Ralf Bürgel Hans Albert Richard Andre Riemer

Werkstoffmechanik

Bauteile sicher beurteilen und Werkstoffe richtig einsetzen

2. Auflage

Werkstoffmechanik

Ralf Bürgel · Hans Albert Richard · Andre Riemer

Werkstoffmechanik

Bauteile sicher beurteilen und Werkstoffe richtig einsetzen

2., überarbeitete Auflage

Ralf Bürgel Georgsmarienhütte, Deutschland

Hans Albert Richard Fakultät für Maschinenbau, Fachgruppe Angewandte Mechanik Universität Paderborn Paderborn, Deutschland Andre Riemer Fakultät für Maschinenbau, Fachgruppe Angewandte Mechanik Universität Paderborn Paderborn, Deutschland

ISBN 978-3-658-03934-9 DOI 10.1007/978-3-658-03935-6 ISBN 978-3-658-03935-6 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

Das Buch erschien in der ersten Auflage unter dem Titel Festigkeitslehre und Werkstoffmechanik Band 2 im gleichen Verlag.

© Springer Fachmedien Wiesbaden 2005, 2014

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Verfasser haben alle Texte, Formeln und Abbildungen mit größter Sorgfalt erarbeitet. Dennoch können Fehler nicht ausgeschlossen werden. Deshalb übernehmen weder Verfasser noch Verlag irgendwelche Garantien für die in diesem Buch abgedruckten Informationen. In keinem Fall haften Verfasser und Verlag für irgendwelche direkten oder indirekten Schäden, die aus der Anwendung dieser Informationen folgen.

Lektorat: Thomas Zipsner

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier.

Springer Vieweg ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media www.springer-vieweg.de

Vorwort

Das Buch "Werkstoffmechanik" mit dem Untertitel "Bauteile sicher beurteilen und Werkstoffe richtig einsetzen" ist aus dem Buch "Festigkeitslehre und Werkstoffmechanik – Band 2" von Ralf Bürgel entstanden.

Wir haben uns auf Anfrage des zuständigen Lektors des Verlages, Herrn Dipl.-Ing. Thomas Zipsner, gerne bereit erklärt, nach dem Tode von Herrn Bürgel, die Neuauflage dieses Fachbuches zu übernehmen, um das Buch im Sinne von Ralf Bürgel fortzuführen.

Wie Ralf Bürgel im Vorwort der Erstauflage betont, ist die Werkstoffmechanik noch mehr werkstoffkundlich geprägt als die klassische Festigkeitslehre. Das umfangreiche Kapitel "Festigkeit und Verformung der Metalle" dringt tief in die Mikrostruktur der Materialien ein; es beschäftigt sich unter anderem mit Versetzungen, Kriechen, Spannungsrelaxation und Härtungsmechanismen. Die nächsten Kapitel behandeln Werkstoffeigenschaften bei zyklischer Belastung, Spannungskonzentration und Kerbwirkung sowie die linear-elastische Bruchmechanik. Im abschließenden Kapitel 5 werden Versagensmechanismen bei Sprödbrüchen, Duktilbrüchen sowie Schwing- und Zeitstandsbrüchen ausführlich behandelt.

Die Gliederung des Buches und die Inhalte gehen auf Ralf Bürgel zurück. Wir haben aufgrund der behandelten praxisrelevanten Themen und der Beliebtheit des Buches davon Abstand genommen, größere Abschnitte einzuarbeiten. Inhaltlich haben wir alle Kapitel nochmals im Detail überprüft, neuere Literatur hinzugefügt und einige Aspekte erweitert.

Unser Dank gilt allen, die durch Ihre Unterstützung die Veröffentlichung dieses Buches ermöglicht haben. Widmen möchten wir diese Auflage dem Begründer dieses Werkes, Ralf Bürgel, welcher dieses Buch durch seine fachliche Kompetenz und seine Liebe zum wichtigen Detail so erfolgreich gemacht hat.

Dem Leser wünschen wir nun viel Erfolg beim Verstehen und Anwenden der Werkstoffmechanik.

Paderborn, im April 2014

Hans Albert Richard und Andre Riemer

Inhaltsverzeichnis

Vo	rwort			V
Zei	chen ı	und Einh	neiten	X
Ab	kürzur	ngen une	d Indizes	XVII
1	Festi	igkeit ur	nd Verformung der Metalle	1
	1.1	Einführ	ung	1
	1.2	Wahre	Spannung und wahre Dehnung	2
	1.3	Kristall	ographische Grundlagen	3
		1.3.1	Kristallsysteme	3
		1.3.2	Indizierung kristallographischer Richtungen und	
			Ebenen	5
		1.3.3	Packungsdichte	6
		1.3.4	Stapelfehler und Stapelfehlerenergie	8
	1.4	Arten d	ler Verformung	9
		1.4.1	Elastische Verformung	9
		1.4.2	Merkmale der plastischen Verformung	
	1.5	Iheore	tische Festigkeit	
	1.6	Versetz	zungen	14
		1.6.1	Versetzungsarten und deren Vorkommen in	
		4 0 0	Kristallen	
		1.6.2	Entstehung von Versetzungen	19
		1.6.3	Spannungsfeid und verzerrungsenergie	00
		101	der Versetzungen	20
		1.6.4	Aufspaltung von Versetzungen,	00
	4 7		Einfluss der Stapelfenierenergie	
	1.7	Elemer	Itarprozesse der Versetzungsbewegung	
		1.7.1	Gleilen von Versetzungen	24
		1.7.2		29
		1.7.3	Klettern von Stufenversetzungen	ວາ
	1 0	L./.4		
	1.0	Elioßer	annung und Verfestigung	
	1.9	101		
		1.9.1	Passierspannung	39 10
		1.9.2	7usammenfassung aller Spannungsanteile	40 4 1
		19.5	Tieftemperaturyerhalten von krz -Werkstoffen	۱ ۱ ۸۸
	1 10	Vielkrie	tallverformung	
	1.10	1 10 1	Redingungen für Vielkristallverformung	≀ ب ⊿7
		1 10 2	Fließkurven von Vielkristallen	، ب 48
		1.10.2		

		1.10.3	Ausgeprägte Streckgrenze	50
		1.10.4	Statische und dynamische Reckalterung	53
		1.10.5	Einfluss der Korngröße auf die Streckgrenze	54
	1.11	Krieche	en	57
		1.11.1	Einführung	57
		1.11.2	Versuche und Kennwerte	60
		1.11.3	Mikrostrukturelle Deutung des Kriechens	64
		1.11.4	Spannungs- und Temperaturabhängigkeit	
			des Kriechens	67
		1.11.5	Einfluss der Korngröße auf das Kriechen	69
		1.11.6	Zusammenfassung der Kriechverformungsanteile	71
	1.12	Eigens	pannungen und Spannungsrelaxation	71
	1.13	Legieru	Ingshärtung	75
		1.13.1	Übersicht über Härtungsmechanismen	75
		1.13.2	Mischkristallhärtung	77
		1.13.3	Teilchenhärtung	80
	1.14	Zusami	menfassung der Härtungsmechanismen	
	Weite	rführend	de Literatur zu Kapitel 1	91
2	Zyklis	sche Be	lastung	92
	2.1	Einführ	ung und Definitionen	92
	2.2	Festigk	eit bei schwingender Belastung	93
		2.2.1	Wöhler-Diagramme	93
		2.2.2	Dauerschwingfestigkeitsschaubilder	
	2.3	Einfluss	sgrößen auf die Dauerschwingfestigkeit	101
		2.3.1	Werkstoffbedingte Einflussgrößen	102
		2.3.2	Geometrische und konstruktive Einflussgrößen	106
	0.4	2.3.3	Beanspruchungsbedingte Einflussgroßen	107
	2.4	Reiberr	mudung (Fretting Fatigue)	110
	2.5	ZYKIISCI	ne Belastungskollektive	
	vveite	rfuhrenc	de Literatur zu Kapitel 2	115
•	•			440
3	Span	nungsk	onzentrationen und Kerbwirkung	116
	3.1	Spannu	Ings- und Verformungszustande im Kerbbereich	116
	3.2	Fileisbe	ginn im Kerbbereich	121
	3.3	Plastifiz		125
	3.4	Kerbeir	nfluss auf die Zugfestigkeit	127
	vveite	rfuhrenc	de Literatur zu Kapitel 3	132
л	Bruch	hmocha	nik	133
-		Finführ	una	133
	4.2	Plastier	cher Kollans und Grenztraufähigkeit	138
	4.3	l inear-	elastische Bruchmechanik (I FBM)	139
	1.0	4.3.1	Spannungen an der Rissspitze	139
		4.3.2	Spannungsintensitätsfaktor	
		4.3.3	Kritischer Spannungsintensitätsfaktor, Bruchzähigkeit.	144

