

ATLANTIS AMBIENT AND PERVASIVE INTELLIGENCE

VOLUME 2

SERIES EDITOR: ISMAIL KHALIL

Atlantis Ambient and Pervasive Intelligence

Series Editor:

Ismail Khalil, Linz, Austria

(ISSN: 1875-7669)

Aims and scope of the series

The book series ‘Atlantis Ambient and Pervasive Intelligence’ publishes high quality titles

in the fields of Pervasive Computing, Mixed Reality, Wearable Computing, Location-Aware

Computing, Ambient Interfaces, Tangible Interfaces, Smart Environments, Intelligent Inter-

faces, Software Agents and other related fields. We welcome submission of book proposals

from researchers worldwide who aim at sharing their results in this important research area.

All books in this series are co-published with World Scientific.

For more information on this series and our other book series, please visit our website at:

www.atlantis-press.com/publications/books

AMSTERDAM – PARIS

c© ATLANTIS PRESS / WORLD SCIENTIFIC

Web-Based Information Technologies and
Distributed Systems

Alban Gabillon

University of Polynésie Française
BP 6570

98702 FAA’A
Tahiti

Polynésie française

Quan Z. Sheng

School of Computer Science
University of Adelaide

Adelaide, SA 5005
Australia

Wathiq Mansoor

American University in Dubai, UAE

AMSTERDAM – PARIS

Atlantis Press

29, avenue Laumière
75019 Paris, France

For information on all Atlantis Press publications, visit our website at:

www.atlantis-press.com

Copyright

This book, or any parts thereof, may not be reproduced for commercial purposes in any
form or by any means, electronic or mechanical, including photocopying, recording or any
information storage and retrieval system known or to be invented, without prior permission
from the Publisher.

Atlantis Ambient and Pervasive Intelligence

Volume 1: Agent-Based Ubiquitous Computing - Eleni Mangina, Javier Carbo, José M.
Molina

ISBN: 978-90-78677-28-4
ISSN: 1875-7669

c© 2010 ATLANTIS PRESS / WORLD SCIENTIFIC

e-ISBN: 978-94-91216-32-9

Preface

The Fourth International Conference on Signal-Image Technology & Internet-Based Sys-

tems (SITIS 2008) has been successfully held during the period 30th November to 3rd of

December of the year 2008 in Bali, Indonesia. The Track Web-Based Information Tech-

nologies & Distributed Systems (WITDS) is one of the four tracks of the conference. The

track is devoted to emerging and novel concepts, architectures and methodologies for cre-

ating an interconnected world in which information can be exchanged easily, tasks can be

processed collaboratively, and communities of users with similar interests can be formed

while addressing security threats that are present more than ever before. The track has

attracted a large number of submissions; only fifteen papers have been accepted with ac-

ceptance rate 27 %. After the successful presentations of the papers during the conference,

the track chairs have agreed with Atlantis publisher to publish the extended versions of the

papers in a book. Each paper has been extended with a minimum of 30 % new materials

from its original conference manuscript.

This book contains these extended versions as chapters after a second round of reviews and

improvement.

The book is an excellent resource of information to researchers and it is based on four

themes; the first theme is on advances in ad-hoc and routing protocols, the second theme

focuses on the latest techniques and methods on intelligent systems, the third theme is a

latest trend in Security and Policies, and the last theme is applications of algorithms design

methodologies on web based systems.

We would like to give our great appreciations to the authors and the PC members of the

track to their excellent contributions and effort that makes the creation of this book is

achievable. Also, we would like to thank Atlantis publisher who has agreed to publish this

v

vi Web-Based Information Technologies and Distributed Systems

valuable book to the community. Special thanks to Zeger Karssen and Zakaria Maamar for

their help and support during the publication of the book.

Alban Gabillon (University of Polynésie Française, France)

Quan Z. Sheng (University of Adelaide, Australia)

Wathiq Mansoor (American University in Dubai, UAE)

