

Rishi P Singh

Editor

Managing Diabetic Eye Disease in Clinical Practice

 Adis

Managing Diabetic Eye Disease in Clinical Practice

Editor

Rishi P Singh

Managing Diabetic Eye Disease in Clinical Practice

Editor

Rishi P Singh

Cole Eye Institute

Cleveland Clinic

Case Western Reserve University

Cleveland, Ohio USA

ISBN 978-3-319-08328-5 ISBN 978-3-319-08329-2 (eBook)

DOI 10.1007/978-3-319-08329-2

Springer Cham Heidelberg New York Dordrecht London

©Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Adis is a brand of Springer

Springer is part of Springer Science+Business Media (www.springer.com)

Project editor: Katrina Dorn

Contents

Contributors	ix
Editor biography	xi
1 Impact of diabetic retinopathy	1
Introduction	1
Macrovascular and microvascular complications	1
Diabetic retinopathy	3
Conclusion	9
Key take-home messages	10
References	10
2 A basic scientific understanding of diabetic retinopathy	13
Introduction	13
Polyol pathway	15
Advanced glycation end-products	16
Protein kinase C activation	17
Hemodynamic changes and RAAS system	18
Inflammation	18
Vascular endothelial growth factor	19
Reactive oxygen species	20
Epigenetics	20
Conclusion	22
Key take-home messages	22
References	22
3 Diabetic retinopathy screening	25
Introduction	25
Screening frequency and guidelines	25
Imaging	27
Key take-home messages	37
References	37

4 Medical management of diabetic retinopathy	39
Introduction	39
Glycated hemoglobin	40
Improving microvascular outcomes: evidence from major trials	41
Macrovascular and cardiovascular outcomes	43
Diabetic retinopathy in pregnancy	45
Aspirin	45
Conclusion	45
Key take-home messages	46
References	46
5 Diabetes and cataracts	49
Introduction	49
Lens changes in patients with diabetes	51
Management of diabetic cataracts	52
Key take-home messages	55
References	55
6 Diabetes and glaucoma	59
Introduction	59
Diabetes and primary open-angle glaucoma	60
Diabetes and neovascular glaucoma	62
Conclusion	68
Key take-home messages	69
References	69
7 Ocular surface disease in diabetes	71
The problem	71
The mechanisms	71
Patient evaluation	73
Treatment	75
Key take-home messages	79
References	79

8 Management of diabetic macular edema	81
Introduction	81
Focal laser photocoagulation	84
Anti-vascular endothelial growth factor	86
Steroid therapy	93
Surgical management	98
Medical management	99
Conclusions	100
Key take-home messages	100
References	101
9 Management of proliferative diabetic retinopathy	105
Introduction	105
Background	105
Prevention and treatment	109
Conclusion	117
Key take-home messages	118
References	118
10 Future therapies	121
Introduction	121
New laser technologies	121
New pharmacological therapies	123
Conclusions	129
References	131