		4.3.4 4.3.5	Bruchmechanische Bewertung und Restfestigkeit Dehnungs- und Spannungszustände	151
			in der Rissumgebung	
		4.3.6	Plastische Zone	157
		4.3.7	Leck-vor-Bruch-Kriterium	161
	44	Energi	ebilanz bei Rissausbreitung und Bruch	163
	Weite	rführen	de Literatur zu Kapitel 4	
			·	
5	Versa	agensm	echanismen	173
	5.1	Einführ	ung	
	5.2	Energi	ebilanz der Risskeimbildung	176
	5.3	Sprödb	prüche	
		5.3.1	Allgemeines	
		5.3.2	Sprödbruch unter Druckbelastung	
		5.3.3	Spröder Torsionsbruch	
		5.3.4	Ideale Sprödbrüche	185
		5.3.5	Reale Sprödbrüche	
		5.3.6	Statistik der Festigkeiten spröder Werkstoffe	190
	5.4	Duktilb	rüche	193
	5.5	Ermüd	ung und Schwingungsbrüche	
		5.5.1	Einführung	
		5.5.2	Bereich I – Zyklische Ver- und Entfestigung sowie	
			Verformungslokalisierung	
		5.5.3	Bereich II – Mikrorissbildung	
		5.5.4	Bereich III – Stabiles Risswachstum	
		5.5.5	Bereich IV – Instabiles Risswachstum und	
			Restgewaltbruch	
		5.5.6	Auswertung von Ermüdungsbruchflächen	210
	5.6	Kriechs	schädigung und Zeitstandbrüche	
		5.6.1	Einführung	
		5.6.2	Bruchmechanismuskarten	
		5.6.3	Entwicklung der Kriechschädigung	
		5.6.4	Mechanismus der interkristallinen Kriechschädigung	218
	Weite	rführen	de Literatur zu Kapitel 5	
Lite	ratur			
Sac	hwort	verzeic	hnis	

Zeichen und Einheiten

а	Länge eines Außenrisses (Innenrisse haben die Länge 2a)	[m]
ac	kritische Risslänge	[m]
А	Fläche (siehe auch S_0)	[m ²]
А	Bruchdehnung im Zugversuch, A = $(L_u - L_0)/L_0$	[-, %]
А	Mittelspannungsverhältnis bei Lastspielen, A = $ \sigma_a /\sigma_m$	[-]
Aq	Gleichmaßdehnung	[-, %]
A _k	Kerbquerschnittsfläche (Ligament)	[m ²]
A _{Lüd}	Lüders-Dehnung (plastische Dehnung im Bereich der ausgeprägten	
	Streckgrenze)	[-, %]
Au	Zeitbruchdehnung (Bruchdehnung im Zeitstandversuch)	[-, %]
b	Betrag des Burgers-Vektors	[m]
В	Dicke einer Bruchmechanikprobe oder Wanddicke (Breadth)	[m]
d	Innendurchmesser	[m]
d ₀	Gleichgewichtsabstand zweier Teilversetzungen	[m]
D	(Außen-) Durchmesser	[m]
D	Diffusionskoeffizient	[m ² /s]
D ₀	Anfangsdurchmesser	[m]
D ₀	temperaturunabhängiger Vorfaktor in der Arrhenius-Gleichung	
	für den Diffusionskoeffizienten	[m²/s]
е	Randfaserabstand von den Schwerachsen oder vom Schwerpunkt	
	bei Angabe der Flächenwiderstandsmomente Wa bzw. Wp	[m]
E	Elastizitätsmodul	[GPa]
f	Frequenz	[s ⁻¹ , Hz]
F	Kraft, Last	[N]
F_{G}	Gewichtskraft	[N]
F _m	Höchstkraft im Zugversuch	[N]
g	Erdbeschleunigung (\approx 9,81 m/s ²)	
G	Schubmodul (auch: <u>G</u> leitmodul)	[GPa]
Gc	spezifische Riss- oder Bruchenergie	[J/m ²]
la	axiales Flächenträgheitsmoment, axiales Flächenmoment 2. Ordnung	g (I _x ist
	z.B. das axiale Flächenträgheitsmoment bezüglich der Schwerachse	x)[m ⁴]
l _p	polares Flächenträgheitsmoment (sofern nicht anders vermerkt, ist de	er
	Pol der Schwerpunkt)	[m ⁴]
K _c	kritischer Spannungsintensitätsfaktor (auch: Riss- oder Bruchzähigke	eit)
	für eine bestimmte Wanddicke bei nicht ebenem Dehnungszustand,	
	siehe auch K _{lc}	= MN m ^{-3/2}]
Kq	Bruchzähigkeit außerhalb der Gültigkeitsgrenzen, vorläufige	
	Bruchzähigkeit (= K _{ic} bei Erfüllung aller Testvoraussetzungen)	.[MPa m ^{1/2}]
Kt	Formzahl (auch: Kerbfaktor, elastischer Spannungskonzentrationsfal	(tor)[-]
K _σ	Spannungskonzentrationsfaktor bei Plastifizierung	[-]
Kε	Dehnungskonzentrationsfaktor bei Plastifizierung	[-]