Contents

Preface v

1. A Community-based Approach for Service-based Application

Composition in an Ecosystem 1

E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

1.1 Introduction . 1

1.1.1 Objectives and Contributions 2

1.2 Background . 3

1.2.1 Service Orientation . 3

1.2.2 P2P Systems . 5

1.3 A Framework for Sharing Services . 7

1.3.1 Ecosystem, Peer-communities and Services 7

1.3.2 Multi-layered Service-based Composition Framework 9

1.4 The Overlay Network . 11

1.4.1 Overlay Organization . 11

1.4.2 Super-peers . 12

1.4.3 Event Related Communication 13

1.5 Case Study: The European Electricity Market 13

1.5.1 A Regional Locality-based Overlay 15

1.5.2 A Functionality-based Overlay 18

1.5.3 Discussion . 20

1.6 Conclusions and Further Research . 21

Bibliography . 21

vii

viii Web-Based Information Technologies and Distributed Systems

2. Complexity Analysis of Data Routing Algorithms in Extended

Lucas Cube Networks 25

Ernastuti and Ravi A. Salim

2.1 Introduction . 25

2.2 Preliminaries and Notations . 28

2.3 Graph Models of Fibonacci Cube Family 29

2.4 Extended Lucas Cube (ELC) . 32

2.5 Data Routing Algorithms in ELC . 34

2.5.1 Unicast (One-to-one) . 35

2.5.2 Broadcast (one-to-all) . 37

2.5.3 Multicast (One-to-many) . 40

2.5.4 Conclusion and Remark . 41

Bibliography . 42

3. An Incremental Algorithm for Clustering Search Results 43

Y. Liu, Y. Ouyang, H. Sheng, Z. Xiong

3.1 Introduction . 43

3.2 Similarity Measure . 44

3.2.1 Similarity Measure . 45

3.2.2 Document Similarity Measure 47

3.3 Document Clustering . 48

3.4 Experiments . 49

3.4.1 Test Data and Experiment . 49

3.4.2 Evaluation Measures . 50

3.4.3 Evaluation of ICA . 52

3.5 Conclusions . 54

Bibliography . 55

4. Query Planning in DHT Based RDF Stores 57

D. Battré

Contents ix

4.1 Introduction . 57

4.2 Related work . 59

4.3 Foundation . 61

4.4 Query Processing . 63

4.4.1 Selection of lookups (triple pattern and lookup position) 65

4.4.2 Local heuristics . 67

4.4.3 Network heuristics . 68

4.4.4 Wrappers . 71

4.4.5 Network Heuristics (cont.) . 74

4.4.6 Processing Triple Patterns . 75

4.5 Evaluation . 80

4.5.1 Network Heuristics . 83

4.6 Conclusion and outlook . 86

Bibliography . 87

5. A Formal Methodology to Specify Hierarchical Agent-Based Systems 93

C. Molinero, C. Andrés, and M. Núñez

5.1 Introduction . 93

5.2 Overview of some relevant articles in the field of “agents” 97

5.2.1 Pattie Maes - The dynamics of action selection 97

5.2.2 Yoav Shoham - Agent-oriented programming 98

5.2.3 Rodney A. Brooks - Elephants don’t play chess 100

5.3 Preliminaries . 101

5.4 Definition of the formalism . 103

5.5 The A \� tool . 108

5.6 Conclusions and future work . 111

Bibliography . 113

6. Reducing Redundant Web Crawling Using URL Signatures 115

L.-K. Soon and S.H. Lee

6.1 Introduction . 115

x Web-Based Information Technologies and Distributed Systems

6.2 Web Crawling and the Standard URL Normalization 118

6.2.1 Web Crawling . 118

6.2.2 The Standard URL Normalization 120

6.3 Related Works . 123

6.4 URL Signatures . 124

6.4.1 Metadata Considered . 124

6.4.2 Definition of URL Signatures 126

6.4.3 Application of URL Signatures 127

6.5 Experiments and Evaluation Metrics . 129

6.5.1 Experimental Dataset . 129

6.5.2 Process Flow . 130

6.5.3 Evaluation Metrics . 132

6.6 Results and Discussions . 133

6.6.1 Experimental Results and Findings 133

6.6.2 Comparative Study with Other Methods 135

6.6.3 Limitation of URL Signatures 138

6.7 Conclusions and Future Work . 138

Bibliography . 139

7. Interoperability Among Heterogeneous Systems in Smart Home

Environment 141

T. Perumal, A.R. Ramli, C.Y. Leong, K. Samsudin, and S. Mansor

7.1 Introduction . 141

7.2 Background and Related Work . 143

7.2.1 Common Object Request Broker Architecture (CORBA) 145

7.2.2 Component Object Model (COM) 145

7.2.3 Microsoft .NET Framework . 146

7.2.4 Java Middleware Technologies 147

7.2.5 Web Services . 148

7.3 Implementation . 149

7.3.1 System Architecture . 149

7.3.2 Home Server . 151

7.3.3 Database module . 152

Contents xi

7.4 System Evaluation . 152

7.4.1 System Elements . 153

7.4.2 Performance Evaluation . 153

7.5 Conclusion and Outlooks . 155

Bibliography . 156

8. A Formal Framework to Specify and Deploy Reaction Policies 159

F. Cuppens, N. Cuppens-Boulahia, W. Kanoun, and A. Croissant

8.1 Introduction . 159

8.2 Attack Modeling . 161

8.2.1 LAMBDA Language and Semi-Explicit Correlation 162

8.2.2 Recognizing Intrusion Objectives 164

8.3 Countermeasure Modeling . 165

8.4 Reaction policy . 166

8.4.1 The OrBAC Model . 167

8.4.2 Using OrBAC to Specify Reaction Policy 168

8.4.3 Security Requirements Interpretation 170

