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Chapter 1

Introduction: What Is the Matter Here?

Pei Wang 1 and Ben Goertzel 2

1 Temple University, USA
2 Novamente LLC, USA

pei.wang@temple.edu, ben@goertzel.org

This chapter provides a general introduction to the volume, giving an overview of the AGI
field and the current need for exploration and clarification of its foundations, and briefly
summarizing the contents of the various chapters.

1.1 The Matter of Artificial General Intelligence

Artificial General Intelligence (AGI), roughly speaking, refers to AI research and devel-

opment in which “intelligence” is understood as a general-purpose capability, not restricted

to any narrow collection of problems or domains, and including the ability to broadly gen-

eralize to fundamentally new areas [4]. The precise definition of AGI is part of the subject

matter of the AGI field, and different theoretical approaches to AGI may embody different

slants on the very concept of AGI. In practical terms, though, the various researchers in

the field share a strong common intuition regarding the core concerns of AGI – and how it

differs from the “narrow AI” that currently dominates the AI field.

In the earliest days of AI research, in the middle of the last century, the objective of

the field was to build “thinking machines” with capacity comparable to that of the human

mind [2,6,9]. In the decades following the founding of the AI field, various attempts arose

to attack the problem of human-level artificial general intelligence, such as the General

Problem Solver [7] and the Fifth Generation Computer Systems [3]. These early attempts

failed to reach their original goals, and in the view of most AI researchers, failed to make

dramatic conceptual or practical progress toward their goals. Based on these experiences,

1



2 Theoretical Foundations of Artificial General Intelligence

the mainstream of the AI community became wary of overly ambitious research, and turned

toward the study of domain-specific problems and individual cognitive functions. Some

researchers view this shift as positive, arguing that it brought greater rigor to the AI field

– a typical comment being that “it is now more common to build on existing theories than

to propose brand new ones, to base claims on rigorous theorems or hard experimental

evidence rather than on intuition, and to show relevance to real-world applications rather

than toy examples.” [8]. However, an alternate view would be that this greater focus on

narrow problems and mathematical and experimental results has come at a great cost in

terms of conceptual progress and practical achievement. The practical achievements of

applied AI in the last decades should not be dismissed lightly, nor should be the progress

made in various specialized AI algorithms. Yet, ultimately, the mounting corpus of AI

theorems and experimental results about narrow domains and specific cognitive processes

has not led to any kind of clear progress toward the initial goals of the AI field. AI as a

whole does not show much progress toward its original goal of general-purpose systems,

since the field has become highly fragmented, and it is not easy, if possible at all, to put the

parts together to get a coherent system with general intelligence [1].

Outside the mainstream of AI, a small but nontrivial set of researchers has continued to

pursue the perspective that intelligence should be treated as a whole. To distinguish their

work from the bulk of AI work focused on highly specific problems or cognitive processes

(sometimes referred to as “Narrow AI”), the phrase “Artificial General Intelligence” (AGI)

has sometimes been used. There have also been related terms such as “Human-Level AI”

[5]. The term AGI is meant to stress the general-purpose nature of intelligence – meaning

that intelligence is a capacity that can be applied to various (though not necessarily all

possible) environments to solve problems (though not necessarily being absolutely correct

or optimal). Most AGI researchers believe that general-purpose intelligent systems cannot

be obtained by simply bundling special-purpose intelligent systems together, but have to be

designed and developed differently [11]. Though AGI projects share many problems and

techniques with conventional AI projects, they are conceived, carried out, and evaluated

differently. In recent years, the AGI community has significantly grown, and now has its

regular conferences and publications.
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1.2 The Matter of Theoretical Foundation

Like all fields of science and technology, AGI relies on a subtle interplay of theory

and experiment. AGI has an engineering goal, the building of practical systems with a

high level of general intelligence; and also a scientific goal, the rigorous understanding of

the nature of general intelligence, and its relationship with an intelligent system’s internal

structures and processes, and the properties of its environment. This volume focuses on

the theoretical aspect of AGI, though drawing connections between the theoretical and

engineering aspects where this is useful to make the theory clearer. Even for those whose

main interest is AGI engineering, AGI theory has multiple values: a good theory enables

an engineer and empirical researcher to set objectives, to justify assumptions, to specify

roadmaps and milestones, and to direct evaluation and comparison.