Kı	Spannungsintensitätsfaktor für den ebenen Dehnungszustand im	
	Belastungsmodus I (Zug)	.[MPa m ^{1/2}]
K _{lc}	kritischer Spannungsintensitätsfaktor (auch: Bruchzähigkeit) für den	
	ebenen Dehnungszustand im Belastungsmodus I (Zug)	.[MPa m ^{1/2}]
ΔK	Schwingbreite der Spannungsintensität, $\Delta K = K_{max} - K_{min}$.[MPa m ^{1/2}]
ΔK_0	Grenzwert der Spannungsintensität für Ermüdungsrisswachstum	.[MPa m ^{1/2}]
ΔK_{lc}	kritischer zyklischer Spannungsintensitätsfaktor im ebenen Dehnung	S-
	zustand	.[MPa m ^{1/2}]
L	Laststeigerungsfaktor (auch: plastischer Zwängungsfaktor)	[-]
L	Länge	[m]
Lo	Anfangslänge	[m]
Li	momentane Messlänge in einem Versuch	
Le	elastische Dehnlänge	
L _m	Reißlänge	
$L_{n0.2}$	0.2 %-Dehnlänge	
μ	l änge einer Probe nach dem Bruch	[m]
ΔI	l ängenänderung	[m]
 m	Masse	[ka]
M	Moment	[N m]
Mh	Biegemoment	[N m]
M _t	Torsionsmoment	[N m]
n	Drehzahl (Umdrehungsfrequenz)	[s ⁻¹]
N	Schwingspielzahl (Zvklenzahl, Lastspielzahl)	[-]
NP	Schwingspielzahl bis zum Bruch (Bruchlastspielzahl)	[-]
n		[Pa]
Q	Querkraft	[N]
Qsp	Aktivierungsenergie der Selbstdiffusion	[J/mol]
R	Allgemeine Gaskonstante (= $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)	. · · · ·
R	Riss- oder Bruchwiderstand	[J/m ²]
R	Spannungsverhältnis bei Lastspielen. R = $\sigma_{\rm u}/\sigma_{\rm o}$	[-]
R	allgemeines Zeichen für Festigkeitskennwerte unter Zugbelastung	[MPa]
Re	Streckgrenze bei Raumtemperatur	[MPa]
R _{e/n}	(Warm-)Streckgrenze bei der Temperatur ϑ in °C	[MPa]
ReH	obere Streckgrenze, falls diese ausgeprägt ist (High)	[MPa]
R _{el}	untere Streckgrenze, falls diese ausgeprägt ist (Low)	[MPa]
R _m	Zugfestigkeit bei Raumtemperatur	[MPa]
R _{m/n}	(Warm-)Zugfestigkeit bei der Temperatur ϑ in °C	[MPa]
R _{mk}	Kerbzugfestigkeit bei Raumtemperatur	[MPa]
$R_{p 0.2}$	0,2 %-Dehngrenze (auch: Ersatzstreckgrenze; $\varepsilon_0 = 0,2$ %)	[MPa]
R _{p 0.2/n}	0,2 %-(Warm-)Dehngrenze bei der Temperatur ϑ in °C	[MPa]
R _{m t/n}	Zeitstandfestigkeit (Spannung, bei welcher nach der Zeit t in h und de	er
	Temperatur ϑ in °C Bruch eintritt)	[MPa]
R _{mk t/n}	Kerbzeitstandfestigkeit (Nennspannung, bei welcher nach der Zeit	
	t in h und der Temperatur ϑ in °C Bruch eintritt bei gegebener Kerbfo	rm)[MPa]
		, - -

R _{p ε} /t/ϑ	Zeitdehngrenze (Spannung, bei welcher die plastische Gesamtdehr	nung
	ϵ in % nach der Zeit t in h bei der Temperatur ϑ in °C eintritt)	[MPa]
S ₀	Gleichgewichtsabstand	[m]
ST	Trennabstand	[m]
S	Scherkraft, Querkraft	[N]
S	Querschnittsfläche einer Probe	[m ²]
S ₀	Anfangsquerschnitt einer Probe	[m ²]
Sb	Biegesteifigkeit; Sbx ist z.B. die Biegesteifigkeit um die Schwerachse	e x [N m ²]
SB	Sicherheitsbeiwert gegen Bruch	[-]
S _F	Sicherheitsbeiwert gegen Fließen (= plastische Verformung)	[-]
S _t , S _T	Torsionssteifigkeit (Drillsteifigkeit)	[N m ²]
Su	kleinster Probenquerschnitt nach dem Bruch	[m ²]
t	Zeit	[s, h]
t _m	Belastungsdauer bis zum Bruch (im Zeitstandversuch)	[h]
t _{pε}	Dehngrenzzeit (Belastungsdauer für eine vorgegebene plastische	
	Dehnung ϵ in % im Zeitstandversuch)	[h]
Т	absolute Temperatur, siehe ϑ	[K]
Ts	absolute Schmelztemperatur	[K]
T/Ts	homologe Temperatur	[-]
ΔT	Temperaturdifferenz	[K, °C]
U	innere Energie	[J]
V	Volumen	[m ³]
w	spezifische Formänderungsarbeit[$J/m^3 = N/m^2$
W	Breite einer Bruchmechanikprobe oder eines Bauteils (Width)	[m]
W	Formänderungsarbeit	[J]
Wa	axiales Flächenwiderstandsmoment (W _x ist z.B. das Flächenwider-	
	standsmoment um die Schwerachse x)	[m ³]
Wp	polares Flächenwiderstandsmoment	[m ³]
x _p	Breite der plastischen Zone vor der Rissspitze	[m]
z	Brucheinschnürung, Z = $(S_0 - S_u)/S_0$	[-, %]
Zu	Zeitbrucheinschnürung (im Zeitstandversuch), $Z_u = (S_0 - S_u)/S_0$	[-, %]
α_ℓ	thermischer Längenausdehnungskoeffizient	[K ⁻¹]
β	Geometriefaktor bei Rissen	[-]
β _k	Kerbwirkungszahl bei zyklischer Belastung	[-]
γ	Scherung (auch: Schiebung, Scherdehnung, Abscherung)	[-]
γ _k	Kerbfestigkeitsverhältnis	[-]
γ _{Of}	spezifische Oberflächenenergie	[J/m ²]
YSE	spezifische Stapelfehlerenergie	[J/m ²]
۰۵۲ ٤	Dehnung oder Stauchung (allgemeiner Ausdruck: Dehnung	
-	unabhängig vom Vorzeichen)	[- %]
£1	arößte relative Hauptdehnung	[_ %]
~1 £2	mittlere relative Hauntdehnung	
62 62	kleinste relative Hauptdehnung	[-, /0] [_ %]
C3	Memore relative riduptuennung	······[-, /0]

ε _e	elastische Dehnung (einachsige Zugbelastung: $\epsilon_e = \sigma/E$)	[-, %]
ε _f	Kriechdehnung (zeitabhängig)	[-, %]
ε _F	Dehnung bei Fließbeginn (einachsige Zugbelastung: $\epsilon_F = R_e/E)$	[-, %]
ε _{in}	inelastische Dehnung, ϵ_{in} = ϵ_{p} + ϵ_{f}	[-, %]
ε _m	mechanische Dehnung (in Abgrenzung zur thermischen D.)	[-, %]
ε _p	plastische Dehnung (zeit <i>un</i> abhängig, siehe auch ϵ_f)	[-, %]
ε _q	Querdehnung	[-, %]
ε _t	Gesamtdehnung	[-, %]
ϵ_{th}	thermische Dehnung	[-, %]
ϵ_{w}	wahre Dehnung, $\varepsilon_w = ln(L_i/L_0)$	[-]
έ	Dehn- oder Kriechgeschwindigkeit ($\dot{\epsilon}$ = d ϵ / dt)	[s ⁻¹]
έ _s	stationäre (sekundäre) Kriechgeschwindigkeit	[s ⁻¹]
η	Wirkungsgrad	[-, %]
θ	Temperatur, siehe T	[°C]
ϑs	Schmelztemperatur, siehe T _S	[°C]
ν	Poisson'sche Zahl (Querkontraktionszahl)	[-]
ρ	Dichte	. [kg/m ³]
σ	Normalspannung	[MPa]
σ_0	Anfangsspannung, $\sigma_0 = F/S_0$	[MPa]
σ_1	größte relative Hauptnormalspannung	[MPa]
σ2	mittlere relative Hauptnormalspannung	[MPa]
σ_3	kleinste relative Hauptnormalspannung	[MPa]
σa	Spannungsamplitude (-ausschlag) bei Lastspielen	[MPa]
σΑ	dauerschwingfest ertragbare Spannungsamplitude (Daueramplitude)	[MPa]
σ_{bB}	Biegefestigkeit (Bruchfestigkeit in einem Biegeversuch)	[MPa]
σ_{bW}	Biegewechselfestigkeit (σ_D bei Umlaufbiegung mit $\sigma_m = 0$)	[MPa]
σ_{B}	Bruchfestigkeit eines rissbehafteten Körpers (auch: Restfestigkeit)	[MPa]
$\sigma_{d0.2}$	$0,2\%$ -Stauchgrenze ($\epsilon_p = -0,2\%$)	[MPa]
σ_{dF}	Quetschgrenze, Druckfließgrenze	[MPa]
σ_{dB}	Druckfestigkeit (nur bei spröderen Werkstoffen messbar)	[MPa]
σ_{dSch}	Druckschwellfestigkeit	[MPa]
σ_{D}	Dauerschwingfestigkeit	[MPa]
σ_{m}	Mittelspannung bei Lastspielen	[MPa]
σ_n	Nennspannung (Anfangsspannung bezogen auf den Bruttoquerschnitt)	[MPa]
σ_{nk}	Kerbnennspannung, σ_{nk} = F/A _k	[MPa]
σ_{nkF}	Kerbnennspannung bei Fließbeginn	[MPa]
σo	Oberspannung (größter Wert der Spannung je Schwingspiel,	
	unabhängig vom Vorzeichen), $\sigma_o = \max \sigma(t) $	[MPa]
σ_0	Oberspannung der Dauerschwingfestigkeit (größter Zahlenwert,	
	unabhängig vom Vorzeichen)	[MPa]
σ_{T}	Trennfestigkeit	[MPa]
σ_{Sch}	Schwellfestigkeit	[MPa]
σ_{th}	thermisch induzierte Spannung, Wärmespannung	[MPa]
σ_{u}	Unterspannung (kleinster Wert der Spannung je Schwingspiel,	
	unabhängig vom Vorzeichen), σ_u = min $ \sigma(t) $	[MPa]