8.4.4 Strategies to Manage Conflicts 172

8.5 Deployment of the Reaction Workflow 173

8.6 Reaction Workflow Architecture . 178

8.6.1 Low Level Reaction . 178

8.6.2 Intermediate Level Reaction . 179

8.6.3 High Level Reaction . 180

8.7 VoIP Use Case . 181

8.8 Conclusion . 185

Bibliography . 186

9. A new distributed IDS based on CVSS framework 189

J. Aussibal and L. Gallon

9.1 Introduction . 189

9.2 Related Works . 191

xii Web-Based Information Technologies and Distributed Systems

9.3 Alert scoring tools . 193

9.3.1 CVE Dictionary . 194

9.3.2 CVSS Framework . 194

9.4 Our proposition . 200

9.4.1 General principles . 200

9.4.2 Detection entity . 201

9.4.3 Heterogeneity of local probes 203

9.5 Conclusion . 203

Bibliography . 205

10. Modeling and Testing Secure Web Applications 207

W. Mallouli, M. Lallali, A. Mammar, G. Morales, and A.R. Cavalli

10.1 Introduction . 207

10.2 Related Work . 210

10.3 Testing Methodology Overview . 211

10.4 Functional Specification of Web Applications using IF Language 212

10.4.1 Modeling Communicating Systems 212

10.4.2 IF Formal Language . 214

10.4.3 Case Study: Travel Web Application 215

10.4.4 Travel IF Specification . 216

10.5 Secure Specification of Web Applications 217

10.5.1 Security Rules Specification Using Nomad Language 217

10.5.2 Security Integration Methodology 219

10.5.3 Correctness Proof of the Integration Approach 233

10.5.4 Travel Security Specification Using Nomad Language 235

10.5.5 Automatic Rules Integration . 236

10.5.6 Rules Integration Results . 238

10.6 Test Generation . 238

10.6.1 TestGen-IF tool . 238

10.6.2 Fixing the Test Objectives . 241

10.6.3 Test Generation with TestGen-IF 243

10.7 Test Cases Instantiation and Execution 244

10.7.1 Tclwebtest tool . 244

Contents xiii

10.7.2 Test Cases Instantiation . 245

10.7.3 Test Cases Execution . 251

10.8 Conclusion . 252

Bibliography . 253

11. Secure interoperability with O2O contracts 257

C. Coma, N. Cuppens-Boulahia, and F. Cuppens

11.1 Introduction . 257

11.2 Usual Approaches for Interoperability 259

11.2.1 Federated Identity Management 259

11.2.2 Negotiation policy . 260

11.2.3 Ontological approaches . 262

11.3 Generic Interoperation Policies . 264

11.3.1 Contextual Security Policy: the OrBAC model 264

11.3.2 Interoperability Framework: O2O principles 266

11.4 Interoperability Establishment Steps: the O2O process 267

11.5 Interoperability Contract . 268

11.6 Interoperability Contract Specification 269

11.6.1 Underivability and Exception 270

11.6.2 Compatibility Relation Patterns 271

11.6.3 Contract example . 273

11.7 Secure Interoperability Policy Establishment 274

11.7.1 Ontological Mapping . 274

11.7.2 Establishment of Compatibility Relations 276

11.8 Derivation of the Interoperability Security Policy 277

11.8.1 Derivation rules . 277

11.8.2 Example of derivation of an interoperability rule 278

11.9 VPO management: Secure interoperation policy management 279

11.10 AdOrBAC: interoperability policy administration 282

11.10.1 AdOrBAC administration views 282

11.10.2 Licence . 284

11.11 Privacy . 284

11.11.1 XML-BB . 285

xiv Web-Based Information Technologies and Distributed Systems

11.11.2 Obfuscation . 286

11.12 Illustration . 287

11.12.1 P2P and interoperability . 287

11.12.2 Obfuscation during interoperability 288

11.12.3 P2P and O2O contract . 288

11.13 Conclusion . 289

Bibliography . 290

12. ADMON: I/O Workload Management by Visage Administration

and Monitoring Service 293

S. Traboulsi, J. Jorda, and A. M’zoughi

12.1 Introduction . 293

12.2 Related Work . 295

12.3 The Grid . 296

12.4 ViSaGe Environment and Architecture 296

12.5 Admon Functionalities and API . 298

12.5.1 ViSaGe Monitoring . 299

12.5.2 ViSaGe Administration . 301

12.6 Admon: I/O Workload Performance . 302

12.6.1 Admon Predictor Model . 303

12.6.2 Experimental Setup and Validation with ViSaGe 304

12.7 Conclusion . 308

Bibliography . 309

13. Extracting Neglected Content from Community-type-content 311

A. Nadamoto, E. Aramaki, T. Abekawa, and Y. Murakami

13.1 Introduction . 311

13.2 Related Work . 313

13.3 Basic Concept of Content Hole . 315

13.4 Extracting Neglected Content . 318

13.4.1 Creating a Comment Tree Structure 319

Contents xv

13.4.2 Automatic dialog corpus building 322

13.4.3 Extracting possibly neglected content 325

13.4.4 Filtering unrelated content . 326

13.4.5 Extracting neglected content 326

13.4.6 Prototype System . 326

13.5 Experiments . 328

13.5.1 Content Relevance and Functional Relevance 328

13.5.2 Accuracy of Neglected Content 329

13.6 Conclusion . 331

Bibliography . 331

Chapter 1

A Community-based Approach for Service-based
Application Composition in an Ecosystem