Some AGI research is founded on theoretical notions in an immediate and transparent

way. Other AGI research is centered on system-building, with theory taking a back burner

to building things and making them work. But every AGI project, no matter how pragmatic

and empirical in nature, is ultimately based on some ideas about what intelligence is and

how to realize it in artifacts. And it is valuable, as part of the process of shaping and

growing an AGI project, that these ideas be clarified, justified, and organized into a coherent

theory. Many times the theory associated with an AGI project is partially presented in a

formal and symbolic form, to reduce the ambiguity and fuzziness in natural languages; but

this is not necessarily the case, and purely verbal and conceptual theories may have value

also. Some of the theories used in AGI research are inherited from other fields (such as

mathematics, psychology, and computer science), and some others are specially invented

for AGI. In cases where AGI theories are inherited from other fields, careful adaptations to

the context of AGI are often required.

At the current stage, there is no single widely accepted theory of AGI, which is why this

book uses a plural “foundations” in its title. For any AGI project, the underlying (explicit

or implicit) theoretical foundation plays a crucial role, since any limitation or error in the

theory will eventually show up in the project, and it is rarely possible to correct a theo-

retical mistake by a technical remedy. Comparing and evaluating the various competing

and complementary theoretical foundations existing in the field is very important for AGI

researchers, as well as for other interested individuals.

The existing AGI literature contains many discussions of AGI theory; but these are

often highly technical, and they are often wrapped up together with highly specific discus-

sions of system architecture or engineering, or particular application problems. We felt it
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would be valuable – especially for readers who are not intimately familiar with the AGI

field – to supplement this existing literature with a book providing a broad and relatively

accessible perspective on the theoretical foundations of AGI. Rather than writing a volume

on our own, and hence inevitably enforcing our own individual perspectives on the field,

we decided to invite a group of respected AGI researchers to write about what they con-

sidered as among the most important theoretical issues of the field, in a language that is

comprehensible to readers possessing at least modest scientific background, but not neces-

sarily expertise in the AGI field. To our delight we received many valuable contributions,

which are organized in the following chapters.

These chapters cover a wide spectrum of theoretical issues in AGI research. In the

following overview they are clustered into three groups: the nature of the AGI problem and

the objective of AGI research, AGI design methodology and system architecture, and the

crucial challenges facing AI research.

1.3 The Matter of Objective

In the broadest sense, all works in AI and AGI aim at reproducing or exceeding the

general intelligence displayed by the human mind in engineered systems. However, when

describing this “intelligence” using more detailed and accurate words, different researchers

effectively specify different objectives for their research [10]. Due to its stress on the gen-

eral and holistic nature of intelligence, the AGI field is much less fragmented than the main-

stream of AI [1], with many overarching aims and recurring themes binding different AGI

research programs together. But even so, substantial differences in various researchers’

concrete research objectives can still be recognized.

The chapter by Nick Cassimatis provides a natural entry to the discussion. One key

goal of AGI research, in many though not all AGI research paradigms, is to build computer

models of human intelligence; and thus, in many respects, AGI is not all that different from

what is called “cognitive modeling” in cognitive science. Cassimatis shows the need for an

“intelligence science”, as well as carefully selected challenge problems that must be solved

by modeling the right data.

The chapter by Selmer Bringsjord and John Licato addresses the question of how to

define and measure artificial general intelligence, via proposing a “psychometric” paradigm

in which AGI systems are evaluated using intelligence tests originally defined for humans.

Since these tests have been defined to measure the “g factor”, which psychologists consider
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a measure of human general intelligence, in a sense this automatically places a focus on

general rather than specialized intelligence.

Though human-level intelligence is a critical milestone in the development of AGI, it

may be that the most feasible route to get there is via climbing a “ladder of intelligence”

involving explicitly nonhuman varieties of intelligence, as suggested in the chapter by Sam
Adams and Steve Burbeck. The authors describe some interesting capabilities of octopi,

comparing them to those of human beings, and argues more broadly that each of the rungs

of the ladder of intelligence should be reached before trying a higher level.

The chapter by Marcus Hutter represents another alternative to the “human-level AGI”

objective, though this time (crudely speaking) from above rather than below. Hutter’s Uni-

versal Artificial Intelligence is a formalization of “ideal rational behavior” that leads to

optimum results in a certain type of environment. This project attempt “to capture the

essence of intelligence”, rather than to duplicate the messy details of the human mind.

Even though such an ideal design cannot be directly implemented, it can be approximated

in various ways.

1.4 The Matter of Approach

Just as important as having a clear objective for one’s AGI research, is having a work-

able strategy and methodology for achieving one’s goals. Here the difference between AGI

and mainstream AI shows clearly: while conventional AI projects focus on domain-specific

and problem-specific solutions (sometimes with the hope that they will be somehow even-

tually connected together to get a whole intelligence), an AGI project often starts with a

blueprint of a whole system, attempting to capture intelligence as a whole. Such a blueprint

is often called an “architecture”.