Contributors

Rumneek Bedi

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Viral Juthani

Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, NY

Anjum Cheema

Milan Eye Center
Atlanta, GA, USA

Peter K Kaiser

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Diana V Do

Truhlsen Eye Institute
University of Nebraska Medical Center
Omaha, NE

Massachusetts Eye and Ear
Harvard Medical School
Boston, MA

William J Duppss

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Kristine Lo

Massachusetts Eye and Ear
Harvard Medical School
Boston, MA

Karishma Habbu

Case Western Reserve Medical School
Cleveland, OH, USA

Yasha S Modi

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Andrew M Hendrick

Emory Eye Center
Atlanta, GA

Paula E Pecen

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Michael S Ip

University of Wisconsin-Madison
School of Medicine and Public Health
Madison, WI

Elias Reichel

New England Eye Center
Tufts University School of Medicine
Boston, MA

Kuldev Singh

Department of Ophthalmology
Stanford University School of Medicine
Palo Alto, CA

Andrew P Schachat

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Samuel L Thomsen

Truhlsen Eye Institute
University of Nebraska Medical Center
Omaha, NE

David Salz

New England Eye Center
Tufts University School of Medicine
Boston, MA

R Joel Welch

Truhlsen Eye Institute
University of Nebraska Medical Center
Omaha, NE

Nathaniel Sears

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Alex Yuan

Cole Eye Institute
Cleveland Clinic Foundation
Cleveland, OH

Editor biography

Dr Rishi Singh MD is a staff surgeon at the Cole Eye Institute, Cleveland Clinic and Assistant Professor of Ophthalmology at the Lerner College of Medicine in Cleveland Ohio. He also currently serves as the medical director of informatics at the Cleveland Clinic.

He received his medical degree from Boston University in the prestigious accelerated medical program and completed his residency at the Massachusetts Eye and Infirmary Harvard Combined Program in Boston, Massachusetts. Dr Singh then completed a medical and surgical fellowship at the Cole Eye Institute in Cleveland, Ohio. He specializes in the treatment of medical and surgical retinal disease such as diabetic retinopathy and age-related macular degeneration. Dr Singh has authored greater than 60 peer reviewed publications, books, and book chapters and serves as the principal investigator of numerous national clinical trials advancing the treatment of retinal disease. He is frequently invited to speak at national and international meetings, as well as continuing medical education seminars. Dr Singh is also a reviewer for various ophthalmology and diabetes medical publications including *Archives of Ophthalmology*, *American Journal of Ophthalmology*, *Investigative Ophthalmology & Visual Science (IOVS)*, and *Ophthalmology*. He maintains a strong relationship with drug development and commercial entities by serving on scientific advisory boards. Dr. Singh's current work focuses on the electronic medical records implementation, lean process improvement, and decision support modules for clinical practice. He operates the Cleveland Clinic Electronic Health Record Consulting program. Dr Singh has been honored with several research recognitions such as the Alpha Omega Alpha Research Award and American Society of Retina Specialists Senior Honor Award.

Impact of diabetic retinopathy

Rumneek Bedi, Karishma Habbu, Rishi P Singh

Introduction

In 2010, there was an estimated 26 million people who had diabetes, as well as 79 million individuals older than 20 years of age with pre-diabetes [1], and the prevalence of diabetes is projected to increase significantly across the globe. In fact, the US Centers for Disease Control and Prevention (CDC) estimates that 1 in 3 people could have diabetes by the year 2050 [2]. Although many prevention strategies are available for type 2 diabetes, not many strategies are available to patients with type 1 diabetes to address the increasing prevalence and burden [3]. The encumbrance of the disease lies within the many progressive long-term microvascular and macrovascular complications and the economic implications on health care systems and the patient population-at-large.

The costs of managing diabetes and its complications are substantial. The estimated total cost of diabetes in the United States alone was estimated to be US\$245 billion in 2012, almost double what it was 10 years ago (\$132 billion in 2002) [4]; the cost of diabetes is expected to rise to at least \$490 billion by 2030 [5]. The increasing prevalence of diabetes and its associated economic strain indicates that diabetes is an affliction that needs to be addressed [6,7].

Macrovascular and microvascular complications

Diabetes macrovascular and microvascular complications affect up to 72% of the total diabetic population. The Cost Of Diabetes in Europe – type 2

(CODE-2) study, the first Europe-wide investigation into the health care costs associated with type 2 diabetes, found that of patients with microvascular diabetic complications, 28% had neuropathy, 20% had renal damage, and 26% had both diabetic retinopathy (DR) and related eye complications (Figure 1.1) [8]. Among the patients with macrovascular complications, 18% had peripheral vascular disease, 17% had angina, 12% had heart failure, and 9% had myocardial infarction (Figure 1.2) [8]. The CODE-2 study demonstrated that in patients with both microvascular and macrovascular complications, the total cost of management increased by up to 250% compared to those without complications. It follows that proper prevention, screening, and management of diabetes could not only directly benefit the overall health and well-being of