συ	Unterspannung der <i>Dauer</i> schwingfestigkeit (kleinster Zahlenwert, unabhängig vom Verzeisban)	[MDol
		[IVIFa]
σ_V	Vergleichsspannung bei menrachsigen Spannungszustanden	[IVIPa]
$\sigma_V^{(r)}$	vergleichsspannung nach der Gestaltanderungsenergienypotnese	
	(= von Mises-Hypothese)	[MPa]
$\sigma_v^{(N)}$	Vergleichsspannung nach der Normalspannungshypothese	[MPa]
$\sigma_{v}^{\scriptscriptstyle{(S)}}$	Vergleichsspannung nach der Schubspannungshypothese	
	(= Tresca-Hypothese)	[MPa]
σ_{w}	wahre Spannung, $\sigma_w = F/S_i$	[MPa]
σ_{W}	Wechselfestigkeit, σ_D bei $\sigma_m = 0$	[MPa]
σ _x	Normalspannung in Richtung von x (analog für andere Richtungen)	[MPa]
σ_{zSch}	Zugschwellfestigkeit	[MPa]
σ_{zul}	zulässige Spannung (Höchstwert der Spannung, mit der bei der	
	jeweiligen Beanspruchung belastet werden darf)	[MPa]
$\Delta \sigma$	Spannungsschwingbreite	[MPa]
τ	Schubspannung (auch: Scherspannung)	[MPa]
τ_{F}	Fließschubspannung (Schubspannung bei Fließbeginn)	[MPa]
τ_{max}	größte (positive) Hauptschubspannung gemäß Vorzeichenvereinbarur	ng[MPa]
$ au_{min}$	kleinste (negative) Hauptschubspannung gemäß Vorzeichenver-	
	einbarung (es ist stets $\tau_{min} = -\tau_{max}$)	[MPa]
$\tau_{\rm S}$	Schubspannung aufgrund von Scherbelastung	[MPa]
τ_t	Schubspannung aufgrund von Torsionsbelastung	[MPa]
τ_{xv}	Schubspannung senkrecht zur x-Achse und in Richtung der v-Achse	
,	(analog für andere Richtungen)	[MPa]
ω	Winkelgeschwindigkeit (Winkelfrequenz)	[s ⁻¹]

Alle Zeichen, die nicht hier aufgeführt sind, werden in den jeweiligen Kapiteln im Text erläutert.

Umrechnung von Einheiten

In der linken Spalte sind die SI-gerechten Einheiten angegeben.

Länge	1 Å	=	10 ^{–10} m = 0,1 nm
m	1 inch (in) = 1 "	=	25,4 mm
	1 mil = 10^{-3} inch	=	25,4 µm
	1 ft	=	0,305 m
Temperatur und Tempera-	т [К]	=	ϑ [°C]+273,2 °C
turdifferenz	T [°F]	=	1,8 ϑ [°C]+32
Kelvin: K	ϑ [°C]	=	5/9(T[°F]–32)
Grad Celsius: °C	$\Delta T = 1 $ °F	=	0,5556 °C = 0,5556 K
	ΔT = 1 K = 1 °C	=	1,8 °F
	32 °F	=	0 °C = 273,2 K
Dichte	1 g/cm ³	=	10 ³ kg/m ³
kg/m ³	1 lb/in ³	=	2,77.10 ⁴ kg/m ³
	1 lb/ft ³	=	16,02 kg/m ³
Kraft	1 kp = 1 kgf	=	9,807 N
Newton: $1 \text{ N} = 1 \text{ kg m/s}^2$	$1 \text{ dyn} = 1 \text{ g cm/s}^2$	=	10 ^{−5} N
Ū.	1 lbf	=	4,45 N
Spannung, Druck	1 N/mm ²	=	1 MPa
Pascal: 1 Pa = 1 N/m ²	1 kp/mm ²	=	9,807 MPa
1 MPa = 1 MN/m ²	1 psi = 1 lbf/in ²	=	6,9 kPa
	1 ksi = 10 ³ psi	=	6,9 MPa
	1 bar	=	10 ⁵ Pa = 0,1 MPa
	1 at = 1 kp/cm ² = 10 m WS	=	0,09807 MPa
	1 Torr = 1 mm Hg	=	0,133 kPa = 1,33 hPa
	1 atm = 760 Torr = 1,013 bar	=	0,1013 MPa
Energie, Arbeit,	1 cal	=	4,187 J
Wärmemenge	1 kp m	=	9,807 J
Joule: 1 J = 1 N m = 1 W s	1 kWh	=	3,6 MJ
= 1 kg m ² /s ²	1 eV	=	0,1602 aJ
	1 erg = 1 dyn cm	=	0,1 µJ
	1 BTu	=	1,055 kJ
	1 ft lbf	=	1,36 J
	1 ft tonf	=	3,037 kJ
	1 in lbf	=	0,113 J
Leistung	1 cal/s	=	4,187 W
Watt: $1 W = 1 J/s = 1 Nm/s$	1 ft lbf/s	=	1,36 W
$= 1 \text{ kg m}^2/\text{s}^3$	1 in lbf/s	=	0,113 W
	1 PS	=	0,7355 kW
	1 hp	=	0,7457 kW
	1 B ſu/h	=	0,293 W
Spannungsintensität	1 ksi √in = 10 ³ psi√in	=	1,1 MN m ^{-3/2} =
MN m ^{−3/2} = MPa √m			1,1 MPa √m

