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Preface to the Second Edition

In the preface to the first edition of this book I remarked on the paucity of intro-
ductory texts devoted to the arithmetic of elliptic curves. That unfortunate state of
affairs has long since been remedied with the publication of many volumes, among
which may be mentioned books by Cassels [43], Cremona [54], Husemöller [118],
Knapp [127], McKean et. al [167], Milne [178], and Schmitt et. al [222] that high-
light the arithmetic and modular theory, and books by Blake et. al [22], Cohen et.
al [51], Hankerson et. al [107], and Washington [304] that concentrate on the use of
elliptic curves in cryptography. However, even among this cornucopia of literature, I
hope that this updated version of the original text will continue to be useful.

The past two decades have witnessed tremendous progress in the study of elliptic
curves. Among the many highlights are the proof by Merel [170] of uniform bound-
edness for torsion points on elliptic curves over number fields, results of Rubin [215]
and Kolyvagin [130] on the finiteness of Shafarevich–Tate groups and on the con-
jecture of Birch and Swinnerton-Dyer, the work of Wiles [311] on the modularity of
elliptic curves, and the proof by Elkies [77] that there exist infinitely many supersin-
gular primes. Although this introductory volume is unable to include proofs of these
deep results, it will guide the reader along the beginning of the trail that ultimately
leads to these summits.

My primary goals in preparing this second edition, over and above the pedagog-
ical aims of the first edition, are the following:

• Update and expand results and references, especially in Appendix C, which
includes a new section on the variation of the trace of Frobenius.

• Add a chapter devoted to algorithmic aspects of elliptic curves, with an em-
phasis on those features that are used in cryptography.

• Add a section on Szpiro’s conjecture and the ABC conjecture.

• Correct, clarify, and simplify the proofs of some results.

• Correct numerous typographical and minor mathematical errors. However,
since this volume has been entirely retypeset, I beg the reader’s indulgence
for any new typos that have been introduced.

• Significantly expand the selection of exercises.

It has been gratifying to see the first edition of this book become a standard
text and reference in the subject. In order to maintain backward compatibility of

v



vi Preface to the Second Edition

cross-references, I have taken some care to leave the numbering system unchanged.
Thus Proposition III.8.1 in the first edition remains Proposition III.8.1 in the second
edition, and similarly for Exercise 3.5. New material has been assigned new numbers,
and although there are many new exercises, they have been appended to the exercises
from the first edition.

Electronic Resources: There are many computer packages that perform computa-
tions on elliptic curves. Of particular note are two free packages, Sage [275] and
Pari [202], each of which implements an extensive collection of elliptic curve algo-
rithms. For additional links to online elliptic curve resources, and for other material,
the reader is invited to visit the Arithmetic of Elliptic Curves home page at

www.math.brown.edu/˜jhs/AECHome.html

No book is ever free from error or incapable of being improved. I would be
delighted to receive comments, positive or negative, and corrections from you, the
reader. You can send mail to me at

jhs@math.brown.edu

Acknowledgments for the Second Edition
Many people have sent me extensive comments and corrections since the appear-
ance of the first edition in 1986. To all of them, including in particular the following,
my deepest thanks: Jeffrey Achter, Andrew Bremner, Frank Calegari, Jesse Elliott,
Kirsten Eisenträger, Xander Faber, Joe Fendel, W. Fensch, Alexandru Ghitza, Grigor
Grigorov, Robert Gross, Harald Helfgott, Franz Lemmermeyer, Dino Lorenzini,
Ronald van Luijk, David Masser, Martin Olsson, Chol Park, Bjorn Poonen, Michael
Reid, Michael Rosen, Jordan Risov, Robert Sarvis, Ed Schaefer, René Schoof, Nigel
Smart, Jeroen Spandaw, Douglas Squirrel, Katherine Stange, Sinan Unver, John
Voight, Jianqiang Zhao, Michael Zieve.

Providence, Rhode Island JOSEPH H. SILVERMAN

November, 2008



Preface to the First Edition

The preface to a textbook frequently contains the author’s justification for offering
the public “another book” on a given subject. For our chosen topic, the arithmetic of
elliptic curves, there is little need for such an apologia. Considering the vast amount
of research currently being done in this area, the paucity of introductory texts is
somewhat surprising. Parts of the theory are contained in various books of Lang,
especially [135] and [140], and there are books of Koblitz [129] and Robert [210]
(the latter now out of print) that concentrate on the analytic and modular theory.
In addition, there are survey articles by Cassels [41], which is really a short book,
and Tate [289], which is beautifully written, but includes no proofs. Thus the author
hopes that this volume fills a real need, both for the serious student who wishes to
learn basic facts about the arithmetic of elliptic curves and for the research mathe-
matician who needs a reference source for those same basic facts.

Our approach is more algebraic than that taken in, say, [135] or [140], where
many of the basic theorems are derived using complex analytic methods and the Lef-
schetz principle. For this reason, we have had to rely somewhat more on techniques
from algebraic geometry. However, the geometry of (smooth) curves, which is es-
sentially all that we use, does not require a great deal of machinery. And the small
price paid in learning a little bit of algebraic geometry is amply repaid in a unity of
exposition that, to the author, seems to be lacking when one makes extensive use of
either the Lefschetz principle or lengthy, albeit elementary, calculations with explicit
polynomial equations.