The chapter by Itamar Arel proposes a very simple architecture, consisting of a per-

ception module and an actuation module. After all, an AGI system should be able to take

proper action in each perceived situation. Both modules use certain (different) types of

learning algorithm, so that the system can learn to recognize patterns in various situations,

as well as to acquire proper response to each situation. Unlike in mainstream AI, here

the perception module and the actuation module are designed together; and the two are

designed to work together in a manner driven by reinforcement learning.

Some other researchers feel the need to introduce more modules into their architec-

tures, following results from psychology and other disciplines. The model introduced in
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the chapter by Usef Faghihi and Stan Franklin turns certain existing theories about hu-

man cognition into a coherent design for a computer system, which has a list of desired

properties. This architecture is more complicated than Arel’s, which can be both an advan-

tage and a disadvantage.

The chapter by Ben Goertzel et al. provides an integrative architecture diagram that

summarizes several related cognitive architectures, and a defense of this approach to archi-

tectural and paradigmatic integration. It is argued that various AGI architectures, that seem

different on the surface, are actually fundamentally conceptually compatible, and differ

most dramatically in which parts of cognition they emphasize. Stress is laid on the hypoth-

esis that the dynamics of an AGI system must possess “cognitive synergy”, that is, multiple

processes interacting in such a way as to actively aid each other when solving problems.

There are also researchers who do not want to design a fixed architecture for the system,

but stress the importance of letting an AGI system construct and modify its architecture by

itself. The chapter by Kris Thórisson advocates a “constructivist” approach to AI, which

does not depend on human designed architectures and programs, but on self-organizing

architectures and self-generated code that grow from proper “seeds” provided by the de-

signer.

Just because a system has the ability for self-modification, does not necessarily mean

that all the changes it makes will improve its performance. The chapter by Bas Steune-
brink and Jürgen Schmidhuber introduces a formal model that reasons about its own

programs, and only makes modifications that can be proved to be beneficial. Specified

accurately in a symbolic language, this model is theoretically optimal under certain as-

sumptions.

1.5 Challenges at the Heart of the Matter

Though AGI differs from mainstream AI in its holistic attitude toward intelligence, the

design and development of an AGI system still needs to be carried out step by step, and

some of the topics involved are considered to be more important and crucial than the others.

Each chapter in this cluster addresses an issue that the author(s) takes to be one, though by

no means the only one, major challenge in their research toward AGI.

The chapter by Tsvi Achler considers recognition as the foundation of other processes

that altogether form intelligence. To meet the general-purpose requirements of AGI, a more

flexible recognition mechanism is introduced. While the majority of current recognition al-
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gorithms are based on a “feedforward” transformation from an input image to a recognized

pattern, the mechanism Achler describes has a bidirectional “feedforward-feedback” struc-

ture, where the system’s expectation plays an important role.

Creativity is an aspect where computers are still far behind human intelligence. The

chapter by Maricarmen Martinez et al. proposes analogy making and theory blending

as ways to create new ideas. In this process, problem-solving theories are generalized

from a source domain, then applied in a different target domain to solve novel problems.

There is evidence showing that such processes indeed happen in human cognition, and are

responsible for much of the creativity and generality of intelligence.

Contrary to many peoples’ assumption that “intelligence” is cold and unemotional,

Joscha Bach argues that a model of intelligence must cover emotion and affect, since

these play important roles in motivational dynamics and other processes. Emotion emerges

via the system’s appraisal of situations and objects, with respect to the system’s needs and

desires; and it in turn influences the system’s responses to those situations and objects, as

well as its motivations and resource allocation.

Consciousness is one of the most mysterious phenomena associated with the human

mind. The chapter by Antonio Chella and Riccardo Manzotti concludes that conscious-

ness is necessary for general intelligence, and provides a survey of the existing attempts at

producing similar phenomena in computer and robot systems. This study attempts to give

some philosophical notions (including consciousness, free will, and experience) functional

and constructive interpretations.

The difficulty of the problem of consciousness partly comes from the fact that it is not

only a technical issue, but also a conceptual one. The chapter by Richard Loosemore
provides a conceptual analysis of the notion of consciousness, helping us to understand

what kind of answer might qualify as a solution to the problem. Such a meta-level reflection

is necessary because if we get the problem wrong, there is little chance to get the solution

right.

1.6 Summary

This book is not an attempt to settle all the fundamental problems of AGI, but merely to

showcase and comprehensibly overview some of the key current theoretical explorations in

the field. Given its stress on the generality and holistic nature of intelligence, AGI arguably

has a greater demand for coherent theoretical foundations than narrow AI; and yet, the task
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of formulating appropriate theories is harder for AGI than for narrow AI, due to the wider

variety of interdependent factors involved.