Einheitenbezeichnungen

Å	Ångström	hp	horse power
at	techn. Atmosphäre	in lbf	inch pound–force
atm	physikal. Atmosphäre	kgf	kilogram–force
BTu	British Thermal unit	ksi	kilopounds per square inch
eV	Elektronenvolt	lb	<i>pound (mass);</i> 1 lb = 0,454 kg lbf
ft	foot		pound–force
ft lbf	foot pound–force	lbf/in ²	pound–force per square inch
ft tonf	foot ton–force	psi	pounds per square inch
Hg	Quecksilbersäule	WS	Wassersäule

Griechische Buchstaben und ihre lateinischen Gegenstücke

А	α	а	Alpha	Ι	ι	j	Jota	Р	ρ	r	Rho
В	β	b	Beta	Κ	κ	k	Kappa	Σ	σ	S	Sigma
Γ	γ	g	Gamma	Λ	λ	I	Lambda	Т	τ	t	Tau
Δ	δ	d	Delta	Μ	μ	m	My	Y	υ	у	Ypsilon
Е	ε	е	Epsilon	Ν	ν	n	Ny	Φ	φ	ph	Phi
Ζ	ζ	Z	Zeta	Ξ	ξ	х	Ksi	Х	χ	ch	Chi
Н	ή	е	Eta	0	0	0	Omikron	Ψ	ψ	ps	Psi
Θ	θ, ϑ	th	Theta	П	π	р	Pi	Ω	ω	0	Omega

Vorsätze und Vorsatzzeichen zur Bildung von dezimalen Vielfachen und Teilen von Einheiten

Vorsatz	Hekto-	Kilo-	Mega-	Giga-	Tera-			
Vorsatz- zeichen	h	k	М	G	Т			
Potenz- faktor	10 ²	10 ³	10 ⁶	10 ⁹	10 ¹²			
Vorsatz	Dezi-	Zenti-	Milli-	Mikro-	Nano-	Piko-	Femto-	Atto-
Vorsatz- zeichen	d	С	m	μ	n	р	f	а
Potenz- faktor	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ^{_9}	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸

Abkürzungen und Indizes

EDZ	ebener Dehnungs- oder Verzerrungszustand
ESZ	ebener Spannungszustand
GEH	Gestaltänderungsenergiehypothese (von Mises-Hypothese)
HCF	High Cycle Fatigue
hdP.	hexagonal dichteste Packung
kfz.	kubisch-flächenzentriert
krz.	kubisch-raumzentriert
LCF	Low Cycle Fatigue
LEBM	linear-elastische Bruchmechanik
lg	Zehnerlogarithmus
In	natürlicher Logarithmus (lg x \approx 0,434 ln x)
NH	Normalspannungshypothese
REM	Rasterelektronenmikroskop
RSZ	räumlicher Spannungszustand
RT	Raumtemperatur (20 °C)
RZSZ	räumlicher Zugspannungszustand
SH	Schubspannungshypothese (Tresca-Hypothese)
TEM	Transmissionselektronenmikroskop
TF	thermische Ermüdung (thermal fatigue)

VHCF Very High Cycle Fatigue

Tiefgestellte Indizes und Abkürzungen

- 0 Anfangswert
- a axial
- a außen
- c kritischer Wert
- F Fließen, plastische Verformung
- i innen
- max Maximalwert
- min Minimalwert
- Of Oberfläche
- r radial
- t tangential
- th thermisch
- z Zentrifugal... oder Richtungsangabe z-Achse
- zul zulässiger Wert

Hochgestellte Indizes und Abkürzungen

- (e) elastisch
- (EDZ) im ebenen Dehnungszustand
- (ESZ) im ebenen Spannungszustand
- (g) glatt
- (G) nach der Gestaltänderungsenergiehypothese (von Mises)
- (i-s) ideal-spröde
- (k) gekerbt
- (N) nach der Normalspannungshypothese
- (p) plastisch
- (S) nach der Schubspannungshypothese (Tresca)

1 Festigkeit und Verformung der Metalle

1.1 Einführung

Aus der Festigkeitslehre ist bekannt, dass die mechanisch belasteten Konstruktionswerkstoffe für den Betriebseinsatz in erster Linie eine hohe *Streckgrenze* besitzen sollten. Zyklisch beanspruchte Bauteile müssen eine ausreichende *Dauerschwingfestigkeit* aufweisen. Im Bereich hoher Temperaturen, wenn sich die Kriechverformung bemerkbar macht, kommen als entscheidende Kennwerte die *Zeitdehngrenze*, z.B. die *1%-Zeitdehngrenze*, und die *Zeitstandfestigkeit* hinzu. Für rissbehaftete Bauteile ist außerdem die *Riss- oder Bruchzähigkeit* des Werkstoffes maßgeblich, in die neben der Festigkeit auch das Verformungsvermögen, die Duktilität, eingeht.

Alle anderen mechanischen Werkstoffkennwerte spielen für die Festigkeitsauslegung keine Rolle; sie dienen mehr den Sicherheitsbetrachtungen, wie z.B. die Kerbschlagzähigkeit, um sprödes Werkstoffversagen bei schneller, schlagartiger Belastung auszuschließen. Die Duktilität, meist ausgedrückt als Bruchdehnung im Zugversuch, ist ebenfalls für den Konstrukteur unerheblich, weil die Belastung makroskopisch nur elastische Verformung hervorrufen darf, Ausnahme: im Kriechbereich. Allerdings ist auch hier aus Sicherheitsüberlegungen eine Mindestduktilität gefragt, damit Überbelastungen nicht gleich einen spröden Bruch auslösen, sondern das Material gutmütig durch Verformung reagiert, und damit Spannungsspitzen durch Fließen (plastische Verformung) abgebaut werden. Der anschauliche englische Ausdruck hierfür lautet *forgiveness* – das Material "verzeiht". Keramiken "verzeihen" Überbelastungen bekanntermaßen kaum.

In der Fertigung, besonders beim Umformen, wie Walzen, Schmieden, Strangpressen oder Ziehen, sollen die Werkstoffe aus nahe liegenden Gründen umgekehrt eine geringe Festigkeit und gutes Verformungsvermögen aufweisen.

Viele metallische Werkstoffe – 82 der 105 Elemente des Periodensystems sind Metalle – zeichnen sich durch hohe Festigkeit *und* hohes Verformungsvermögen aus. Die Festigkeiten schwanken zwischen den geringen Werten ultrareiner, unlegierter Metalle und der theoretischen Festigkeit fehlerfreier Kristalle als größtmöglichem Wert. Die Duktilität variiert von ideal-spröde, d.h. praktisch ohne jegliche plastische Verformung, bis extrem duktil bei höchstreinen Metallen. Keine andere Werkstoffgruppe, weder polymere und erst recht nicht keramische Werkstoffe, bietet ein so breites Spektrum dieser beiden Eigenschaften, noch dazu von tiefsten bis zu sehr hohen Temperaturen. Festigkeit und Duktilität sind zudem gezielt beeinflussbar durch Wärmebehandlungen, Vorverformung (Kaltverfestigung) sowie vielfältigste Legierungsmaßnahmen.

Will man nun für die Fertigung möglichst hohes Verformungsvermögen bei geringen Umformkräften einerseits sowie für den Betriebseinsatz eine hohe Festigkeit bei ausreichender Duktilität andererseits realisieren, so muss der Werkstofftechniker die Mikromechanismen der Plastizität genau kennen. Eine hohe Streckgrenze beispielsweise bedeutet, die plastische Verformung zu unterbinden, was wiederum heißt zu wissen, wie diese abläuft. Anders ausgedrückt: Um nur elastische Verformung auftreten zu lassen, muss man plastische Verformung verstehen. Im Hochtemperturbereich lässt sich zeitlich immer weiter fortschreitende plastische Verformung, so genanntes *Kriechen*, (leider) gar nicht vermeiden; hier ist entscheidend, diese durch geeignete Maßnahmen zu "bremsen", was ebenfalls tiefes Verständnis der Vorgänge erfordert.