Elie Abi-Lahoud, Marinette Savonnet, Marie-Noelle Terrasse, Marco Viviani,

Kokou Yétongnon

Université de Bourgogne – Sciences et Techniques, Laboratoire LE2I – Mirande,

Aile de l’Ingénieur, 9, av. Savary, 21078 Dijon cedex, France

The design of composite applications by combining existing services with known seman-
tics is an ongoing topic in current research. Several studies are aimed at providing service
description models and standards, service discovery and matching etc. However, service
composition in distributed dynamic environments such as P2P ecosystems has received
little attention from research communities. In this paper we present a design framework
for composing services, taking in particular into account different ways of building peer-
communities based on network or services characteristics.

1.1 Introduction

Service oriented computing provides software designer with new concepts and emerging

principles for developing loosely-coupled, cross-enterprise business applications. Tradi-

tionally, software development approaches rely on CASE tools [1] and modeling concepts

to describe and implement software components that can be integrated into applications.

Recently, we are witnessing a shift from this static view of software development and de-

ployment towards a dynamic, adaptable service based view of software design in which

applications could be realized in a flexible manner to respond to changing needs of users.

In this emerging design view, services provide high level functional components that can

be shared in open distributed environments. The goal is to design composite applications

by combining existing service components with known semantics, spanning organizations

and computing platforms.

Many research efforts have been aimed at service oriented computing, ranging from tech-

A. Gabillon et al., Web-Based Information Technologies and Distributed Systems, 1
Atlantis Ambient and Pervasive Intelligence 2, DOI 10.2991/978-94-91216-32-9_1,
© 2010 Atlantis Press/World Scientific

2 E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

nical services to telecommunication services, business process modeling and popular web

services. In the information system realm, this research effort has focused to a significant

extent on (i) services definition: linguistic constructs and models to define and represent

services’ behaviors and properties, (ii) services discovery: architectures or protocol suites

to allow service sharing and functional matching and (iii) services composition: orchestra-

tion of service components into more complex processes [2, 3, 4, 5].

Open computing environments created the needs for virtual cooperating systems to allow

resource sharing. Digital enterprise ecosystems emerged as a concept for capturing the in-

teractions of business networks. Ecosystems can comprise autonomous organizations and

related services, sharing agreements on overall domain specific components and rules gov-

erning interactions and inter-relationships among the participants. Enterprise ecosystems

provide some formalization of common models, shared knowledge and global resources to

enable loosely coupled interoperability among enterprises. In essence, they can be used,

as opposed to open environments, to provide controlled business and enterprise environ-

ments delimiting the collaboration scopes to a set of actors respecting business related

rules. Ecosystems form a suitable environment for application composition. They provide

an environment with identified semantics and business properties wherein peers providing

services interact based on a global but not too restrictive agreement. This helps in distin-

guishing functional needs, relations between them and other business-relevant properties.

1.1.1 Objectives and Contributions

In this chapter we address the service-based application composition issue in a peer-to-

peer ecosystem. In such an ecosystem, our approach consists of first defining a high level

interaction between actors, then refining it to an application defined as a graph of abstract

services. The application is realized by substituting abstract services for matching services

provided by peers belonging to the ecosystem. We show how the concrete application real-

ization based on service composition can take advantage of the ecosystem’s network reor-

ganization into peer communities, in terms of communities’ definition and communication

protocol by building on top of an unstructured system a hybrid overlay network.

The remainder of the chapter is organized as follows. Section 1.2 exposes literature back-

ground, namely service orientation and P2P systems and communities. Section 1.3 exposes

ecosystems, peer-communities and services under a multi-layered comprehensive frame-

work for service-based application composition. Section 1.4 focuses on the fourth layer

of the framework, describing its organization in a super-peer based overlay network. Sec-

A Community-based Approach for Service-based Application Composition in an Ecosystem 3

tion 1.5 presents the European Electricity Exchange Market as an ecosystem example. It

compares two views of the studied ecosystem, focusing on the process of application real-

ization. Section 1.6 concludes the chapter and presents future work.

1.2 Background

In this Section we discuss two recent developments that are changing the way IT appli-

cations are designed, deployed and exchanged: (i) service oriented computing, providing

a new paradigm for creating applications on demand and (ii) peer-to-peer systems, often

used for sharing resources. We first describe current work in service oriented computing,

then we briefly define P2P systems and review P2P communities-related literature.

1.2.1 Service Orientation

Previous work in service oriented systems has focused to a significant extent on 1) con-

structs and models to define and represent the behaviors and properties of services, and

2) the architectures or protocol suites to allow service sharing and matching and on ser-

vices’ composition into more complex systems.