This last point is worth amplifying. It has been the author’s experience that “ele-
mentary” proofs requiring page after page of algebra tend to be quite uninstructive.
A student may be able to verify such a proof, line by line, and at the end will agree
that the proof is complete. But little true understanding results from such a proce-
dure. In this book, our policy is always to state when a result can be proven by such
an elementary calculation, indicate briefly how that calculation might be done, and
then to give a more enlightening proof that is based on general principles.

The basic (global) theorems in the arithmetic of elliptic curves are the Mordell–
Weil theorem, which is proven in Chapter VIII and analyzed more closely in Chap-
ter X, and Siegel’s theorem, which is proven in Chapter IX. The reader desiring to
reach these results fairly rapidly might take the following path:

I and II (briefly review), III (§§1–8), IV (§§1–6), V (§1)
VII (§§1–5), VIII (§§1–6), IX (§§1–7), X (§§1–6).

vii



viii Preface to the First Edition

This material also makes a good one-semester course, possibly with some time left
at the end for special topics. The present volume is built around the notes for such
a course, taught by the author at M.I.T. during the spring term of 1983. Of course,
there are many other ways to structure a course. For example, one might include all
of chapters V and VI, skipping IX and, if pressed for time, X. Other important topics
in the arithmetic of elliptic curves, which do not appear in this volume due to time
and space limitations, are briefly discussed in Appendix C.

It is certainly true that some of the deepest results in the subject, such as Mazur’s
theorem bounding torsion over Q and Faltings’ proof of the isogeny conjecture, re-
quire many of the resources of modern “SGA-style” algebraic geometry. On the other
hand, one needs no machinery at all to write down the equation of an elliptic curve
and to do explicit computations with it; so there are many important theorems whose
proof requires nothing more than cleverness and hard work. Whether your inclination
leans toward heavy machinery or imaginative calculations, you will find much that
remains to be discovered in the arithmetic theory of elliptic curves. Happy Hunting!

Acknowledgements
In writing this book, I have consulted a great many sources. Citations have been
included for major theorems, but many results that are now considered “standard”
have been presented as such. In any case, I can claim no originality for any of the
unlabeled theorems in this book, and I apologize in advance to anyone who may
feel slighted. The excellent survey articles of Cassels [41] and Tate [289] served as
guidelines for organizing the material. (The reader is especially urged to peruse the
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include [135], [139], [186], [210], and [236].
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at Springer-Verlag for encouraging me to undertake this project in the first place,
and Ann Clee for her meticulous preparation of the manuscript. Finally, I would like
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ing much of the turbulence.
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finiteness of the Shafarevich–Tate group (X.4.13), Ribet’s proof that the conjec-
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§15. Néron Models and Tate’s Algorithm 446
§16. L-Series 449
§17. Duality Theory 453
§18. Local Height Functions 454
§19. The Image of Galois 455
§20. Function Fields and Specialization Theorems 456
§21. Variation of ap and the Sato–Tate Conjecture 458

Notes on Exercises 461

List of Notation 467

References 473

Index 489



Introduction

The study of Diophantine equations, that is, the solution of polynomial equations
in integers or rational numbers, has a history stretching back to ancient Greece and
beyond. The term Diophantine geometry is of more recent origin and refers to the
study of Diophantine equations through a combination of techniques from algebraic
number theory and algebraic geometry. On the one hand, the problem of finding
integer and rational solutions to polynomial equations calls into play the tools of
algebraic number theory that describe the rings and fields wherein those solutions
lie. On the other hand, such a system of polynomial equations describes an algebraic
variety, which is a geometric object. It is the interplay between these two points of
view that is the subject of Diophantine geometry.

The simplest sort of equation is linear:

aX + bY = c, a, b, c ∈ Z, a or b �= 0.

Such an equation always has rational solutions. It has integer solutions if and only if
the greatest common divisor of a and b divides c, and if this occurs, then we can find
all solutions using the Euclidean algorithm.

Next in order of difficulty come quadratic equations:

aX2 + bXY + cY 2 + dX + eY + f = 0, a, . . . , f ∈ Z, a, b or c �= 0.

They describe conic sections, and by a suitable change of coordinates with rational
coefficients, we can transform a given equation into one of the following forms:

AX2 +BY 2 = C ellipse,

AX2 −BY 2 = C hyperbola,

AX +BY 2 = 0 parabola.

For quadratic equations we have the following powerful theorem that aids in their
solution.

Hasse–Minkowski Theorem 0.1. ([232, IV Theorem 8]) Let f(X,Y ) ∈ Q[X,Y ]
be a quadratic polynomial. The equation f(X,Y ) = 0 has a solution (x, y) ∈ Q2

if and only if it has a solution (x, y) ∈ R2 and a solution (x, y) ∈ Q2
p for every

prime p. (Here Qp is the field of p-adic numbers.)

xvii



xviii Introduction

In other words, a quadratic polynomial has a solution in Q if and only if it has a
solution in every completion of Q. Hensel’s lemma says that checking for solutions
in Qp is more or less the same as checking for solutions in the finite field Z/pZ,
and this is turn is easily accomplished using quadratic reciprocity. We summarize
the steps that go into the Diophantine analysis of quadratic equations.