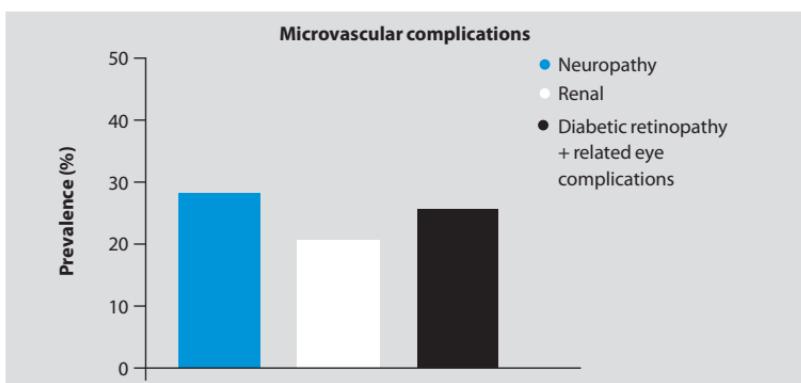
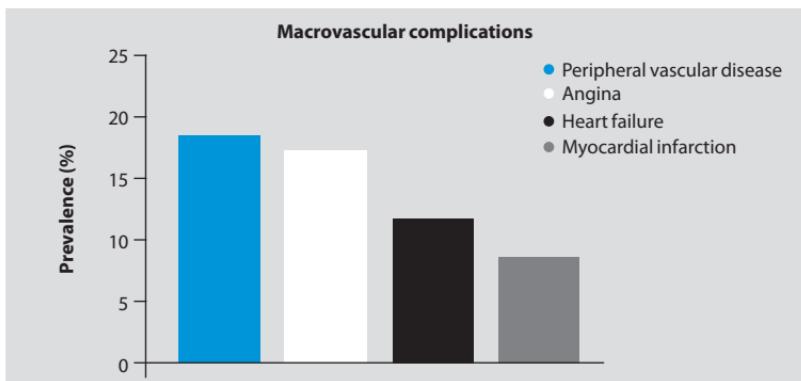
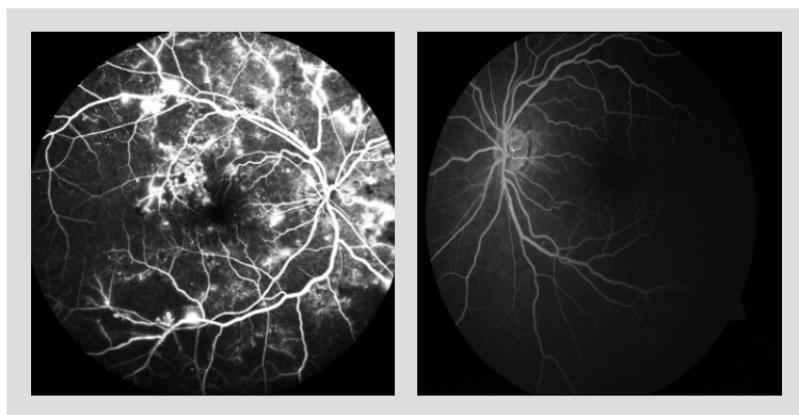


Figure 1.1 Distribution of microvascular complications due to diabetes.