A service can be viewed as a self-contained, modular basic software unit that is described,

published and invoked over a network to create new software components or products. It

encapsulates functions and modules of an application domain (e.g., business process com-

ponents, supply chain units). It provides an interface to allow external invocation. Among

service description models proposed in the literature, the Web Service Description Lan-

guage (WSDL) [2] has become a de-facto industry standard. It is an XML-based model

that allows a syntactical representation of the methods and parameters needed to inter-

act with a service. Other models extend the syntactic representation of services by adding

semantics to resolve definition discrepancies and heterogeneities that can hinder service

matching and composition. For example, the METEOR-S project [3] extend WSDL with

semantic annotations while the OWL-S [4] and WSMO [5] (the Web Service Modeling

Ontology) approaches are based on an ontology of web services. The ontology provides a

precise description of service components and their inter-relationships. Several standards

and architectures are proposed to enable the integration and sharing of heterogeneous ser-

vice. For example, Service Oriented Architecture (SOA) is a “paradigm for organizing and

utilizing distributed capabilities that may be under the control of different ownership do-

mains” [6, 7].

4 E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

Service discovery is defined by Keller et al. [8] as the automatic localization of services cor-

responding to user’s need. Booth et al. [9] describe the discovery process as the localization

of a machine readable description corresponding to given functional needs. Toma et al. [10]

define service discovery as a process taking as input a user query and returning as output

a list of available resources corresponding to the user’s need expressed in the input query.

Two major aspects are tackled by service discovery, namely service localization and ser-

vice matching. Service localization relies on either centralized or distributed architectural

models. The UDDI (Universal Description Discovery and Integration [11, 12, 13]) became

a widely know standard for centralized service localization. It consists of a set of UDDI

nodes collaborating to create a global structure. Srinivasan et al. [14] extended the UDDI

model to support OWL-S semantic description allowing more efficient comparison between

the user’s need and the available services. Distributed localization models consisted first in

setting up a distributed federation of UDDIs [15, 16]. Verma et al. [17], Paolucci et al.

[18] and Schmidt et al. [19] discussed other complex models. Service matching is widely

addressed in the literature. Ernst et al. [20] and Dong et al. [21] studied syntactic similarity

based on trace data and clustering respectively. Paolucci et al. [22], Benatallah et al. [23]

and the WSMO workgroup [8] tackled the matching based on semantic similarity. Taher et

al. [24] and Bordeaux et al. [25] studied other approaches based on abstract services and

labeled transition systems respectively.

Service composition designates the interaction taking place between two or more services

in order to accomplish a given goal. The composition process tackles several aspects, such

as the interaction description and organization, the message exchange management, the

transaction like behavior, the interaction context, the level of automation, the failure recov-

ery, etc. The Web Services Business Process Execution Language (WS-BPEL [26]) is the

current standard for describing services’ compositions. It allows to model compositions as

interaction workflows. An alternative for BPEL is the Web Service Choreography Interface

(WSCI [27]). Both BPEL and WSCI allow static service composition wherein services are

bound at design time. Thakkar et al. [28], Casati et al. [29] and Sun et al. [30] present

dynamic composition environments based on composition engines capable of binding se-

lected services at runtime. The automation level of the composition process is also widely

studied in the literature. An exhaustive survey on service composition is out of the scope of

this work. Useful information is available in [31, 32].

A Community-based Approach for Service-based Application Composition in an Ecosystem 5

1.2.2 P2P Systems

Peer-to-peer (P2P) systems are distributed systems composed of distinct computing ele-

ments, called peers, with similar resources and capabilities. Peers interact together to share

services and resources. P2P systems can be classified into unstructured and structured sys-

tems. In unstructured P2P systems, peers are organized in random graphs with no control

over their contents. Each peer controls its contents and the access and sharing of its re-

sources. Unstructured P2P systems can be further classified into (i) centralized systems

when a central directory is used to store global state information (indexes, data locations,

etc.), (ii) decentralized systems when no global state information (network state informa-

tion, context data) is maintained by the peers, and (iii) hybrid systems which combine the

characteristics of centralized and decentralized by using super-nodes (or super-peers) [33]

to control simple peers with less resources and capabilities. Structured P2P systems keep a

tight control over network topology and peer contents by placing data not randomly in peers

but at specific locations defined by the overlay network strategy (an indexing strategy).

P2P systems can also be structured by using clustering techniques to group peers based

on common properties or interests. Clusters can be viewed as communities belonging to

overlays defined on top of unstructured P2P systems. According to Khambatti et al. [34],

a community is a set of active peer members, involved in sharing, communicating and pro-

moting common interests. Significant research is currently targeted at creating community-

oriented overlay networks in order to avoid query messages flooding and to save resources

in handling irrelevant queries over the P2P network. DHT-based techniques [35, 36] guar-

antee location of content within a bounded number of hops by tightly controlling the data

placement. Other techniques based on clustering strategies have been proposed to reduce

query traffic, grouping peers sharing similar properties.