(1) Analyze the equations over finite fields [quadratic reciprocity].

(2) Use this information to study the equations over complete local fields Qp

[Hensel’s lemma]. (We must also analyze them over R.)

(3) Piece together the local information to obtain results for the global field Q

[Hasse principle].

Where does the geometry appear? Linear and quadratic equations in two vari-
ables define curves of genus zero. The above discussion says that we have a fairly
good understanding of the arithmetic of such curves. The next simplest case, namely
the arithmetic properties of curves of genus one (which are given by cubic equations
in two variables), is our object of study in this book. The arithmetic of these so-called
elliptic curves already presents complexities on which much current research is cen-
tered. Further, they provide a standard testing ground for conjectures and techniques
that can then be fruitfully applied to the study of curves of higher genus and (abelian)
varieties of higher dimension.

Briefly, the organization of this book is as follows. After two introductory chap-
ters giving basic material on algebraic geometry, we start by studying the geometry
of elliptic curves over algebraically closed fields (Chapter III). We then follow the
program outlined above and investigate the properties of elliptic curves over finite
fields (Chapter V), local fields (Chapters VI, VII), and global (number) fields (Chap-
ters VIII, IX, X). Our understanding of elliptic curves over finite and local fields
will be fairly satisfactory. However, it turns out that the analogue of the Hasse–
Minkowski theorem is false for polynomials of degree greater than 2. This means
that the transition from local to global is far more tenuous than in the degree 2 case.
We study this problem in some detail in Chapter X. Finally, in Chapter XI we in-
vestigate computational aspects of the theory of elliptic curves, especially those that
have become important in the field of cryptography.

The theory of elliptic curves is rich, varied, and amazingly vast. The original aim
of this book was to provide an essentially self-contained introduction to the basic
arithmetic properties of elliptic curves. Even such a limited goal proved to be too
ambitious. The material described above is approximately half of what the author
had hoped to include. The reader will find a brief discussion and list of references for
the omitted topics in Appendix C, about half of which are covered in the companion
volume [266] to this book.

Our other goal, that of being self-contained, has been more successful. We have,
of course, felt free to state results that every reader should know, even when the
proofs are far beyond the scope of this book. However, we have endeavored not to use
such results for making further deductions. There are three major exceptions to this
general policy. First, we do not prove that every elliptic curve over C is uniformized
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by elliptic functions (VI.5.1). This result fits most naturally into a discussion of mod-
ular functions, which is one of the omitted topics; it is covered [266, I §4] in the
companion volume. Second, we do not prove that over a complete local field, the
“nonsingular” points sit with finite index inside the set of all points (VII.6.1). This
can be proven by quite explicit polynomial computations (cf. [283]), but they are
rather lengthy and have not been included for lack of space. (This result is proven in
the companion volume [266, IV §§8, 9].) Finally, in the study of integral points on
elliptic curves, we make use of Roth’s theorem (IX.1.4) without giving a proof. We
include a brief discussion of the proof in (IX §8), and the reader who wishes to see
the myriad details can proceed to one of the references listed there.

The prerequisites for reading this book are fairly modest. We assume that the
reader has had a first course in algebraic number theory, and thus is acquainted with
number fields, rings of integers, prime ideals, ramification, absolute values, comple-
tions, etc. The contents of any basic text on algebraic number theory, such as [142,
Part I] or [25], should more than suffice. Chapter VI, which deals with elliptic curves
over C, assumes a familiarity with the basic principles of complex analysis. In Chap-
ter X, we use a little bit of group cohomology, but just H0 and H1. The reader will
find in Appendix B the cohomological facts needed to read Chapter X. Finally, since
our approach is mainly algebraic, there is the question of background material in al-
gebraic geometry. On the one hand, since much of the theory of elliptic curves can
be obtained through the use of explicit equations and calculations, we do not want to
require that the reader already know a great deal of algebraic geometry. On the other
hand, this being a book on number theory and not algebraic geometry, it would not
be reasonable to spend half the book developing from first principles the algebro-
geometric facts that we will use. As a compromise, the first two chapters give an
introduction to the algebraic geometry of varieties and curves, stating all of the facts
that we need, giving complete references, and providing enough proofs so that the
reader can gain a flavor for some of the basic techniques used in algebraic geometry.

Numerous exercises have been included at the end of each chapter. The reader
desiring to gain a real understanding of the subject is urged to attempt as many as
possible. Some of these exercises are (special cases of) results that have appeared
in the literature. A list of comments and citations for the exercises may be found on
page 461. Exercises with a single asterisk are somewhat more difficult, while two
asterisks signal an unsolved problem.

References
Bibliographical references are enclosed in square brackets, e.g., [289, Theorem 6].
Cross-references to theorems, propositions, lemmas, etc., are given in full with the
chapter roman numeral or appendix letter, e.g., (IV.3.1) and (B.2.1). Reference to
an exercise is given by the chapter number followed by the exercise number, e.g.,
Exercise 3.6.



xx Introduction

Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, Fq, and Z�

to denote the integers, rational numbers, real numbers, complex numbers, a field
with q elements, and the �-adic integers, respectively. Further, if R is any ring,
then R∗ denotes the group of invertible elements of R, and if A is an abelian group,
then A[m] denotes the subgroup of A consisting of elements of order dividing m.
For a more complete list of notation, see page 467.



