taken over all policy sequences us = us(xs,vs),s = t, . . . ,T ,

given vt and given that we start at the state xt at time t, as indicated by “| xt ,vt .”

The computation of the expectation is now based on conditional probabilities of the

form

Pt(vt+1|xt ,ut(xt ,vt),vt) · . . . ·PT−1(vT |xT−1,uT−1(xT−1,vT−1),vT−1).

In (1.16), and in these probabilities, given ut(., .), . . . ,uT−1(., .), for s = t +
1, . . . ,T , xs is a function of (vt+1, . . . ,vs) (and the given vt ), as well as of the given

start value xt , again determined by the difference equation (1.12).

(We seek a maximum in (1.16), and in a similar definition in Section 1.1, we

wrote max and not sup. When we write max we indirectly say that a maximum

exists, and being a little more formal in this section, we don’t want to include such

an assumption in the definition. A similar remark pertains to the optimality equation

(1.17), (1.18) below.)

Again, the central tool in solving optimization problems of the type (1.12)–

(1.13) is the following optimality equation (we write also here sup instead of max).

For t < T

J(t −1,xt−1,vt−1) = sup
ut−1

{
f0(t −1,xt−1,ut−1,vt−1)

+ ∑
vt∈V

Pt−1(v|xt−1,ut−1,vt−1)J(t, f (t −1,xt−1,ut−1,vt),vt)
}
. (1.17)
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Of course also here, if possible, we want to maximize, and in the maximization, the

vector ut−1 is constrained to lie in U . The equation can be written more concisely as

J(t −1,xt−1,vt−1) = sup
ut−1

{
f0(t −1,xt−1,ut−1,vt−1)

+Eut−1
[J(t,Xt ,Vt) | xt−1,vt−1]

}
. (1.18)

Of course, this version is also valid for continuous stochastic variables. Moreover,

when t = T , we must have

J(T,xT ,vT ) = sup
uT

f0(T,xT ,uT ,vT ). (1.19)

The intuitive argument for (1.17) is exactly as before: Suppose the system is in state

xt−1. For a given ut−1, the “instantaneous” reward is equal to f0(t,xt−1,ut−1,vt−1).
In addition, the sum of rewards at all later times is at most J(t,xt) if xt = f (t −
1,xt−1,ut−1,v), and the probability of this event is Pt−1(v|xt−1,ut−1,vt−1). When

using ut−1, the total expected maximum value gained over all future time points

(now including even t − 1) is the sum in (1.17). The largest expected gain comes

from choosing ut−1 to maximize this sum.

A formal proof is presented later on. In connection with the proof, certain theo-

retical questions are discussed. In particular, it can be shown that the maximal value

of the criterion cannot be increased by allowing policies that depend on past states

as well as on the present state.

Remark 1.10 (Criterion to be minimized). Suppose that we want to minimize the

value of the criterion. Then, to obtain the optimal value functions J(t,xt ,vt) a mini-

mization is carried out instead of a maximization. In the optimality equation, “max”

(or “sup”) must then be replaced by “min” (“inf”).

To see that this is correct, recall that to minimize a criterion is the same as max-

imizing (−1) times the criterion. Thus, we can apply the above “maximization the-

ory” to a problem where f0 is replaced by − f0. From this it is easy to see that the

“min”-version of the optimality equation follows. �

Example 1.11. Consider Example 1.9 again. In this example, the values of f0 will

be costs, rather than rewards. Let the values of the function f0 for all t be given by

the table

(2)

u
0 1

0 2 5

x 1 0 1

2 0 1/2

From the table, we see for instance that f0(t,xt ,ut) = f0(xt ,ut) = 5 when xt = 0,

ut = 1. The costs in the table may be interpreted as follows: A broken machine leads

to lost sales. But, if it is repaired, then that will add to the costs (see the numbers
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2 and 5 in the table). Repair carried out on a machine in better shape costs less,

as indicated by the last column. We are going to use the machine in a production

run over a period of three days. Before we start (i.e., at time t = 0), the machine is in

state 1. Because we are going to minimize costs, we replace sup with inf, (or min)

in (1.18) and (1.19), see Remark 1.10. For J(3,X3) we get:

(3)
J(3,0) = 2 J(3,1) = 0 J(3,2) = 0

u∗3 = 0 u∗3 = 0 u∗3 = 0

We naturally choose u∗3 = 0 because we shall not produce anything the next day. Let

us compute J(2,x2) for x2 = 0, 1, 2.

First let x2 = 0. If u = 0 is chosen, then the expected cost is f0(0,0)+1 ·J(3,0)+
0 ·J(3,1)+0 ·J(3,2) = 2+1 ·2+0 ·0+0 ·0 = 4, where the factors 1, 0, 0 make up

the first row in the matrix (1) in Example 1.9. If u = 1 is chosen, the expected cost

is f0(0,1)+1 · J(3,2) = 5+1 ·0 = 5. (Recall that a newly repaired machine is still

as good as new (x = 2) after one day’s use.) The minimum of the numbers 4 and 5

is 4, attained by u = 0, so J(2,0) = 4.