The last chapter by Pei Wang is an attempt to provide common criteria for the analysis,

comparison, and evaluation of the competing AGI theories. It is proposed that, due to the

nature of the field, a proper theory of intelligence for AGI should be correct according to

our knowledge about human intelligence, concrete on how to build intelligent machines,

and compact in its theoretical structure and content. Furthermore, these criteria should be

balanced against each other.

This collection of writings of representative, leading AGI researchers shows that there

is still no field-wide consensus on the accurate specification of the objective and method-

ology of AGI research. Instead, the field is more or less held together by a shared attitude

toward AI research, which treats the problem of AI as one problem, rather than as a group

of loosely related problems, as in mainstream AI. Furthermore, AGI researchers believe

that it is possible to directly attack the problem of general intelligence now, rather than to

postpone it to a unspecified future time.

The problems discussed in this book are not the same as those addressed by the tra-

ditional AI literatures or in AI’s various sibling disciplines. As we have argued previ-

ously [11], general-propose AI has its own set of problems, which is neither a subset, nor

a superset, of the problems studied in mainstream AI (the latter being exemplified in [8],

e.g.). Among the problems of AGI, many are theoretical in nature, and must be solved by

theoretical analysis – which in turn, must often be inspired and informed by experimental

and engineering work. We hope this book will attract more attention, from both inside

and outside the AGI field, toward the theoretical issues of the field, so as to accelerate the

progress of AGI research – a matter which has tremendous importance, both intellectually

and practically, to present-day human beings and our human and artificial successors.
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Cognitive modelers attempting to explain human intelligence share a puzzle with artificial
intelligence researchers aiming to create computers that exhibit human-level intelligence:
how can a system composed of relatively unintelligent parts (such as neurons or transistors)
behave intelligently? I argue that although cognitive science has made significant progress
towards many of its goals, that solving the puzzle of intelligence requires special standards
and methods in addition to those already employed in cognitive science. To promote such
research, I suggest creating a subfield within cognitive science called intelligence science
and propose some guidelines for research addressing the intelligence puzzle.

2.1 The Intelligence Problem

Cognitive scientists attempting to fully understand human cognition share a puzzle with

artificial intelligence researchers aiming to create computers that exhibit human-level in-

telligence: how can a system composed of relatively unintelligent parts (say, neurons or

transistors) behave intelligently?

2.1.1 Naming the problem

I will call the problem of understanding how unintelligent components can combine to

generate human-level intelligence the intelligence problem; the endeavor to understand how

the human brain embodies a solution to this problem understanding human intelligence;

and the project of making computers with human-level intelligence human-level artificial

intelligence.

11
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When I say that a system exhibits human-level intelligence, I mean that it can deal

with the same set of situations that a human can with the same level of competence. For

example, I will say a system is a human-level conversationalist to the extent that it can

have the same kinds of conversations as a typical human. A caveat to this is that artificial

intelligence systems may not be able to perform in some situations, not for reasons of their

programming, but because of issues related to their physical manifestation. For example, it

would be difficult for a machine without hand gestures and facial expressions to converse

as well as a human in many situations because hand gestures and facial expressions are so

important to many conversations. In the long term, it may be necessary therefore to sort

out exactly which situations matter and which do not. However, the current abilities of

artificial systems are so far away from human-level that resolving this issue can generally

be postponed for some time. One point that does follow from these reflections, though,

is the inadequacy of the Turing Test. Just as the invention of the airplane was an advance

in artificial flight without convincing a single person that it was a bird, it is often irrele-

vant whether a major step-step towards human-intelligence cons observers into believing a

computer is a human.

2.1.2 Why the Intelligence Problem is Important

Why is the human-level intelligence problem important to cognitive science? The the-

oretical interest is that human intelligence poses a problem for a naturalistic worldview in-

sofar as our best theories about the laws governing the behavior of the physical world posit

processes that do not include creative problems solving, purposeful behavior and other fea-

tures of human-level cognition. Therefore, not understanding how the relatively simple and

“unintelligent” mechanisms of atoms and molecules combine to create intelligent behavior

is a major challenge for a naturalistic world view (upon which much cognitive science is

based). Perhaps it is the last major challenge. Surmounting the human-level intelligence

problem also has enormous technological benefits which are obvious enough.