Chapter I

Algebraic Varieties

In this chapter we describe the basic objects that arise in the study of algebraic ge-
ometry. We set the following notation, which will be used throughout this book.

K a perfect field, i.e., every algebraic extension of K is separable.

K̄ a fixed algebraic closure of K .

GK̄/K the Galois group of K̄/K .

For this chapter, we also let m and n denote positive integers.
The assumption thatK is a perfect field is made solely to simplify our exposition.

However, since our eventual goal is to do arithmetic, the field K will eventually be
taken to be an algebraic extension of Q, Qp, or Fp. Thus this restriction on K need
not concern us unduly.

For a more extensive exposition of the basic concepts that appear in this chap-
ter, we refer the reader to any introductory book on algebraic geometry, such
as [95], [109], [111], or [243].

I.1 Affine Varieties

We begin our study of algebraic geometry with Cartesian (or affine) n-space and its
subsets defined by zeros of polynomials.

Definition. Affine n-space (over K) is the set of n-tuples

An = An(K̄) =
{
P = (x1, . . . , xn) : xi ∈ K̄

}
.

Similarly, the set of K-rational points of An is the set

An(K) =
{
P = (x1, . . . , xn) ∈ An : xi ∈ K

}
.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 1
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 I,
c© Springer Science+Business Media, LLC 2009



2 I. Algebraic Varieties

Notice that the Galois group GK̄/K acts on An; for σ ∈ GK̄/K and P ∈ An,

P σ = (xσ1 , . . . , x
σ
n).

Then An(K) may be characterized by

An(K) = {P ∈ An : P σ = P for all σ ∈ GK̄/K}.
Let K̄[X ] = K̄[X1, . . . , Xn] be a polynomial ring in n variables, and let

I ⊂ K̄[X ] be an ideal. To each such I we associate a subset of An,

VI =
{
P ∈ An : f(P ) = 0 for all f ∈ I

}
.

Definition. An (affine) algebraic set is any set of the form VI . If V is an algebraic
set, the ideal of V is given by

I(V ) =
{
f ∈ K̄[X ] : f(P ) = 0 for all P ∈ V

}
.

An algebraic set is defined over K if its ideal I(V ) can be generated by polynomials
in K[X ]. We denote this by V/K . If V is defined overK , then the set of K-rational
points of V is the set

V (K) = V ∩ An(K).

Remark 1.1. Note that by the Hilbert basis theorem [8, 7.6], [73, §1.4], all ideals
in K̄[X ] and K[X ] are finitely generated.

Remark 1.2. Let V be an algebraic set, and consider the ideal I(V/K) defined by

I(V/K) =
{
f ∈ K[X ] : f(P ) = 0 for all P ∈ V

}
= I(V ) ∩K[X ].

Then we see that V is defined over K if and only if

I(V ) = I(V/K)K̄[X ].

Now suppose that V is defined over K and let f1, . . . , fm ∈ K[X ] be gener-
ators for I(V/K). Then V (K) is precisely the set of solutions (x1, . . . , xn) to the
simultaneous polynomial equations

f1(X) = · · · = fm(X) = 0 with x1, . . . , xn ∈ K .

Thus one of the fundamental problems in the subject of Diophantine geometry,
namely the solution of polynomial equations in rational numbers, may be said to
be the problem of describing sets of the form V (K) when K is a number field.

Notice that if f(X) ∈ K[X ] and P ∈ An, then for any σ ∈ GK̄/K ,

f(P σ) = f(P )σ.

Hence if V is defined over K , then the action of GK̄/K on An induces an action
on V , and clearly

V (K) = {P ∈ V : P σ = P for all σ ∈ GK̄/K}.



I.1. Affine Varieties 3

Example 1.3.1. Let V be the algebraic set in A2 given by the single equation

X2 − Y 2 = 1.

Clearly V is defined overK for any field K . Let us assume that char(K) �= 2. Then
the set V (K) is in one-to-one correspondence with A1(K) � {0}, one possible map
being

A1(K) � {0} −→ V (K),

t �−→
(
t2 + 1

2t
,
t2 − 1

2t

)
.

Example 1.3.2. The algebraic set

V : Xn + Y n = 1

is defined over Q. Fermat’s last theorem, proven by Andrew Wiles in 1995 [291,
311], states that for all n ≥ 3,

V (Q) =

{{
(1, 0), (0, 1)

}
if n is odd,

{
(±1, 0), (0,±1)

}
if n is even.

Example 1.3.3. The algebraic set

V : Y 2 = X3 + 17

has many Q-rational points, for example

(−2, 3) (5234, 378661)
(

137
64

,
2651
512

)
.

In fact, the set V (Q) is infinite. See (I.2.8) and (III.2.4) for further discussion of this
example.