Next, let x2 = 1. If u = 0 is chosen, the expected cost is f0(1,0)+0.4 · J(3,0)+
0.6 ·J(3,1)+0 ·J(3,2) = 0+0.4 ·2+0.6 ·0+0 ·0 = 0.8, where the factors 0.4, 0.6,

and 0 make up the second row in table (1) in Example 1.9. If u = 1 is chosen, the

expected cost is f0(1,1)+1 ·J(3,2) = 1. The minimum of the numbers 0.8 and 1 is

0.8, attained for u = 0.

Finally, put x2 = 2. If u = 0 is chosen, we get f0(2,0) + 0.2 · J(3,0) + 0.4 ·
J(3,1) + 0.4 · J(3,2) = 0 + 0.2 · 2 + 0.4 · 0 + 0.4 · 0 = 0,4. If u = 1 is chosen, we

get f0(2,1)+ 1 · J(3,2) = 0,5 + 1 · 0 = 0.5. The minimum of the numbers 0.4 and

0.5 is 0.4, attained for u = 0. We summarize our calculations thus:

(4)
J(2,0) = 4 J(2,1) = 0.8 J(2,2) = 0.4

u∗2 = 0 u∗2 = 0 u∗2 = 0

Let us compute J(1,x1), x1 = 0, 1, 2, in the same way.

Let x1 = 0. If u = 0 is chosen, we get f0(0,0)+1 ·J(2,0)+0 ·J(2,1)+0 ·J(2,2) =
2 + 1 · 4 + 0 · 0.8 + 0 · 0.4 = 6. If u = 1 is chosen, we get f0(0,1) + 1 · J(2,2) =
5+1 ·0.4 = 5.4. The minimum, 5.4, is attained for u = 1.

Next, let x1 = 1. If u = 0 is chosen, the expected cost is f0(1,0)+0.4 · J(2,0)+
0.6 ·J(2,1)+0 ·J(2,2) = 0+0.4 ·4+0.6 ·0.8+0 ·0.4 = 2.08. If u = 1 is chosen, the

expected cost is f0(1,1)+1 ·J(2,2) = 1+0.4 = 1.4. The minimum, 1.4, is attained

for u = 1.

Finally, let x1 = 2. If u = 0 is chosen, we obtain f0(2,0) + 0.2 · J(2,0) + 0.4 ·
J(2,1)+ 0.4 · J(2,2) = 0 + 0.2 · 4 + 0.4 · 0.8 + 0.4 · 0.4 = 1.28. If u = 1 is chosen,

we get f0(2,1)+ 1 · J(2,2) = 0.5 + 1 ·0.4 = 0.9. The minimum, 0.9, is attained for

u = 1.

This gives the following table:

(5)
J(1,0) = 5.4 J(1,1) = 1.4 J(1,2) = 0.9

u∗1 = 1 u∗1 = 1 u∗1 = 1
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From (5), we now conclude that if two production days remain, we always repair

the machine, whatever its state. If only one production day is left, then it is too

expensive to repair the machine for such a short spell of time. �

In the next example, we go back to a very simple probability structure. (Recall that

any minimization problem can be rewritten as a maximization problem by changing

the sign of the criterion function, and in case of minimization, we get minimization

also in the optimality equation.)

Example 1.12 (Linear quadratic multidimensional problem). Let H ′ be the trans-

pose of the matrix H, and call a symmetric n× n matrix positive definite if, for all

x ∈ R
n, x �= 0, x′Hx > 0, and positive semidefinite if x′Hx ≥ 0. Consider the follow-

ing problem with n state variables and r control variables:

min
u0,...,uT

E

[
∑

0≤t≤T
x′tRtxt +u′tQtut

]
, (1.20)

where Rt and Qt are given symmetric positive definite square matrices. The mini-

mization is subject to the condition (equation)

xt+1 = Atxt +Btut + εt , ut ∈ R
r, x0 given in R

n, (1.21)

where At and Bt are given n×n and n× r matrices, respectively, and where the ran-

dom variables εt are independently distributed with mean zero and finite covariance

matrices, their distributions being independent of history.

Solution. We will need the following result: Let Q be a symmetric and positive defi-

nite r× r–matrix, let C be a symmetric and positive semidefinite n×n–matrix, let A
be a n×n–matrix, and let B be an n× r–matrix. The following equality is obtained

by a completing-the-square argument presented below:

h(u) := u′Qu+(Ax+Bu)′C(Ax+Bu) = (u′ + x′H ′)K(u+Hx)+ x′Jx, (∗)

where K = Q + B′CB, H = K−1B′CA, J = A′CA − H ′KH = A′CA − A′CB(Q +
B′CB)−1B′CA (K is symmetric and positive definite).

The equality (*) follows from h(u) =

u′Qu+u′B′CBu+ x′A′CAx+ x′A′CBu+u′B′CAx

= u′Ku+ x′A′CAx+ x′A′CBK′−1K′u+u′KK−1B′CAx

= u′Ku+u′KHx+ x′H ′Ku+ x′H ′KHx+ x′Jx

= (u′ + x′H ′)K(u+Hx)+ x′Jx.