2.1.3 The State of the Science

For these reasons, understanding how the human brain embodies a solution to the

human-level intelligence problem is an important goal of cognitive science. At least at

first glance, we are quite far from achieving this goal. There are no cognitive models that

can, for example, fully understand language or solve problems that are simple for a young

child. This paper evaluates the promise of applying existing methods and standards in
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cognitive science to solve this problem and ultimately proposes establishing a new subfield

within cognitive science, called Intelligence Science1, and outlines some guiding principles

for that field.

Before discussing how effective the methods and standards of cognitive science are

in solving the intelligence problem, it is helpful to list some of the problems or questions

intelligence science must answer. The elements of this list are not original (see (Cassimatis,

2010) and (Shanahan, 1997)) or exhaustive. They are merely illustrative examples:

Qualification problem How does the mind retrieve or infer in so short a time the excep-

tions to its knowledge? For example, a hill symbol on a map means there is a hill in the

corresponding location in the real world except if: the mapmaker was deceptive, the hill

was leveled during real estate development after the map was made, or the map is of shift-

ing sand dunes. Even the exceptions have exceptions. The sand dunes could be part of a

historical site and be carefully preserved or the map could be based on constantly updated

satellite images. In these exceptions to the exceptions, a hill symbol does mean there is

a hill there now. It is impossible to have foreseen or been taught all these exceptions in

advance, yet we recognize them as exceptions almost instantly.

Relevance problem Of the enormous amount of knowledge people have, how do they

manage to retrieve the relevant aspects of it, often in less than a second, to sort from many

of the possible interpretations of a verbal utterance or perceived set of events?

Integration problem How does the mind solve problems that require, say, probabilis-

tic, memory-based and logical inferences when the best current models of each form of

inference are based on such different computational methods?

Is it merely a matter of time before cognitive science as it is currently practiced answers

questions like these or will it require new methods and standards to achieve the intelligence

problem?

2.2 Existing Methods and Standards are not Sufficient

Historically, AI and cognitive science were driven in part by the goal of understand-

ing and engineering human-level intelligence. There are many goals in cognitive science

and, although momentous for several reasons, human-level intelligence is just one of them.

Some other goals are to generate models or theories that predict and explain empirical data,
11Obviously, for lack of a better name.
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to develop formal theories to predict human grammatically judgments and to associate cer-

tain kinds of cognitive processes with brain regions. Methods used today in cognitive

science are very successful at achieving these goals and show every indication of contin-

uing to do so. In this paper, I argue that these methods are not adequate to the task of

understanding human-level intelligence.

Put another way, it is possible to do good research by the current standards and goals

of cognitive science and still not make much progress towards understanding human intel-

ligence.

Just to underline the point, the goal of this paper is not to argue that “cognitive science

is on the wrong track”, but that despite great overall success on many of its goals, progress

towards one of its goals, understanding human-level intelligence, requires methodological

innovation.

2.2.1 Formal linguistics

The goal of many formal grammarians is to create a formal theory that predicts whether

a given set of sentences is judged by people to be grammatical or not. Within this frame-

work, whether elements of the theory correspond to a mechanism humans use to understand

language is generally not a major issue. For example, at various times during the devel-

opment of Chomsky and his students’ formal syntax, their grammar generated enormous

numbers of syntactic trees and relied on grammatical principles to rule out ungrammatical

trees. These researchers never considered it very relevant to criticize their framework by

arguing that it was implausible to suppose that humans could generate and sort through this

many trees in the second or two it takes them to understand most sentences. That was the

province of what they call “performance” (the mechanisms the mind uses) not competence

(what the mind, in some sense, knows, independent of how it uses this knowledge). It is

possible therefore to do great linguistics without addressing the computational problems

(e.g. the relevance problem from the last section) involved in human-level language use.

2.2.2 Neuroscience

The field of neuroscience is so vast that it is difficult to even pretend to discuss it in

total. I will confine my remarks to the two most relevant subfields of neuroscience. First,

“cognitive neuroscience” is probably the subfield that most closely addresses mechanisms

relevant to understanding human intelligence. What often counts as a result in this field is a

demonstration that certain regions of the brain are active during certain forms of cognition.
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A simplistic, but not wholly inaccurate way of describing how this methodology would

apply to understanding intelligence would be to say that the field is more concerned with

what parts of the brain embody a solution to the intelligence problem, not how they actually

solve the problem. It is thus possible to be a highly successful cognitive neuroscientist

without making progress towards solving the intelligence problem.

Computational neuroscience is concerned with explaining complex computation in

terms of the interaction of less complex parts (i.e., neurons) obviously relevant to this dis-

cussion. Much of what I say about cognitive modeling below also applies to computational

neuroscience.