Definition. An affine algebraic set V is called an (affine) variety if I(V ) is a
prime ideal in K̄[X ]. Note that if V is defined over K , it is not enough to check
that I(V/K) is prime in K[X ]. For example, consider the ideal (X2

1 − 2X2
2 ) in

Q[X1, X2].
Let V/K be a variety, i.e., V is a variety defined overK . Then the affine coordi-

nate ring of V/K is defined by

K[V ] =
K[X ]
I(V/K)

.

The ring K[V ] is an integral domain. Its quotient field (field of fractions) is denoted
by K(V ) and is called the function field of V/K . Similarly K̄[V ] and K̄(V ) are
defined by replacingK with K̄.
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Note that since an element f ∈ K̄[V ] is well-defined up to adding a polynomial
vanishing on V , it induces a well-defined function f : V → K̄ . If f(X) ∈ K̄[X ] is
any polynomial, then GK̄/K acts on f by acting on its coefficients. Hence if V is
defined over K , so GK̄/K takes I(V ) into itself, then we obtain an action of GK̄/K
on K̄[V ] and K̄(V ). One can check (Exercise 1.12) that K[V ] and K(V ) are, re-
spectively, the subsets of K̄[V ] and K̄(V ) fixed by GK̄/K . We denote the action
of σ ∈ GK̄/K on f by f �→ fσ. Then for all points P ∈ V ,

(
f(P )

)σ = fσ(P σ).

Definition. Let V be a variety. The dimension of V , denoted by dim(V ), is the
transcendence degree of K̄(V ) over K̄.

Example 1.4. The dimension of An is n, since K̄(An) = K̄(X1, . . . , Xn). Simi-
larly, if V ⊂ An is given by a single nonconstant polynomial equation

f(X1, . . . , Xn) = 0,

then dim(V ) = n− 1. (The converse is also true; see [111, I.1.2].) In particular, the
examples described in (I.1.3.1), (I.1.3.2), and (I.1.3.3) all have dimension one.

In studying a geometric object, we are naturally interested in whether it looks
reasonably “smooth.” The next definition formalizes this notion in terms of the usual
Jacobian criterion for the existence of a tangent plane.

Definition. Let V be a variety, P ∈ V , and f1, . . . , fm ∈ K̄[X ] a set of generators
for I(V ). Then V is nonsingular (or smooth) at P if the m× n matrix

(
∂fi
∂Xj

(P )
)

1≤i≤m
1≤j≤n

has rank n − dim(V ). If V is nonsingular at every point, then we say that V is
nonsingular (or smooth).

Example 1.5. Let V be given by a single nonconstant polynomial equation

f(X1, . . . , Xn) = 0.

Then (I.1.4) tells us that dim(V ) = n−1, so P ∈ V is a singular point if and only if

∂f

∂X1
(P ) = · · · =

∂f

∂Xn
(P ) = 0.

Since P also satisfies f(P ) = 0, this gives n+ 1 equations for the n coordinates of
any singular point. Thus for a “randomly chosen” polynomial f , one would expect V
to be nonsingular. We will not pursue this idea further, but see Exercise 1.1.
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y2 = x3 + x y2 = x3 + x2

Figure 1.1: A smooth curve and a singular curve.

Example 1.6. Consider the two varieties

V1 : Y 2 = X3 +X and V2 : Y 2 = X3 +X2.

Using (I.1.5), we see that any singular points on V1 and V2 satisfy, respectively,

V sing
1 : 3X2 + 1 = 2Y = 0 and V sing

2 : 3X2 + 2X = 2Y = 0.

Thus V1 is nonsingular, while V2 has one singular point, namely (0, 0). The graphs
of V1(R) and V2(R) illustrate the difference; see Figure 1.1.

There is another characterization of smoothness, in terms of the functions on the
variety V , that is often quite useful. For each point P ∈ V , we define an ideal MP

of K̄[V ] by
MP =

{
f ∈ K̄[V ] : f(P ) = 0

}
.

Notice that MP is a maximal ideal, since there is an isomorphism

K̄[V ]/MP −→ K̄ given by f �−→ f(P ).

The quotient MP/M
2
P is a finite-dimensional K̄-vector space.

Proposition 1.7. Let V be a variety. A point P ∈ V is nonsingular if and only if

dimK̄MP /M
2
P = dimV.

PROOF. [111, I.5.1]. (See Exercise 1.3 for a special case.)

Example 1.8. Consider the point P = (0, 0) on the varieties V1 and V2 of (I.1.6).
In both cases, MP is the ideal of K̄[V ] generated by X and Y , and M2

P is the ideal
generated by X2, XY , and Y 2. For V1 we have

X = Y 2 −X3 ≡ 0 (mod M2
P ),

so MP /M
2
P is generated by Y alone. On the other hand, for V2 there is no nontrivial

relationship between X and Y modulo M2
P , so MP /M

2
P requires both X and Y as

generators. Since each Vi has dimension one, (I.1.7) implies that V1 is smooth at P
and V2 is not.
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Definition. The local ring of V at P , denoted by K̄[V ]P , is the localization of K̄[V ]
at MP . In other words,

K̄[V ]P =
{
F ∈ K̄(V ) : F = f/g for some f, g ∈ K̄[V ] with g(P ) �= 0

}
.

Notice that if F = f/g ∈ K̄[V ]P , then F (P ) = f(P )/g(P ) is well-defined. The
functions in K̄[V ]P are said to be regular (or defined) at P .