Wo Technik ist, da gibt es auch Schäden, besagt eine alte Erfahrungsregel. An jedem Schaden ist das Material beteiligt, und in aller Regel muss der Schadeningenieur auch das Festigkeits- und Verformungsverhalten des Werkstoffes beurteilen, um das Versagen aufzuklären. Man kommt also nicht umhin, tiefer in den Werkstoff "hineinzuschauen", den "schwarzen Kasten" sozusagen zu öffnen. Dies geschieht in den folgenden Abschnitten.

1.2 Wahre Spannung und wahre Dehnung

In der Werkstoffkunde und in der Umformtechnik ist es manchmal zweckmäßig, neben der gewöhnlich angegebenen *technischen* Spannung und Dehnung die so genannten wahren Werte zu bestimmen, wenn sich der Querschnitt und die Länge bei der Verformung stark ändern. Der Begriff "wahr" bezieht sich auf den *momentanen Querschnitt* bzw. die *momentane Länge*, während bei den technischen Werten die Ausgangsdaten angesetzt werden. Es gelten folgende Beziehungen:

technische (Nenn-) Spannung
$$\sigma_0 = \frac{F}{S_0}$$
 (1.1)

S₀ (oder auch A₀) Anfangsquerschnitt

wahre Spannung
$$\sigma_{W} = \frac{F}{S_{i}} = \sigma_{0} \frac{S_{0}}{S_{i}}$$
 (1.2)

S_i (oder auch A_i) momentaner Querschnitt

technische Dehnung	$\epsilon_0 = \frac{\Delta L}{L_0} = \frac{L_i - L_0}{L_0} = \frac{L_i}{L_0} - 1$	(1.3)
	L ₀ Anfangslänge L _i momentane Länge	

Die Gln. (1.1) und (1.3) sind aus der Festigkeitslehre bekannt, wo man den Index "0" bei der Spannung und Dehnung weglässt, weil im elastischen Bereich ein Vergleich mit den wahren Werten überflüssig ist.

Die wahre Dehnung setzt sich zusammen aus der Summe beliebig kleiner Dehnungsinkremente $\Delta L/L$ (oder dL/L), so dass sich folgendes Integral ergibt:

wahre Dehnung
$$\varepsilon_{W} = \int_{L_{0}}^{L_{i}} \frac{dL}{L} = InL \begin{vmatrix} L_{i} \\ L_{0} \end{vmatrix} = In L_{i} - In L_{0} = In \frac{L_{i}}{L_{0}}$$
(1.4)

Die Summierung der infinitesimalen Dehnbeträge zur wahren Dehnung ist nur im Bereich der Gleichmaßdehnung gültig, da sich bei Einschnürung eine andere Bezugslänge einstellt. Die wahre Dehnung wird, im Gegensatz zur technischen, *nicht* in Prozent genannt, weil sich die Bezugsgröße L_i ständig ändert. Aus Gl. (1.3) folgt L_i = ε_0 L₀ + L₀, und somit lautet die Verknüpfung der beiden Dehnungen:

$$\varepsilon_{\rm W} = \ln \frac{L_{\rm i}}{L_0} = \ln \frac{\varepsilon_0 L_0 + L_0}{L_0} = \ln (\varepsilon_0 + 1)$$
 (1.5 a)

oder umgekehrt:

$$\varepsilon_0 = e^{\varepsilon_W} - 1 \tag{1.5 b}$$

Bis ca. 10 % bzw. 0,1 sind ϵ_0 und ϵ_w etwa gleich. Unter Volumenkonstanz bei der plastischen Verformung (A₀ L₀ = A_i L_i), von der man im Bereich der Gleichmaßdehnung ausgehen kann, gilt außerdem:

$$\sigma_{\mathsf{W}} = \sigma_0 \frac{\mathsf{A}_0}{\mathsf{A}_i} = \sigma_0 \frac{\mathsf{L}_i}{\mathsf{L}_0} = \sigma_0 (\varepsilon_0 + 1) = \sigma_0 e^{\varepsilon_{\mathsf{W}}}$$
(1.6)

Die wahre Spannung erhöht sich also gegenüber der Nennspannung im gleichen Maße, wie die technische Dehnung zunimmt. Beispiel: Bei einer technischen Dehnung von 0,1 (= 10 %) beträgt die wahre Spannung σ_w = 1,1 σ_0 .

1.3 Kristallographische Grundlagen

Metallische Werkstoffe, ebenso wie Keramiken, sind kristallin aufgebaut, d.h. ihre Atome ordnen sich räumlich periodisch in bestimmten Positionen eines so genannten Raum- oder Kristallgitters an. Für das Verständnis der Verformung werden einige kristallographische Grundlagen gebraucht, die auf das Nötigste beschränkt werden.

1.3.1 Kristallsysteme

Metalle zeichnen sich durch Kristallstrukturen mit dichter bis dichtest möglicher Packung der Atome aus. Die drei Gittergrundstrukturen sind folgende:

- kubisch-flächenzentriert (kfz.), dichteste Packung
- kubisch-raumzentriert (krz.), nicht dichteste Packung
- hexagonal-dichteste Packung (hdP.), dichteste Packung.

Bild 1.1 zeigt die Elementarzellen dieser Gitter im Drahtmodell, wobei die Kugeln die Atomzentren darstellen sollen. Die Zuordnung der Reinmetalle zu diesen Kristallstrukturen mit den Gitterparametern geht aus **Tabelle 1.1** hervor.

Ag, Al, Au, α-Co, Cu, γ-Fe, Ni, Pb, Pt a)

Cr, α-Fe, δ-Fe, Mo, Nb, Ta, β-Ti , V, W b)

Be, Cd, ε-Co, Mg, Re, α-Ti, Zn c)

Bild 1.1 Drahtmodelle der drei Kristallgittertypen mit Zuordnung der technisch wichtigsten Metalle

a) kfz.-Gitter

b) krz.-Gitter

c) hdP.-Gitter

Gitter	Element	Gitterpara- meter a [nm]	c/a
	Ag	0,40857	1
	AI	0,40496	1
	Au	0,40782	1
	α-Co > 422 °C	0,35447	1
kfz.	Cu	0,36146	1
	γ-Fe 912 °C – 1394 °C	0,36467	1
	Ni	0,35240	1
	Pb	0,49502	1
	Pt	0,39236	1
	Cr	0,38848	1
	α-Fe < 912 °C	0,28665	1
	δ-Fe > 1394 °C	0,29315	1
	Мо	0,31470	1
krz.	Nb	0,33004	1
	Та	0,33030	1
	β-Ti > 882 °C	0,33065	1
	V	0,30240	1
	W	0,31652	1
	Be	0,22859	1,5681
	Cd	0,29793	1,8862
hdP.	ε-Co < 422 °C	0,25071	1,6228
	Mg	0,32094	1,6236
	Re	0,27609	1,6145
	α-Ti < 882 °C	0,29506	1,5873
	Zn	0,26650	1,8563

Tabelle 1.1

Kristallstrukturen der wichtigsten Metalle

Im hdP.-Gitter tritt die ideal-dichteste Packung bei c/a = 1,633 auf. Die Gitterparameter a und c sind in Bild 1.2 dargestellt.