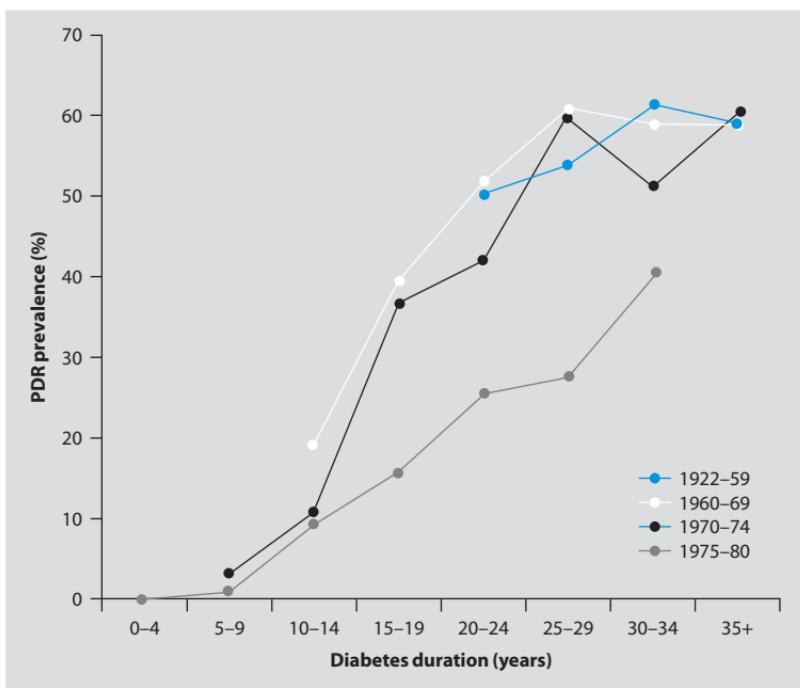

Figure 1.2 Distribution of macrovascular complications due to diabetes.

patients, but also potentially reduce the economic burden that diabetes poses to both individuals and to society [8].

Diabetic retinopathy

DR is a leading cause of new cases of blindness in adults of working age (20 to 74 years old) [5]. The results of the National Health and Nutrition Examination Surveys III (NHANES) documented DR prevalence from 2005 to 2008 and reported that among persons with diabetes aged 40 years or older, 28.5% of individuals had DR [5]. Among those individuals, 4.4% developed vision-threatening DR. Retinopathy itself does not necessarily visually impair individuals; rather, the visual impairment is due to the complications that result, such as retinal detachment, preretinal or vitreous hemorrhage, neovascular glaucoma, capillary nonperfusion or, most commonly, diabetic macular edema (DME) (Figure 1.3) [5,9].

Of these secondary complications, DME is the most important cause of visual impairment in patients with diabetes [10]. The NHANES survey reported that approximately 13% of patients with DR have DME [5]. Within the Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study (SN-DREAMS) report ($n=1414$), 31.76% of patients with diabetes had DR and DME and 5.72% of the patients had DME alone [11].


Figure 1.3 Fluorescein angiography of a patient with proliferative diabetic retinopathy. An advanced form of diabetic retinopathy in which new blood vessels grow within the retina causing bleeding, cloudy vision and retinal damage (left). A normal fluorescein angiography is shown on the right for comparison.

As DR progresses, so does the risk of developing DME; for this reason, it is important to assess the risk factors of DR in order to prevent progression toward developing the vision-threatening complications from diabetes.

Diabetic retinopathy risk factors

Disease duration

Duration of diabetes is an important factor when assessing patients' risk of developing diabetes complications, as the incidence of DR increases with greater duration of diabetes (Figure 1.4) [12]. The Australian Diabetes, obesity, and lifestyle (AusDiab) study demonstrated a relationship between disease duration, glycosylated hemoglobin (HbA1c), and increasing DR prevalence in patients with type 2 diabetes [13]. The study found that the prevalence of DR in those with known type 2 diabetes versus those with newly diagnosed type 2 diabetes was 21.9% and 6.2%, respectively.

Figure 1.4 Prevalence of proliferative diabetic retinopathy (PDR) by diabetes duration and period of diagnosis. The graph depicts improvements in reducing progression to proliferative diabetic retinopathy over time. However, a significant number of patients do progress to this vision-threatening state. Reproduced with permission from Klein et al [9] ©ADA.