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Abstract

Imaging technology is widely utilized in a growing number of disciplines
ranging from gaming, robotics and automation to medicine. In the last
decade also 3D imaging found increasing acceptance and application, which
were largely driven by the development of novel 3D cameras and measuring
devices. These cameras are usually limited to indoor scenes with relatively low
distances. In this thesis the development and the evaluation of medium and
long-range 3D cameras are described in order to overcome these limitations.
The MultiCam, a monocular 2D/3D camera which incorporates a color and
a depth imaging chip, forms the basis for this research. The camera operates
on the Time-of-Flight (ToF) principle by emitting modulated infrared light
and measuring the round-trip time. In order to apply this kind of camera to
larger scenes, novel lighting devices are required and will be presented in
the course of this work. On the software side methods for scene observation
working with 2D and 3D data are introduced and adapted to large scenes.
An extended method for foreground segmentation illustrating the advantages
of additional 3D data is presented, but also its limitations due to the lower
resolution of the depth maps are addressed.

Long-range depth measurements with large focal lengths and 3D imaging
on mobile platforms are easily impaired by involuntary camera motions.
Therefore, an approach for motion compensation with joint super-resolution
is introduced to facilitate ToF imaging in these areas. The camera motion is
estimated based on the high resolution color images of the MultiCam and
can be interpolated for each phase image, i.e. raw image of the 3D imaging
chip. This method was applied successfully under different circumstances.

A framework for multi-modal segmentation and joint super-resolution
also addresses the lower resolution of the 3D imaging chip. It resolves
the resolution mismatch by estimating high resolution depth maps while
performing the segmentation. Subsequently, a global multi-modal and multi-
view tracking approach is described, which is able to take advantage of
any type and number of cameras. Objects are modeled with ellipsoids
and their appearance is modeled with color histograms as well as density
estimates. The thesis concludes with remarks on future developments and
the application of depth cameras in new environments.
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1 Introduction

In a world with an increasing amount and availability of computers or
micro-processors, the interaction between the real world and computers
becomes more significant. Optical sensors play an important role in this
interaction, but cameras, i.e. optical sensor matrices, have become more
prominent since they have dropped in price in recent years. Despite posing
substantially higher demands on data transmission and processing, many
consumer devices from cell-phones to cars are today equipped with at least
one camera. In the field of gaming cameras have become a standard input
device and in medical engineering and science cameras also find more and
more application. Moreover, thanks to the advancement of processing power
cameras are standard sensors in industrial automation and robotics. Since
many image processing algorithms can be implemented on DSPs or FPGAs,
high performance CPUs are not required for all applications.

Nevertheless, the limitation of the available processing power was a key
obstacle, which drove the development of depth imaging sensors in the past
decade. Restrictions of stereo camera setups in respect of reliability and
precision proved also to be problematic. In general, two different approaches
were followed, namely the structured light and the time-of-flight approach.
The structured or coded light principle is based on the observation of
disparities similar to the stereo camera method. However, the disparities are
observed between a camera and a light projector instead of two cameras. On
the one hand this approach aims at overcoming the ambiguities encountered
in stereo setups, e.g. untextured objects, and on the other hand it aims
at reducing the computational demand. Structured light approaches were
dominated for a long time by line patterns projected in a sequence with
increasing spatial resolution. However, recently advances were made with
highly resolved dot patterns, which significantly impacted the gaming market
in addition to research and development.

The rival distance measuring principle is called Time-of-Flight (ToF)
and here the distance of an object to the camera is determined by emitting
spatially uniform light, which is varied over time, thus allowing to measure the
time until the light is received. Cameras following this operating principle
have been researched for more than a decade and models from several

B. Langmann, Wide Area 2D/3D Imaging,
DOI 10.1007/978-3-658-06457-0_1, © Springer Fachmedien Wiesbaden 2014



2 1 Introduction

manufacturers are on the market. These cameras find application in many
different disciplines and it is expected that they become a standard sensor
device in image processing.