1.3.2 Indizierung kristallographischer Richtungen und Ebenen

Zur schnellen Kennzeichnung bestimmter Ebenen und Richtungen im Kristallgitter hat man zweckmäßigerweise eine Indizierung eingeführt, die so genannten *Miller'schen Indizes*. Auf die Herleitung dieser Indizes wird an dieser Stelle verzichtet; man kann sie z.B. in Büchern der Kristallographie nachlesen. Zum Verständnis der Verformungsvorgänge werden nur niedrig indizierte Richtungen und Ebenen benötigt. Die Unterscheidung *bestimmter* Richtungen und Ebenen – im Gegensatz zur Schar all der gleichwertigen – wird ebenfalls nicht vorgenommen, weil auch dies für die Verformung nicht wesentlich und für Ingenieure in der Regel verzichtbar ist. **Bild 1.2** zeigt die für die Verformung wichtigsten Ebenen und Richtungen der kubischen und hexagonalen Kristallgitter.

Bild 1.2 Die wichtigsten Ebenen und Richtungen in den kubischen Kristallgittern und im hexagonalen Kristallgitter

Bei den Ebenen ist der Übersicht halber jeweils nur *eine* aus der Schar all der gleich besetzten Ebenen dargestellt; bei den Richtungen sind alle aus der Schar abgebildet. Die Gitterparameter a und c sind jeweils einmal eingezeichnet.

1.3.2.1 Indizierung der Richtungen

Man erkennt an den Gittergrundstrukturen in **Bild 1.1**, dass es Richtungen gibt, die gleich dicht mit Atomen belegt sind. **Tabelle 1.2** gibt einen Überblick über die für die Verformung relevanten Richtungen und deren Miller'sche Indizierung. Zur Kennzeichnung in hexagonalen Kristallen wird ein Koordinatensystem mit vier Achsen benötigt; entsprechend tauchen vier Indizes auf.

Die Schar all der gleichwertigen, d.h. mit Atomen im gleichen Abstand belegten Richtungen setzt man in *spitze* Klammern: <...>. Will man bestimmte Richtungen zueinander kennzeichnen, werden eckige Klammer benutzt: [...].

Gittertyp	Richtung	Miller'sche Indizes	Atomabstand
	Würfelkante	<100>	а
kfz.	Seitendiagonale	<110>	a/√2 ≈ 0,7 a
	Raumdiagonale	<111>	a√3 ≈ 1,73 a
krz.	Würfelkante	<100>	а
	Seitendiagonale	<110>	a√2 ≈ 1,41a
	Raumdiagonale	<111>	a√3 / 2≈0,87 a
hdP.	Kante der regelmäßigen Sechseckfläche	<1120>	а

Tabelle 1.2 Richtungen und Atomabstände in den drei Gittertypen

1.3.2.2 Indizierung der Netzebenen

 Tabelle 1.3 gibt die wichtigsten Ebenen der drei Gittertypen wieder. Im krz.-Gitter

 läuft die Verformung auch in höher indizierten Ebenen ab (siehe Kap. 1.7.1).

Die Schar all der gleichwertigen, d.h. mit Atomen im gleichen Abstand belegten Ebenen setzt man in geschweifte Klammern: {...}. Will man bestimmte Ebenen zueinander kennzeichnen, werden runde Klammer benutzt: (...).

Gittertyp	Ebene	Miller'sche Indizes	Atomabstand
	Basisebene	{100}	
kfz.	senkrechte Diagonalenebene	{110}	
	schräge Diagonalenebene	{111}	a/√2 ≈ 0,7a
	Basisebene	{100}	
krz.	senkrechte Diagonalenebene	{110}	
	schräge Diagonalenebene	{111}	
hdP.	Basisebene	{0001}	а

 Tabelle 1.3
 Netzebenen in den drei Gittertypen

Der Atomabstand ist nur für diejenigen Ebenen angegeben, in denen ein gleichmäßig dichtest gepackter Abstand besteht.

1.3.3 Packungsdichte

Für die Verformung und – ganz wesentlich – für die Diffusion (Platzwechsel der Atome im Gitter) spielt eine Rolle, wie dicht die Atome im Gitter gepackt sind. Man veranschauliche sich die Packungsdichte, indem man Kugeln (z.B. Tennisbälle), welche die Atome darstellen mögen, in einer Kiste so packt, dass sie wie in den Kristallgittern kfz., krz. oder hdP. angeordnet sind. Man wird feststellen, dass bei kfz.- und hdP.-Anordnung eine maximale Anzahl von Kugeln in ein bestimmtes Volumen passt, nämlich mit 74 % Raumfüllung. Eine höhere Packungsdichte ist nicht möglich. Der Rest ist im Hartkugelmodell Luft; in der Materie überlappen sich die Elektronenhüllen der Atome. Legt man die Kugeln dagegen gemäß einer krz.-Struktur, beträgt die Raumfüllung nur 68 %. Dieses Gitter ist also nicht dichtest gepackt.

Zu erwähnen sei, dass im hdP.-Gitter nur bei einem Achsenverhältnis von c/a = 1,633 die dichteste Packung auftritt. Die realen Werte schwanken leicht um diesen Idealwert (siehe Tabelle 1.1).

Bild 1.3 Dichtest gepackte {111}-Ebene im kfz.-Gitter (nach [1.1])

Im Hartkugelmodell berühren sich *alle* Kugeln in den {111}-Ebenen. Die dicken Linien gehören zur Schar aller dichtest gepackten <110>-Richtungen.

Innerhalb der Gitter sind wiederum die einzelnen Gitterebenen und -richtungen unterschiedlich dicht gepackt. Im kfz.-Gitter ist der Atomabstand in den <110>-Richtungen am geringsten (a/ $\sqrt{2} \approx 0.7 a$); im Hartkugelmodell berühren sich die Kugeln in den Flächendiagonalen des Elementarwürfels. Drei nicht parallele <110>-Richtungen spannen eine {111}-Ebene auf, die dadurch dichtest gepackt ist (*alle* Kugeln in diesen Ebenen berühren sich), **Bild 1.3**.

Gitter	dichtest gepackte Ebenen	dichtest gepackte Richtungen
kfz.	{111}	<110>
krz.	keine dichtest gepackten Ebenen	<111>
hdP.	{0001}	<1120>

Tabelle 1.4	Packungsdichte	in den	drei	Gittertypen
-------------	----------------	--------	------	-------------

Im hdP.-Gitter liegen die Kugeln entlang der $< 11\overline{2}0 >$ -Kanten dichtest beisammen; in den Basisebenen {0001} berühren sich *sämtliche* Kugeln.

Die krz.-Struktur weist zwar dichtest gepackte <111>-Richtungen auf (Abstand der Atomzentren: $a\sqrt{3}/2 \approx 0.87a$), aber es gibt keine dichtest gepackten Ebenen in diesem Gitter, sondern nur relativ mehr oder weniger dicht mit Atomen belegte Flächen. **Tabelle 1.4** fasst die Angaben zur Packungsdichte der Kristallsysteme zusammen.

1.3.4 Stapelfolge und Stapelfehler

Ein weiteres Merkmal zur Beschreibung der Kristallgitter ist die Stapelfolge der Atome in den parallelen Netzebenen. Dieser Aufbau kann in Verbindung mit Versetzungen gestört werden, was bestimmte Auswirkungen für die Festigkeit und Verformung hat.

Aus den Drahtmodellen in Bild 1.1 erkennt man ohne weiteres, dass in den {0001}-Ebenen des hdP.-Gitters jede zweite Ebene in einer Flucht liegt. Die Stapelfolge lautet somit ABABAB... (Zweischichtenfolge). Ebenfalls eine Zweischichtenfolge besitzen die {110}-Ebenen der beiden kubischen Kristallgitter, was man sich ebenfalls noch anhand der Drahtmodelle vorstellen kann. Etwas unanschaulicher wird es mit den {111}-Ebenen des kfz.-Gitters. Hier liegt eine Dreischichtenfolge ABCABCABC... vor.