I.2 Projective Varieties

Historically, projective space arose through the process of adding “points at infinity”
to affine space. We define projective space to be the collection of lines through the
origin in affine space of one dimension higher.

Definition. Projective n-space (over K), denoted by Pn or Pn(K̄), is the set of all
(n+ 1)-tuples

(x0, . . . , xn) ∈ An+1

such that at least one xi is nonzero, modulo the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)

if there exists a λ ∈ K̄∗ such that xi = λyi for all i. An equivalence class
{
(λx0, . . . , λxn) : λ ∈ K̄∗

}

is denoted by [x0, . . . , xn], and the individual x0, . . . , xn are called homogeneous
coordinates for the corresponding point in Pn. The set of K-rational points in Pn is
the set

Pn(K) =
{
[x0, . . . , xn] ∈ Pn : all xi ∈ K

}
.

Remark 2.1. Note that if P = [x0, . . . , xn] ∈ Pn(K), it does not follow that
each xi ∈ K . However, choosing some i with xi �= 0, it does follow that xj/xi ∈ K
for every j.

Definition. Let P = [x0, . . . , xn] ∈ Pn(K̄). The minimal field of definition for P
(over K) is the field

K(P ) = K(x0/xi, . . . , xn/xi) for any i with xi �= 0.

The Galois groupGK̄/K acts on Pn by acting on homogeneous coordinates,

[x0, . . . , xn]σ = [xσ0 , . . . , x
σ
n].

This action is well-defined, independent of choice of homogeneous coordinates,
since

[λx0, . . . , λxn]σ = [λσxσ0 , . . . , λ
σxσn] = [xσ0 , . . . , x

σ
n].

It is not difficult to check that
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Pn(K) = {P ∈ Pn : P σ = P for all σ ∈ GK̄/K},
and that

K(P ) = fixed field of {σ ∈ GK̄/K : P σ = P};
see Exercise 1.12.

Definition. A polynomial f ∈ K̄[X ] = K̄[X0, . . . , Xn] is homogeneous of degree d
if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn) for all λ ∈ K̄ .

An ideal I ⊂ K̄[X ] is homogeneous if it is generated by homogeneous polynomials.

Let f be a homogeneous polynomial and let P ∈ Pn. It makes sense to ask
whether f(P ) = 0, since the answer is independent of the choice of homogeneous
coordinates for P . To each homogeneous ideal I we associate a subset of Pn by the
rule

VI =
{
P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I

}
.

Definition. A (projective) algebraic set is any set of the form VI for a homogeneous
ideal I . If V is a projective algebraic set, the (homogeneous) ideal of V , denoted
by I(V ), is the ideal of K̄[X ] generated by

{
f ∈ K̄[X ] : f is homogeneous and f(P ) = 0 for all P ∈ V

}
.

Such a V is defined over K , denoted by V/K , if its ideal I(V ) can be generated
by homogeneous polynomials in K[X ]. If V is defined over K , then the set of K-
rational points of V is the set

V (K) = V ∩ Pn(K).

As usual, V (K) may also be described as

V (K) = {P ∈ V : P σ = P for all σ ∈ GK̄/K}.
Example 2.2. A line in P2 is an algebraic set given by a linear equation

aX + bY + cZ = 0

with a, b, c ∈ K̄ not all zero. If, say, c �= 0, then such a line is defined over any field
containing a/c and b/c. More generally, a hyperplane in Pn is given by an equation

a0X0 + a1X1 + · · · + anXn = 0

with ai ∈ K̄ not all zero.

Example 2.3. Let V be the algebraic set in P2 given by the single equation

X2 + Y 2 = Z2.

Then for any field K with char(K) �= 2, the set V (K) is isomorphic to P1(K), for
example by the map

P1(K) −→ V (K), [s, t] �−→ [s2 − t2, 2st, s2 + t2].

(For the precise definition of “isomorphic,” see (I.3.5).)
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Remark 2.4. A point of Pn(Q) has the form [x0, . . . , xn] with xi ∈ Q. Multiply-
ing by an appropriate λ ∈ Q, we can clear denominators and common factors from
the xi’s. In other words, every P ∈ Pn(Q) may be written with homogeneous coor-
dinates [x0, . . . , xn] satisfying

x0, . . . , xn ∈ Z and gcd(x0, . . . , xn) = 1.

Note that the xi’s are determined by P up to multiplication by −1.
Thus if an ideal of an algebraic set V/Q is generated by homogeneous polynomi-

als f1, . . . , fm ∈ Q[X ], then describing V (Q) is equivalent to finding the solutions
to the homogeneous equations

f1(X0, . . . , Xn) = · · · = fm(X0, . . . , Xn) = 0

in relatively prime integers x0, . . . , xn.

Example 2.5. The algebraic set

V : X2 + Y 2 = 3Z2

is defined over Q. However, V (Q) = ∅. To see this, suppose that [x, y, z] ∈ V (Q)
with x, y, z ∈ Z and gcd(x, y, z) = 1. Then

x2 + y2 ≡ 0 (mod 3),

so the fact that −1 is not a square modulo 3 implies that

x ≡ y ≡ 0 (mod 3).