According to Oztopra et al. [37], two main strategies are used the literature for clustering

peers. The first strategy takes into account network related characteristics while the second

focuses on peers interests. In the following we review both strategies considering that peers

participating in a services’ ecosystem are mainly interested in providing, sharing and re-

using services.

1.2.2.1 Using Network Characteristics to Build Peer Communities

Several research was conducted on clustering of peers based on network characteristics.

Ratnasamy et al. [38] present a scheme whereby nodes partition themselves into groups

called bins such that nodes that fall within a given bin are relatively close to one another in

6 E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

terms of network latency. Zhang et al. [39] propose a topology aware system constructing

an overlay network by exploiting the locality in the underlying network using the group

concept. Each host in the overlay is running a protocol to communicate with other hosts.

In general, each host maintains information about a set of other hosts to communicate

with. Two hosts are considered as neighbors if they are connected through the overlay.

MetaStream [40] is a content discovery protocol for topology-aware on-demand streaming.

In MetaStream, clients choose streaming sources based on network distance. For this pur-

pose, they self-organize into a dynamic hierarchy of clusters based on the network topology.

Any protocol for constructing a topology-aware hierarchy can be used. Connectivity-based

Distributed node Clustering (CDC) [41] implements node clustering based on node con-

nectivity in P2P networks, while Zheng et al. [42] use an approach based on link delay

of node communications in the P2P network. Oztopra et al. [37] propose to cluster peers

based on time (communication duration) closeness.

Disregarding the specific adopted technique, building communities based on network char-

acteristics generates an overlay where peers in a community provide different services.

In such a scenario, it is highly probable that peers in a community will behave in a co-

operative manner. When one peer is selected, the possibility of selecting another member

of the community is increased. This makes sense considering that it is better for a peer to

search for a service among his neighbors before searching among further members.

1.2.2.2 Using Service Properties to Build Peer Communities

Service properties are classified in two main categories: (i) functional and (ii) non-

functional [5, 43].

Functional properties represent the functionality provided by the service and its semantic

description elements, for example the related input/output parameter list (and conditions if

available). Note that the service as a software unit might provide several functionalities. In

this case, each functional aspect can be studied as a separate entity. Building communities

based on the functionalities provided, allows us to obtain competitive communities, where

each peer holds services accomplishing the same task, although some service attributes

may vary. This way, each peer will compete with others to get selected by a client. The

client choice is based on non-functional properties, which are not directly related to the

functionality provided by the service.

An exhaustive list or classification of those properties is out of the scope of our project, we

note that some of the non-functional properties are QoS related and thus in correlation

A Community-based Approach for Service-based Application Composition in an Ecosystem 7

with the network characteristics such as execution time. Other non-functional properties

do not express QoS but might form substrate criteria to build communities on, for instance

security-level and trust [44, 45].

1.3 A Framework for Sharing Services

In the following we present and model peers interactions in a services’ ecosystem. We de-

fine peer-communities in such ecosystems and formalize interaction rules. We also describe

the multi-layered service-based composition framework under which on-demand applica-

tion composition takes place.

1.3.1 Ecosystem, Peer-communities and Services

In an ecosystem various communities organize business-driven collaboration among groups

of service-providing peers. We first describe such ecosystems, and then we provide more

precise definitions of the relevant terms.

Figure 1.1 Ecosystem’s Organization

As described in Figure 1.1, an ecosystem is a group of peer-communities in which each

peer-community accepts a consensual specification of a business area and its related busi-

ness rules, referred to as global agreement. The ecosystem defines a set of abstract services

based on the global agreement. A peer respecting the global agreement provides services

as implementations of the abstract ones. Peer-communities are groups of peers having a

consensual agreement on a minimum set of properties. We denote by local agreement this

set of the required properties. Each peer must satisfy its ecosystem’s global agreement and

its communities’ local agreements.

8 E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

We model the ecosystem’s organization by the following definitions and rules:

• Given an ecosystem E , its global agreement specification is the set of business-related

properties denoted by GlobA(E). GlobA(E) = {pp}p=[1,...,q] where q is the number

of relevant business properties in the ecosystem. For example response time, which

is a widely used property. Properties notation language is chosen depending on the

ecosystem domain(s).

• Abstract services are defined by the ecosystem in order to disseminate an application

domain knowledge. An abstract service is an interface defining the abstract operation

needed to fulfill the related functionality. An abstract service describes the operation

via a semantic business-related description, including but not limited to, its inputs,

outputs and an associated set of constraints, typically restrictions. It provides no real

implementation of the operation, just the signature. The abstract service interface al-

lows to define also realization constraints to be respected by the interface implementer.

An abstract service is designated by Ai. We denote by A the set of abstract services de-

fined by the ecosystem E , and by n the number of described abstract services in the

ecosystem such as |A| = n.