Bild 1.4 Stapelfehler in einer {111}-Ebene des kfz.-Gitters

Hier fehlen in der Schicht A lokal die Atome. Dreidimensional entsteht ein flächenförmiger Stapelfehler. Es stehen sich dort Atome der Positionen B und C gegenüber. Dadurch erhöht sich die innere Energie, weil das perfekte Gitter dem Minimum der inneren Energie entspricht.

Für die weiteren Betrachtungen sind lediglich die beiden letztgenannten Stapelfolgen im kfz.-Gitter relevant. Es kann nämlich, wie gezeigt werden wird, in diesem Gitter zu einer größeren Versetzungsaufspaltung kommen, wodurch die Stapelfolge lokal gestört wird: Es entsteht ein *Stapelfehler*. Dies sind *flächenförmige* Gitterfehler, bei denen die Atome in einer bestimmten Schicht in den {111}-Ebenen fehlen, **Bild 1.4**.

Da sich an einem Stapelfehler die "falschen" Atome gegenüberstehen (in der Skizze in Bild 1.4 "B"- und "C"-Atome), erhöht sich die innere Energie des Werkstoffes. Die Stapelfehlerenergie γ_{SF} ist eine werkstoffspezifische Größe, die den Energiezuwachs pro Einheitsfläche durch einen Stapelfehler angibt. Aus **Tabelle 1.5** gehen die ungefähren Werte für einige wichtige Metalle und Legierungen hervor.

Tabelle 1.5 (Spezifische) Stapelfehlerenergien γ_{SF} einiger Metalle und Legierungen, ungefähre Werte in mJ/m^2

α-Fe, ferrit. Stähle, krzMetalle	Ni (kfz.)	Zn (hdP.)	Al (kfz.)	Cu (kfz.)	γ-Fe, austenit. Stähle (kfz.)	ε-Co (hdP.)	Ag (kfz.)	Cu-30Zn (α-Messing, kfz.)
≈ 300	300	250	200	60	10 – 75	25	20	20

Folgende Erkenntnisse aus dieser Tabelle sind wesentlich:

- Krz.-Metalle und krz.-Legierungen besitzen durchweg eine hohe Stapelfehlerenergie. In diesen Werkstoffen werden sich also nur sehr schmale Stapelfehlerflächen bilden, falls überhaupt.
- Bei den *kfz.* und *hdP.*-Metallen und -Legierungen schwanken die Werte von sehr hoch bis extrem niedrig. Folglich werden bei hoher Stapelfehlerenergie nur sehr eingeengte und bei niedriger Stapelfehlerenergie weit ausgedehnte Stapelfehlerbänder entstehen. Austenitische Stähle können je nach Zusammensetzung eine niedrige bis mittlere Stapelfehlerenergie aufweisen.

An dieser Stelle sei angemerkt, dass auch Zwillingsgrenzen Stapelfehler darstellen. Man findet daher beispielsweise in ferritischen Stählen, reinem Ni und Al sowie Al-Legierungen im Allgemeinen keine Zwillingsgrenzen, weder nach Rekristallisation noch nach Verformung. Dies ist z.B. ein markantes Unterscheidungsmerkmal im Schliffbild zwischen reinem Ferrit und Austenit. Letzterer weist in der Regel nach Rekristallisation viele Zwillinge im Gefüge auf, ebenso wie α -Messing. Anders liegen die Verhältnisse bei hdP.-Metallen mit hoher Stapelfehlerenergie. Diese können bei der plastischen Verformung verzwillingen, weil sie nur über wenige Gleitsysteme verfügen. Da die Zwillingsbildung mit Schallemission verbunden ist, spricht man auch von "Zinngeschrei", denn Zinn gibt Knirschgeräusche von sich bei plastischer Verformung.

1.4 Arten der Verformung

Grundsätzlich werden zwei Arten der Verformung unterschieden:

- elastische Verformung
- plastische Verformung.

Als *anelastische* Verformung bezeichnet man eine zeitliche *elastische* Nachwirkung bis zum Endwert der gesamten elastischen Verformung, die jedoch bei Metallen gering ist und im Folgenden keine Rolle spielt. Anelastisches Verhalten aufgrund von innerer Reibung bewirkt Dämpfung bei schwingender Belastung.

Für die plastische Verformung findet man auch manchmal die Bezeichnung *inelastische* Verformung, wenn sie sich aus mehreren zu unterscheidenden Anteilen zusammensetzt, wie der spontanen plastischen Anfangsverformung und einer zeitabhängigen Kriechverformung.

1.4.1 Elastische Verformung

Die Materie hält bekanntlich zusammen durch ein Gleichgewicht anziehender und abstoßender Kräfte ihrer Ladungen, den Protonen und Elektronen, welche die Atome aufbauen. Zwischen mehreren Atomen stellt sich ein Gleichgewichtsabstand ein, der im Bereich von zehntel Nanometer liegt, abhängig vom Element (siehe Tabelle 1.1). Die Anordnung der Atome in ihrem jeweiligen Kristallgitter entspricht dem Zustand minimaler Energie. Anders formuliert: Bei Bildung des Kristallgitters wird ein maximaler Energiebetrag frei im Vergleich zu dem gedachten Zustand völliger Trennung der Atome voneinander. Will man die Bindung spalten, so muss Arbeit aufgewandt werden, die dieser Bindungsenergie entspricht.

Bild 1.5 zeigt schematisch den Verlauf der Kraft-Abstands-Kurve zwischen zwei Atomen. s₀ ist der Gleichgewichtsabstand, s_T der Trennabstand im Maximum der Kurve. Wird die maximale Kraft erreicht, bricht die Materie auseinander. Daraus lässt sich die theoretische Festigkeit berechnen (siehe Kap. 1.5).

Bild 1.5 Modell der Bindungskräfte zwischen Atomen zur Deutung des elastischen Verformungsverhaltens (s_0 : Gleichgewichtsabstand; s_T : Trennabstand)

Der eingekreiste lineare Bereich spiegelt sich makroskopisch als Hooke'sche Gerade im Kraft-Verlängerungs-Diagramm und im Spannungs-Dehnungs-Diagramm wider. Je stärker die Bindungskräfte sind, umso steiler verläuft die Kraft-Abstands-Kurve und umso höher ist der E-Modul.

Bei nicht zu großen Auslenkungen verläuft die F(s)-Kurve zweier Atome sowohl im Zug- als auch im Druckbereich etwa linear. Dieser Sachverhalt drückt sich makroskopisch durch das linear-elastische Verformungsverhalten gemäß dem Hooke'schen Gesetz aus: $\sigma = E \cdot \varepsilon_{e}$.

Der E-Modul spiegelt also die Gitterbindungskräfte wider. Diese wiederum stehen in Relation zum Schmelzpunkt: Sind die Bindungskräfte stark, ist das kristalline Gitter sehr stabil und es wird eine hohe Schwingungsenergie zum Aufbrechen der Bindungen benötigt, die direkt-proportional mit der Temperatur ansteigt. Beim Schmelzpunkt bricht der Kristallaufbau zusammen. Es besteht also folgender qualitativer Zusammenhang:

Je höher die Bindungskräfte in einem Werkstoff sind, umso höher ist seine Schmelztemperatur und umso höher sind auch die elastischen Konstanten E und G.