Hence x2 and y2 are divisible by 32. It follows from the equation for V that 3 also
divides z, which contradicts the assumption that gcd(x, y, z) = 1.

This example illustrates a fundamental tool used in the study of Diophantine
equations.

In order to show that an algebraic set V/Q has no Q-rational points, it
suffices to show that the corresponding homogeneous polynomial equa-
tions have no nonzero solutions modulo p for any one prime p (or even
for one prime power pr).

A more succinct way to phrase this is to say that if V (Q) is nonempty, then V (Qp) is
nonempty for every p-adic field Qp. Similarly, V (R) would also be nonempty. One of
the reasons that the study of Diophantine equations is so difficult is that the converse
to this statement, which is called the Hasse principle, does not hold in general. An
example, due to Selmer [225, 227], is the equation

V : 3X3 + 4Y 2 + 5Z3 = 0.

One can check that V (Qp) is nonempty for every prime p, yet V (Q) is empty. See,
e.g., [41, §4] for a proof. Other examples are given in (X.6.5).
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Definition. A projective algebraic set is called a (projective) variety if its homoge-
neous ideal I(V ) is a prime ideal in K̄[X ].

It is clear that Pn contains many copies of An. For example, for each 0 ≤ i ≤ n,
there is an inclusion

φi : An −→ Pn,

(y1, . . . , yn) �−→ [y1, y2, . . . , yi−1, 1, yi, . . . , yn].

We let Hi denote the hyperplane in Pn given by Xi = 0,

Hi =
{
P = [x0, . . . , xn] ∈ Pn : xi = 0

}
,

and we let Ui be the complement of Hi,

Ui =
{
P = [x0, . . . , xn] ∈ Pn : xi �= 0

}
= Pn �Hi.

There is a natural bijection

φ−1
i : Ui −→ An,

[x0, . . . , xn] �−→
(
x0

xi
,
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi
,

)
.

(Note that for any point of Pn with xi �= 0, the quantities xj/xi are well-defined.)
For a fixed i, we will normally identify An with the set Ui in Pn via the map φi.

Now let V be a projective algebraic set with homogeneous ideal I(V ) ⊂ K̄[X ].
Then V ∩An, by which we mean φ−1

i (V ∩Ui) for some fixed i, is an affine algebraic
set with ideal I(V ∩ An) ⊂ K̄[Y ] given by

I(V ∩ An) =
{
f(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yn) : f(X0, . . . , Xn) ∈ I(V )

}
.

Notice that the sets U0, . . . , Un cover all of Pn, so any projective variety V is cov-
ered by subsets V ∩ U0, . . . , V ∩ Un, each of which is an affine variety via an ap-
propriate φ−1

i . The process of replacing the polynomial f(X0, . . . , Xn) with the
polynomial f(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yn) is called dehomogenization with re-
spect to Xi.

This process can be reversed. For any f(Y ) ∈ K̄[Y ], we define

f∗(X0, . . . , Xn) = Xd
i f

(
X0

Xi
,
X1

Xi
, . . . ,

Xi−1

Xi
,
Xi+1

Xi
, . . . ,

Xn

Xi

)
,

where d = deg(f) is the smallest integer for which f∗ is a polynomial. We say
that f∗ is the homogenization of f with respect to Xi.

Definition. Let V ⊂ An be an affine algebraic set with ideal I(V ), and consider V
as a subset of Pn via

V ⊂ An
φi−−−−−→ Pn.

The projective closure of V , denoted by V̄ , is the projective algebraic set whose
homogeneous ideal I(V̄ ) is generated by

{
f∗(X) : f ∈ I(V )

}
.
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Proposition 2.6. (a) Let V be an affine variety. Then V̄ is a projective variety, and

V = V̄ ∩ An.

(b) Let V be a projective variety. Then V ∩ An is an affine variety, and either

V ∩ An = ∅ or V = V ∩ An.

(c) If an affine (respectively projective) variety V is defined over K , then V̄ (re-
spectively V ∩ An) is also defined over K .

PROOF. See [111, I.2.3] for (a) and (b). Part (c) is clear from the definitions.

Remark 2.7. In view of (I.2.6), each affine variety may be identified with a unique
projective variety. Notationally, since it is easier to deal with affine coordinates, we
will often say “let V be a projective variety” and write down some inhomogeneous
equations, with the understanding that V is the projective closure of the indicated
affine variety W . The points of V �W are called the points at infinity on V .

Example 2.8. Let V be the projective variety given by the equation

V : Y 2 = X3 + 17.

This really means that V is the variety in P2 given by the homogeneous equation

Ȳ 2Z̄ = X̄3 + 17Z̄3,

the identification being

X = X̄/Z̄, Y = Ȳ /Z̄.

This variety has one point at infinity, namely [0, 1, 0], obtained by setting Z̄ = 0.
Thus, for example,

V (Q) =
{
(x, y) ∈ A2(Q) : y2 = x3 + 17

} ∪ {
[0, 1, 0]

}
.