2.2.3 Artificial intelligence

An important aim of this paper is that cognitive science’s attempt to solve the intelli-

gence problem is also an AI project and in later sections I will describe how this has and

can still help cognitive science. There are, however, some ways AI practice can distract

from that aim, too. Much AI research has been driven in part by at least one of these two

goals.

(1) A formal or empirical demonstration that an algorithm is consistent with, approximates,

or converges on some normative standard. Examples include proving that a Bayes network

belief propagation algorithm converges on a probability distribution dictated by probability

theory or proving that a theorem prover is sound and complete with respect to a semantics

for some logic. Although there are many theoretical and practical reasons for seeking these

results (I would like nuclear power plant software to be correct as much as anyone), they

do not necessarily constitute progress towards solving the intelligence problem. For exam-

ple, establishing that a Bayes Network belief propagation algorithm converges relatively

quickly towards a normatively correct probability distribution given observed states of the

world does not in any way indicate that solving such problems is part of human-level intel-

ligence, nor is there any professional incentive or standard requiring researchers to argue

for this. There is in fact extensive evidence that humans are not normatively correct rea-

soners. It may even be that some flaws in human reasoning are a tradeoff required of any

computational system that solves the problems humans do.

(2) Demonstrating with respect to some metric that an algorithm or system is faster, con-

sumes fewer resources and/or is more accurate than some alternative(s). As with proving

theorems, one can derive great professional mileage creating a more accurate part of speech
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tagger or faster STRIPS planner without needing to demonstrate in any way that their so-

lution is consistent with or contributes to the goal of achieving human-level intelligence.

2.2.4 Experimental psychology

Cognitive psychologists generally develop theories about how some cognitive process

operates and run experiments to confirm these theories. There is nothing specifically in

this methodology that focuses the field on solving the intelligence problem. The field’s

standards mainly regard the accuracy and precision of theories, not the level of intelli-

gence they help explain. A set of experiments discovering and explaining a surprising new

phenomenon in (mammalian-level) place memory in humans will typically receive more

plaudits than another humdrum experiment in high-level human reasoning. To the extent

that the goal of the field is solely to find accurate theories of cognitive processes, this makes

sense. But it also illustrates the lack of an impetuous towards understanding human-level

intelligence. In addition to this point, many of Newell’s (Newell, 1973) themes apply to

the project of understanding human-level intelligence with experimental psychology alone

and will not be repeated here.

A subfield of cognitive psychology, cognitive modeling, does, at its best, avoid many

of the mistakes Newell cautions against and I believe understanding human cognition is

ultimately a cognitive modeling problem. I will therefore address cognitive modeling ex-

tensively in the rest of this paper.

2.3 Cognitive Modeling: The Model Fit Imperative

Cognitive modeling is indispensable to the project of understanding human-level intel-

ligence. Ultimately, you cannot say for sure that you have understood how the human brain

embodies a solution to the intelligence problem unless you have (1) a computational model

that behaves as intelligently as a human and (2) some way of knowing that the mechanisms

of that model, or at least its behavior, reflect what is going on in humans. Creating com-

puter models to behave like humans and showing that the model’s mechanisms at some

level correspond to mechanism underlying human cognition is a big part of what most cog-

nitive modelers aim to do today. Understanding how the human brain embodies a solution

to the intelligence problem is thus in part a cognitive modeling problem.

This section describes why I think some of the practices and standards of the cognitive

modeling community, while being well-suited for understanding many aspects of cognition,
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are not sufficient to, and sometimes even impede progress towards, understanding human-

level intelligence.

The main approach to modeling today is to create a model of human cognition in a task

that fits existing data regarding their behavior in that task and, ideally, predicts behavior in

other versions of the task or other tasks altogether. When a single model with a few param-

eters predicts behavior in many variations of a task or in many different tasks, that is good

evidence that the mechanisms posited by the model correspond, at least approximately, to

actual mechanisms of human cognition. I will call the drive to do this kind of work the

model fit imperative.

What this approach does not guarantee is that the mechanisms uncovered are impor-

tant to understanding human-level intelligence. Nor does it do impel researchers to find

important problems or mechanisms that have not yet been addressed, but which are key to

understanding human-level intelligence.

An analogy with understanding and synthesizing flight will illustrate these points2. Let

us call the project of understanding birds aviary science; the project of creating computa-

tional models of birds aviary modeling and the project of making machines that fly artificial

flight. We call the problem of how a system that is composed of parts that individually suc-

cumb to gravity can combine to defy gravity the flight problem; and we call the project of

understanding how birds embody a solution to this problem understanding bird flight.