• For each abstract service Ai the set of defined properties Pi is defined as: Pi =

{pm
i }m=[1,...,qi], i∈{1,...,n} subject to qi � q and ∃ f : pm

i → pp. For instance, based on

the business property response time, the abstract service’s interface defines the prop-

erty execution time. We note that some business related properties might not be relevant

for a given abstract service, thus they are not used in its interface.

• Abstract services defined by an ecosystem E must comply with the GlobA(E) specifi-

cation:

∀Ai ∈ A, Pi ⊆ GlobA(E) where i ∈ {1, . . . ,n}

• Services are defined by peers in order to present their business offers in the ecosys-

tem. They are defined with respect to the ecosystem required functionalities, thus a

service is a concrete implementation of an abstract one. A service Si j implementing

an abstract service Ai must redefine the abstract operation and respect all the associ-

ated constraints. Although having similar functional interfaces, two services Si j and

Si j′ may differ in their non-functional properties.

• For each service Si j the set of service-related properties is derived from the correspond-

ing abstract service properties and is denoted by Pi j = {pp
i j}i∈{1,...,n}, p=[1,...,qi], j∈N.

Actually a service redefines and implements the properties of its related abstract ser-

vice. For example, the service redefines the property execution time inherited from its

A Community-based Approach for Service-based Application Composition in an Ecosystem 9

corresponding abstract service and evaluates it. If a service’s WSDL description pro-

vides several operations related to different functionalities, the service is mapped to

the required number of abstract services.

• Within partnerships, services are offered as implementations of abstract services. An

implementation relation IMPD is defined in order to associate a concrete service with

its corresponding abstract service. The implementation dependency is such that:

∀Si j, ∀Ai ∈ A, i ∈ {1, . . . ,n}, j ∈ N

IMPD(Si j,Ai) =⇒ ∀ pp
i ∈ Pi, ∃ pp′

i j ∈ Pi j where p, p′ ∈ {1, . . . ,qi}

• Given a peer-community PC, its local agreement specification is denoted by

LocA(PC). A local agreement is specified either in terms of services properties or any

other criteria relevant to the studied ecosystem members (e.g. locality, peer-trust-level,

etc.).

• Peers belonging to a community PCLocA must comply with the local agreement speci-

fication LocA(PC).

∀Ni ∈ PCLocA, Ni respects LocA(PC)

For instance, given a community PCLocA based on the local agreement LocA : equal

trust-level, all its member peers share the same value for the property trust-level.

• We denote by S(Ni) the set of services provided by the peer Ni and by S(PC) the

services available in the community PC. S(PC) is the union of the services whose

providing peers comply with the local agreement LocA(PC).

1.3.2 Multi-layered Service-based Composition Framework

The multi-layered framework for service-based application composition is illustrated in

figure 1.2. It allows dynamic application composition in a given ecosystem. It is composed

of five layers. The first layer models the studied business logic in a workflow of activities

from which abstract services are described. The second layer allows to define an applica-

tion modeled by a graph of abstract services. The third layer contains the set of realizations

of the application. A realization is defined as a combination of available services on the net-

work capable of executing the application process. The fourth layer is the virtual overlay

network in which peers are clustered in communities 1. The fifth layer represents the under-

lying peer architecture. At this layer we capture peer related non-functional characteristics

that help assessing network related measures. The service binding is deferred until runtime,
1For simplification purposes, we do not distinguish hereafter between the terms peer-community and community.

10 E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

Figure 1.2 Multi-layered Composition Framework

allowing a dynamic cost-based service selection. In the following we briefly describe the

framework layers and components.

• The Business Layer models the business logic in a workflow of required activities.

The main purpose is to refine business activities in abstract services modeling func-

tionalities shared by applications in the domain of interest.

• The Application Layer represents the composite application by a graph of abstract

services denoted by Generic Business Process (GBP). A GBP is an oriented attributed

graph whose vertices represent abstract services and edges represent control sequences

indicating functional dependencies between the abstract services. Attributes are associ-

ated with the vertices and the edges in order to represent functional and non-functional

data and characteristics. Yetongnon et al. [46] discusses details about this layer and the

following ones.

• The Instances Layer contains a set of possible service compositions generated from

the GBP abstract service graph and based on the available services in the ecosystem.

This conversion of a GBP into a set of GBP instances is carried out by an instantia-

tion process in which services registered by peers are substituted for the abstract ser-

vices of the GBP. Thus, a GBP instance is a directed attributed graph whose nodes are

registered services, edges connect two services based on the functional dependencies

A Community-based Approach for Service-based Application Composition in an Ecosystem 11

expressed in the GBP, and the attributes values are derived from the corresponding

attributes of both nodes and edges in the GBP graph. The study of the instantiation

process is out of the scope of this chapter.

• The Overlay Network Layer is the peers’ organization into a community-based over-

lay network. The overlay description, organization and communication is detailed the

following section.

• The Underlying Network Layer helps capturing the underlying network characteris-

tics. At this point, the services properties can be evaluated along with the properties

of the edges connecting the hosting peers in an instance graph. Peer properties are

projected on the corresponding instances graphs. Each enterprise is modeled by a set

of peers such as each enterprise application server, providing services or requiring an

application instantiation, is a peer.