In (I.1.3.3) we listed several points in V (Q). The reader may verify (Exercise 1.5)
that the line connecting any two points of V (Q) intersects V in a third point of V (Q)
(provided that the line is not tangent to V ). Using this secant line procedure repeat-
edly leads to infinitely many points in V (Q), although this is by no means obvious.
The variety V is an elliptic curve, and as such, it provides the first example of the va-
rieties that will be our principal object of study in this book. See (III.2.4) for further
discussion of this example.

Many important properties of a projective variety V may now be defined in terms
of the affine subvariety V ∩ An.

Definition. Let V/K be a projective variety and choose An ⊂ Pn such that
V ∩ An �= ∅. The dimension of V is the dimension of V ∩ An.

The function field of V , denoted by K(V ), is the function field of V ∩ An, and
similarly for K̄(V ). We note that for different choices of An, the differentK(V ) are
canonically isomorphic, so we may identify them. (See (I.2.9) for another description
of K(V ).)
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Definition. Let V be a projective variety, let P ∈ V , and choose An ⊂ Pn

with P ∈ An. Then V is nonsingular (or smooth) at P if V ∩ An is nonsingular
at P . The local ring of V at P , denoted by K̄[V ]P , is the local ring of V ∩ An at P .
A function F ∈ K̄(V ) is regular (or defined) at P if it is in K̄[V ]P , in which case it
makes sense to evaluate F at P .

Remark 2.9. The function field of Pn may also be described as the subfield
of K̄(X0, . . . , Xn) consisting of rational functions F (X) = f(X)/g(X) for
which f and g are homogeneous polynomials of the same degree. Such an ex-
pression gives a well-defined function on Pn at all point P where g(P ) �= 0.
Similarly, the function field of a projective variety V is the field of rational func-
tions F (X) = f(X)/g(X) such that:

(i) f and g are homogeneous of the same degree;

(ii) g /∈ I(V );

(iii) two functions f1/g1 and f2/g2 are identified if f1g2 − f2g1 ∈ I(V ).

I.3 Maps Between Varieties

In this section we look at algebraic maps between projective varieties. These are
maps that are defined by rational functions.

Definition. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from V1

to V2 is a map of the form

f : V1 −→ V2, φ = [f0, . . . , fn],

where the functions f0, . . . , fn ∈ K̄(V1) have the property that for every point
P ∈ V1 at which f0, . . . , fn are all defined,

φ(P ) =
[
f0(P ), . . . , fn(P )

] ∈ V2.

If V1 and V2 are defined over K , then GK̄/K acts on φ in the obvious way,

φσ(P ) =
[
fσ0 (P ), . . . , fσn (P )

]
.

Notice that we have the formula

φ(P )σ = φσ(P σ) for all σ ∈ GK̄/K and P ∈ V1.

If, in addition, there is some λ ∈ K̄∗ such that λf0, . . . , λfn ∈ K(V1), then φ is
said to be defined over K . Note that [f0, . . . , fn] and [λf0, . . . , λfn] give the same
map on points. As usual, it is true that φ is defined over K if and only if φ = φσ for
all σ ∈ GK̄/K ; see Exercise 1.12c.
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Remark 3.1. A rational map φ : V1 → V2 is not necessarily a well-defined func-
tion at every point of V1. However, it may be possible to evaluate φ(P ) at points P
of V1 where some fi is not regular by replacing each fi by gfi for an appropri-
ate g ∈ K̄(V1).

Definition. A rational map

φ = [f0, . . . , fn] : V1 −→ V2

is regular (or defined) at P ∈ V1 if there is a function g ∈ K̄(V1) such that

(i) each gfi is regular at P ;

(ii) there is some i for which (gfi)(P ) �= 0.

If such a g exists, then we set

φ(P ) =
[
(gf0)(P ), . . . , (gfn)(P )

]
.

N.B. It may be necessary to take different g’s for different points. A rational map that
is regular at every point is called a morphism.

Remark 3.2. Let V1 ⊂ Pm and V2 ⊂ Pn be projective varieties. Recall (I.2.9)
that the functions in K̄(V1) may be described as quotients of homogeneous poly-
nomials in K̄[X0, . . . , Xm] having the same degree. Thus by multiplying a rational
map φ = [f0, . . . , fn] by a homogeneous polynomial that “clears the denominators”
of the fi’s, we obtain the following alternative definition:

A rational map φ : V1 → V2 is a map of the form

φ =
[
φ0(X), . . . , φn(X)

]
,

where

(i) the φi(X) ∈ K̄[X ] = K̄[X0, . . . , Xn] are homogeneous polynomials, not all
in I(V1), having the same degree;

(ii) for very f ∈ I(V2),

f
(
φ0(X), . . . , φn(X)

) ∈ I(V1).

Clearly, φ(P ) is well-defined provided that some φi(P ) �= 0. However, even if
all φi(P ) = 0, it may be possible to alter φ so as to make sense of φ(P ). We make
this precise as follows:

A rational map φ = [φ0, . . . , φn] : V1 → V2 as above is regular (or defined)
at P ∈ V1 if there exist homogeneous polynomials ψ0, . . . , ψn ∈ K̄[X ] such that

(i) ψ0, . . . , ψn have the same degree;

(ii) φiψj ≡ φjψi (mod I(V1)) for all 0 ≤ i, j ≤ n;

(iii) ψ(P ) �= 0 for some i.