You can clearly do great aviary science, i.e., work that advances the understanding of

birds, without addressing the flight problem. You can create predictive models of bird

mating patterns that can tell you something about how birds are constructed, but they will

tell you nothing about how birds manage to fly. You can create models that predict the

flapping rate of a bird’s wings and how that varies with the bird’s velocity, its mass, etc.

While this work studies something related to bird flight, it does not give you any idea of

how birds actually manage to fly. Thus, just because aviary science and aviary modeling

are good at understanding many aspects of birds, it does not mean they are anywhere near

understanding bird flight. If the only standard of their field is to develop predictive models

of bird behavior, they can operate with great success without ever understanding how birds

solve the flight problem and manage to fly.

I suggest that the model fit imperative in cognitive modeling alone is about as likely to

lead to an understanding of human intelligence as it would be likely to drive aviary science

towards understanding how birds fly. It is possible to collect data about human cognition,
2I have been told that David Marr has also made an analogy between cognitive science and aeronautics, but I

have been unable to find the reference.
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build fine models that fit the data and accurately predict new observations – it is possible

to do all this without actually helping to understand human intelligence. Two examples

of what I consider the best cognitive modeling I know of illustrate this point. (Lewis &

Vasishth, 2005) have developed a great model of some mechanisms involved in sentence

understanding, but this and a dozen more fine pieces of cognitive modeling could be done

and we would still not have a much better idea of how people actually mange to solve

all of the inferential problems in having a conversation, how they sort from among all the

various interpretations of a sentence, how they manage to fill in information not literally

appearing in a sentence to understand the speaker’s intent. Likewise, Anderson’s (Ander-

son, 2005) work modeling brain activity during algebraic problem solving is a big advance

in confirming that specific mechanisms in ACT-R models of cognition actually reflect real,

identifiable, brain mechanisms. But, as Anderson himself claimed3, these models only

shed light on behavior where there is a preordained set of steps to take, not where people

actually have to intelligently figure out a solution to the problem on their own.

The point of these examples is not that they are failures. These projects are great suc-

cesses. They actually achieved the goals of the researchers involved and the cognitive mod-

eling community. That they did so without greatly advancing the project of understanding

human intelligence is the point. The model fit imperative is geared towards understanding

cognition, but not specifically towards making sure that human-level intelligence is part

of the cognition we understand. To put the matter more concretely, there is nothing about

the model fit imperative that forces, say, someone making a cognitive model of memory to

figure out how their model explains how humans solve the qualification and relevance prob-

lems. When one’s goal is to confirm that a model of a cognitive process actually reflects

how the mind implements that process, the model fit imperative can be very useful. When

one has the additional goal of explaining human-level intelligence, then some additional

standard is necessary to show that this model is powerful enough to explain human-level

performance.

Further, I suggest that the model fit imperative can actually impeded progress towards

understanding human intelligence. Extending the analogy with the flight problem will help

illustrate this point. Let us say the Wright Brothers decided for whatever reason to subject

themselves to the standards of our hypothetical aviary modeling community. Their initial

plane at Kitty Hawk was not based on detailed data on bird flight and made no predictions

about it. Not only could their plane not predict bird wing flapping frequencies, its wings
3In a talk at RPI.
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did not flap at all. Thus, while perhaps a technological marvel, their plane was not much

of an achievement by the aviary modeling community’s model fit imperative. If they and

the rest of that community had instead decided to measure bird wing flapping rates and

create a plane whose wings flapped, they may have gone through a multi-decade diversion

into understanding all the factors that contribute to wing flapping rates (not to mention

the engineering challenge of making plane whose wings flaps) before they got back to the

nub of the problem, to discover the aerodynamic principles and control structures that can

enable flight and thereby solve the flight problem. The Wright Flyer demonstrated that

these principles were enough to generate flight. Without it, we would not be confident that

what we know about bird flight is enough to fully explain how they fly. Thus, by adhering

to the model fit imperative, aviary science would have taken a lot longer to solve the flight

problem in birds.

I suggest that, just as it would in aviary science, the model fit imperative can retard

progress towards understanding how the human brain embodies a solution to the intelli-

gence problem. There are several reasons for this, which an example will illustrate. Imag-

ine that someone has created a system that was able to have productive conversations about,

say, managing one’s schedule. The system incorporates new information and answer ques-

tions as good as a human assistant can. When it is uncertain about a statement or question

it can engage in a dialog to correct the situation. Such a system would be a tremendous

advance in solving the intelligence problem. The researchers who designed it would have

had to find a way, which has so far eluded cognitive science and AI researchers, to integrate

multiple forms of information (acoustic, syntactic, semantic, social, etc.) within millisec-

onds to sort through the many ambiguous and incomplete utterance people make. Of the

millions of pieces of knowledge about this task, about the conversants and about whatever

the conversants could refer to, the system must find just the right knowledge, again, within

a fraction of a second. No AI researchers have to this point been able to solve these prob-

lems. Cognitive scientists have not determined how people solve these problems in actual

conversation. Thus, this work is very likely to contain some new, very powerful ideas that

would help AI and cognitive science greatly.