• The Service Repository component interacts with the five layers. It provides at each

layer the required elements (cf. figure 1.2). For instance at the business layer, it con-

tains the ontologies and the abstract services listings.

1.4 The Overlay Network

The overlay network is a view of the ecosystem filtered by peer-communities local agree-

ments. For instance, local agreements consisting of the property providing similar function-

alities generate an overlay of peer-communities in which peers providing services imple-

menting the same abstract service are regrouped in the same community.

1.4.1 Overlay Organization

We adopt the classical two levels peer organization, consisting of peer groups each managed

by a super-peer. Figure 1.3 illustrates an example of a super-peer based overlay network

architecture for service oriented application development. It consists of peers whose main

goal is to provide concrete implementations of abstract services. Peers are organized in

communities managed by super-peers which are in turn organized in a communication

topology. For example, peer-community 1 is managed by super-peer SN1 and includes four

peers N1, . . . ,N4. Note that a peer can provide implementations for one, several abstract

services or none; on the other hand an abstract service can be implemented by more than

one peer.

A peer-community is a set of peers respecting a local agreement and managed by a super-

12 E. Abi-Lahoud, M. Savonnet, M.-N. Terrasse, M. Viviani, K. Yétongnon

Figure 1.3 Example of the Overlay Network Organization

peer. Formally, it is denoted by

PCLocA =
(
SNk, {Nr}r=1,...,nk

)
where SNk is the super-peer managing the set of nk peers respecting the local agreement

LocA(PC). Peer-communities are based on either (i) network characteristics or (ii) proper-

ties connected to services as described in section 1.2.2.

1.4.2 Super-peers

Super-peers are selected based on their computing capabilities (in order to handle the GBP

instantiation) and/or their trustworthiness2. The links between super-peers are chosen as

the shortest path from the physical network. Each link between super-peers represents a

bidirectional communication path.

Super-peers in the overlay network maintain and manage a distributed directory structure.

Each super-peer maintains a local repository, consisting of two tables: a local state infor-

mation table (for example tables 1.3(a), 1.3(b), 1.4(a)) and a global state information table

(for example tables 1.2, 1.4(b)). The local state information table contains: (i) the set of

peers managed by the super-peer. (ii) A state St(Nr) for each peer. St(Nr) =ON if the peer

Nr is on-line. St(Nr) =OFF if the peer Nr is off-line. (iii) For each peer Nr, a list of provided

services Sik and their related abstract services Ai.

The global state information table, community directory, represents for each super-peer SNk

in the overlay, the set of abstract services {Ai}i=1,...,ni that are supported by its community.

2For the sake of conciseness we will not detail the super-peers choice and we consider for the rest of the chapter
that a super-peer does not depart.

A Community-based Approach for Service-based Application Composition in an Ecosystem 13

1.4.3 Event Related Communication

Two major events need to be considered, first peer join and second peer departure.

When a peer joins the ecosystem three actors or group of actors are implicated. First the

peer itself, (i) launches a probing process to discover the closest super-peer in terms of

physical distance then (ii) it queries the selected super-peer asking for the list of abstract

services and for the community directory table. Then the peer (iii) decides on abstract

services to implement 3 or if already implemented it grants network members access to

its services. If needed, the peer creates mappings between its existing services and one or

more related abstract services. The peer respects indirectly the ecosystem’s global agree-

ment GlobA by choosing to implement an abstract service or by providing required map-

pings for its existing services. Finally the peer (iv) sends requests to the super-peers of the

communities it is willing to join, notifying them of its presence in the community. Clearly

respecting the local agreement LocA(PC) of each of the solicited communities is a join pre-

requisite. Second, each of the concerned super-peers (i) receives the joining peer request

and information, (ii) updates its local copy of the community directory and (iii) sends up-

date notifications to direct super-peers neighbors. Third, other super-peers (i) receive the

community directory update notifications and (ii) proceed on updating their global state

information.

When a peer departs, the same actors are implicated. First, the peer itself notifies its super-

peers before going offline. We adopt clean peer departure considering that peers main goal

is to collaborate, improving the network and its added value (generated applications). Sec-

ond, each of its related super-peers (i) flags the peer as offline in the local state table. After-

ward, if the departing peer is the last to provide a given functionality, (ii) the related abstract

service is removed for the community directory. Finally the super-peer (iii) sends update

notifications to neighbors super-peers containing the community directory new state. Third,

other super-peers (i) receive the community directory update notifications and (ii) proceed

on updating their global state information.

1.5 Case Study: The European Electricity Market

Produced electricity cannot be stored for long, therefore the market must undergo a regula-

tion process. Market regulation consists of insuring that the quantity of produced electricity

is equal to the needed consumption power. Electricity regulation is ensured via exchanges

3respecting the corresponding implementation relation IMPD.