The minimum point and minimal value of h(u) are evidently given by

u = −Hx, min
u

h(u) = x′Jx. (∗∗)
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Define the symmetric, positive definite matrix Ct by the (backwards) Riccati

equation

Ct = Rt +A′
tCt+1At − (A′

tCt+1Bt)(Qt +B′
tCt+1Bt)−1(B′

tCt+1At), (1.22)

CT+1 = 0. As a backwards induction hypothesis, assume that J(t,x) is of the form

x′Ctx+dt for t replaced by t +1 and let us prove that then the formula is also correct

for t (it is correct for t = T , for CT = RT ,dT = 0). Using the induction hypothesis,

the optimality equation is:

J(t,x) = min
u
{x′Rtx+u′Qtu+E(Atx+Btu+ εt)′Ct+1(Atx+Btu+ εt)}+dt+1

Now,

E[(Atx+Btu+ εt)′Ct+1(Atx+Btu+ εt)] = (Atx+Btu)′Ct+1(Atx+Btu)
+E[(Atx+Btu)′Ct+1εt + ε ′tCt+1(Atx+Btu)]+E(ε ′tCt+1εt), (1.23)

where the second term on the right-hand side vanishes. Only the first of the three

terms is relevant to the minimization, because the third one is independent of u, so

J(t,x) = min
u
{x′Rtx+u′Qtu+(Atx+Btu)′Ct+1(Atx+Btu)}+dt ,

where dt = E(ε ′tCt+1εt)+dt+1. Using (∗∗), we have that the optimal control u = ut
satisfies ut = −Dtx, where Dt = (Qt +B′

tCt+1Bt)−1B′
tCt+1At . Moreover, using (∗∗)

and (1.22), we get J(t,x) = x′Ctx+dt , where dt satisfies the backwards recursion

dt = dt+1 +Σi, jN
i j
t Ci j

t+1,Nt = Cov(εt),dT = 0,

(the top indices i j indicating elements in the matrices). We have obtained results

in conformity with the so-called “certainty equivalence principle,” namely that the

control is the same as that obtained by taking expectation on the right-hand side of

the state equation, i.e., by putting εt = 0, as if there were no uncertainty. This is

a rather exceptional result, completely dependent on the particular structure of the

problem. �

Proof of the optimality equation (1.18), (1.19)

The proof is provided for the specially interested reader and we assume that V is

finite. Write zt = (xt ,vt). For simplicity, f0(s, ., ., .) is assumed to be independent of

vs. We define, as before,

J(t,zt) = sup
ut ,...,uT

Eut ,...,uT

[
T

∑
s=t

f0(s,Xs,us(Zs))
∣∣ zt

]
, (1.24)

for t < T , with

J(T,zT ) = sup
uT

f0(T,xT ,uT ). (1.25)
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The optimality equation to be proved is

J(t −1,zt−1) = sup
ut−1

{
f0(t −1,xt−1,ut−1)+Eut−1

[J(t,Zt) | zt−1]
}
. (1.26)

In the proof, we shall consider a larger class of control policies, namely the general

history-dependent controls ut(z1, . . . ,zt). Thus the controls are allowed to depend

on all previous events v and states x. The proof to be presented makes it possible to

answer the following question: Is it possible to achieve even better results if we are

allowed to select policies from this larger collection of policies?

The argument below uses the following iterated expectation rule that can be

found in standard texts on probability theory (see also the Appendix):

E [Y | X1, . . . ,Xm] = E [E [Y | X1, . . . ,Xn] | X1, . . . ,Xm] ,m < n.

Let us write J(t,z→t) for the value that results when the policies in (1.24) are chosen

from the class of policies us(z→s) := us(z1, . . . ,zs), where the symbol z→s means the

sequence (z1, . . . ,zs), and where we condition on z→t rather than on just zt .
Write Es−1 := Eus−1,...,uT (if the probabilities Pt do not depend on the controls,

drop the superscripts s−1 and s on E below, the reader may want to concentrate on
this slightly simpler case). The following sequence of equalities will be explained
shortly:

J(s−1,z→s−1) = sup
t≥s−1

Es−1

[
T

∑
τ=s−1

f0(τ,Xτ ,uτ(Z→τ)) | z→s−1

]

= sup
us−1(·)

[
f0(s−1,xs−1,us−1(z→s−1))

+sup
t≥s

Es−1

{
T

∑
τ=s

f0(τ,Xτ ,uτ(Z→τ)) | z→s−1

}]

= sup
us−1(·)

[
f0(s−1,xs−1,us−1(z→s−1))

+sup
t≥s

Es−1

[
Es

{
T

∑
τ=s

f0(τ,Xτ ,uτ(Z→τ)) | Z→s

}
| z→s−1

]]

= sup
us−1(·)

[
f0(s−1,xs−1,us−1(z→s−1))

+Es−1

{
sup
t≥s

Es

[
T

∑
t=s

f0(τ,Xτ ,uτ(Z→τ)) | Z→s

]
| z→s−1

}]

= sup
us−1

[
f0(s−1,xs−1,us−1)+Es−1[J(s,Z→s) | z→s−1]

]
. (1.27)