Would we seriously tell these researchers that their work is not progress towards un-

derstanding the mind because their system’s reaction times or error rates (for example) do

not quite match up with those of people in such conversations? If so, and these researchers

for some reason wanted our approval, what would it have meant for their research? Would

they have for each component of their model run experiments to collect data about that
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component and calibrate the component to that data? What if their system had dozens of

components, would they have had to spend years running these studies? If so, how would

they have had the confidence that the set of components they were studying was important

to human-level conversation and that they were not leaving out components whose impor-

tance they did not initially anticipate? Thus, the data fit model of research would either

have forced these researchers to go down a long experimental path that they had little con-

fidence would address the right issues or they would have had to postpone announcing,

getting credit for and disseminating to the community the ideas underlying their system.

For all these reasons, I conclude that the model fit imperative in cognitive modeling

does not adequately drive the field towards achieving an understanding of human intelli-

gence and that it can even potentially impede progress towards that goal.

Does all this mean that cognitive science is somehow exceptional, that in every other

part of science, the notion of creating a model, fitting it to known data and accurately

predicting new observations does not apply to understanding human-level intelligence?

Not at all. There are different levels of detail and granularity in data. Most cognitive

modeling involves tasks where there is more than one possible computer program known

that can perform in that task. For example, the problem of solving algebraic equations

can be achieved by many kinds of computer programs (e.g., Mathematica and production

systems). The task in that community is to see which program the brain uses and to select

a program that exhibits the same reaction times and error rates as humans is a good way

to go about this. However, in the case of human-level intelligence, there are no known

programs that exhibit human-level intelligence. Thus, before we can get to the level of

detail of traditional cognitive modeling, that is, before we can worry about fitting data

at the reaction time and error rate level of detail, we need to explain and predict the most

fundamental datum: people are intelligent. Once we have a model that explains this, we can

fit the next level of detail and know that the mechanisms whose existence we are confirming

are powerful enough to explain human intelligence.

Creating models that predict that people are intelligent means writing computer pro-

grams that behave intelligently. This is also a goal of artificial intelligence. Understanding

human intelligence is therefore a kind of AI problem.
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2.4 Artificial Intelligence and Cognitive Modeling Can Help Each Other

I have so far argued that existing standards and practices in the cognitive sciences do

not adequately drive the field towards understanding human intelligence. The main prob-

lems are that (1) each field’s standards make it possible to reward work that is not highly

relevant to understanding human intelligence; (2) there is nothing in these standards to en-

courage researchers to discover each field’s gaps in its explanation of human intelligence;

and (3) that these standards can actually make it difficult for significant advances towards

understanding human-intelligence to gain support and recognition. This section suggests

some guidelines for cognitive science research into human intelligence.

Understanding human-intelligence should be its own subfield Research towards un-

derstanding human intelligence needs to be its own subfield, intelligence science, within

cognitive science. It needs its own scientific standards and funding mechanisms. This

is not to say that the other cognitive sciences are not important for understanding human

intelligence; they are in fact indispensable. However, it will always be easier to prove the-

orems, fit reaction time data, refine formal grammars or measure brain activity if solving

the intelligence problem is not a major concern. Researchers in an environment where

those are the principal standards will always be at a disadvantage professionally if they

are also trying to solve the intelligence problem. Unless there is a field that specifically

demands and rewards research that makes progress towards understanding how the brain

solves the intelligence problem, it will normally be, at least from a professional point of

view, more prudent to tackle another problem. Just as it is impossible to seriously propose

a comprehensive grammatically theory without addressing verb use, we need a field where

it is impossible to propose a comprehensive theory of cognition or cognitive architecture

without at least addressing the qualification, relevance, integration and other problems of

human-level intelligence.

Model the right data I argued earlier and elsewhere (Cassimatis et al., 2008) that the

most important datum for intelligence scientists to model is that humans are intelligent.

With respect to the human-level intelligence problem, for example, to worry about whether,

say, language learning follows a power or logarithmic law before actually discovering how

the learning is even possible is akin to trying to model bird flap frequency before under-

standing how wings contribute to flight.

The goal of building a model that behaves intelligently, instead of merely modeling

mechanisms such as memory and attention implicated in intelligent cognition, assures that