In the past decades a range of alternative depth estimation approaches
have been proposed. The approaches typically operate with standard color
or grayscale cameras without any active lighting. Image features are used
to derive the distance to objects in the scene. Popular methods are Shape-
from-Shading, Shade-from-Focus and Shape-from-Silhouette. Even more
advanced methods learn common depth distributions in scenes and transfer
this knowledge onto new scenes.

The use of color images is extremely widespread in computer vision, since
color cameras are cheap, ubiquitous and provide valuable information. Thus,
depth cameras are often used in conjunction with color cameras. Methods
exist to calibrate and register a color and a depth camera and to map
the measurements afterwards. This mapping is performed by relying on
the measured distance to an object. Measurement noise and inaccuracies
therefore affect the mapping and lead to errors. Additionally, the cameras
have a different point of view and hence do not share the same view, which
causes holes in the mapping for example at edges of objects. In order to
overcome these problems, a monocular combination of a color and a depth
imaging chip was developed at the ZESS. A beam splitter allows both imaging
chips to share the same view onto the scene, which renders the mapping
of both images unnecessary. This 2D/3D camera is named MultiCam and
allows a depth independent registration of both modalities.

1.1 Limitations of 2D/3D Imaging and
Contributions

Much progress has been made in increasing the lateral resolution, the sensi-
tivity and the applicability of ToF-based depth imaging chips, but several
limitations still persist. High reliability of depth imaging can only be achieved
indoors under controlled lighting conditions. Most depth cameras cannot
operate in highly illuminated surroundings especially in sunlight. Mecha-
nisms were developed allowing depth cameras to work outdoors, but this
reduces the measurement quality achievable.

A related limitation of depth cameras is their measurement range. Many
indoor scenes contain only short distances of a few meters. However, higher
distances occur in common scenes in professional environments or outdoors.
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The distance limit of available depth cameras lies between 1 and 10 meters
depending on the device. This reduces the applicability of depth cameras in
many situations.

The resolution of the depth imaging chips is a widely discussed other
limitation of depth cameras. The first evolution of depth imaging chips
consisted of only 64 × 48 pixels, which did not allow a reconstruction of
typical scene geometries. At the time of writing depth imaging chips with
160 × 120 or 200 × 200 pixels are available and chips with higher resolution
are in the experimental stage. In general, higher resolutions lead to smaller
pixels, which require a higher sensitivity to achieve the same measurement
quality. This is the main limiting factor of the resolution of depth imaging
chips.

The mentioned limitations are addressed in this thesis as follows: On the
technical side two concepts for novel active lighting devices are presented to
facilitate depth imaging for medium-range outdoor scenes up to 75 meters,
depending on the opening angle, and for long-range scenes up to 150 meters.
Processing steps for these imaging devices aiming at scene observation
are introduced. In particular, different approaches on how to fuse high
resolution color images with low resolution depth maps without introducing
false information are discussed.

1.2 Thesis Outline

The operating principles of depth cameras available as commercial products
as well as research prototypes are reviewed in Chapter 2. Their capabilities
and limitations are compared by means of a number of evaluation setups.
The focus lies in comparing Time-of-Flight cameras manufactured by the
company PMD Technologies (PMDTec) and its competitor SoftKinetic as
state-of-the-art depth imaging technology to the Microsoft Kinect, which is
based on a rivaling structured light technology.

On the basis of this characterization of current depth cameras, the theory
of a common branch of depth imaging chips named Photonic Mixer Device
(PMD) is explained in detail in Chapter 3 and the behavior of PMD chips is
analyzed. The ZESS MultiCam, a monocular 2D/3D camera, with which
most experiments for this thesis were conducted, is introduced in conjunction
with novel lighting devices to facilitate depth measurement for distances up
to 150 meters. Additionally, an approach to gain absolute depth values for
long-range depth measurements with PMD chips is demonstrated. Methods
to improve the depth images in order to obtain accurate depth measurements


