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Chapter 1

Introduction

The general problem addressed in this book is how to effectively carry out reason-

ing, knowledge discovery and querying based on huge amounts of complex information

about real-world situations. Specifically we conceive “real-world reasoning” here mainly

as “massively scalable reasoning involving uncertainty, space, time, cause and context.” Of

course there are other important aspects to reasoning about the real world we live in, e.g.

the hierarchical structure of much of the human world, and we will briefly touch on some

of these here as well. But for the purposes of this book, when we mention “real-world

reasoning” or RWR, we’re mostly talking about uncertainty, spacetime, cause, context and

scalability.

The RWR problem is critical in at least two respects: as part of the broader pursuit of

artificial general intelligence (AGI) (Goertzel & Pennachin, 2006; Goertzel et al., 2006a;

Goertzel & Bugaj, 2008; Hart & Goertzel, 2008), and in terms of the practical information

processing needs that have arisen in current society.

On the AGI side, it is obvious that every human brain ingests a huge amount of knowl-

edge each waking hour, and somehow we manage to query and analyze our huge, dynamic

internal data stores. No AGI design can possibly succeed without some way to effectively

carry out intelligent judgment and discovery based on these data stores. AGI also has other

aspects, e.g. procedure learning and goal refinement (to name just two), but RWR is cer-

tainly a huge part of the puzzle.

On the practical information processing side, anyone who lives in a developed country

these days is aware of the tremendous amount of data continually being gathered about

all manner of aspects of the human and natural worlds. Much of this data is discarded

shortly after it’s gathered, but much of it is retained in various repositories. However, even

when the data is retained, it is rarely utilized to anywhere near the full extent possible,

because our state-of-the-art technologies for storing, querying, mining and analyzing very

11



12 Real-World Reasoning

large data stores are still very primitive and simplistic (not only compared to what is in

principle possible, but compared to what we know to be possible based on contemporary

mathematics and computer science).

In these pages we review a class of approaches to handling these RWR problems using

uncertain, spatiotemporal, contextual and causal logic. Uncertain logic is not the only

possible approach to the RWR problem, but we believe it’s one very promising approach,

and it’s our focus here. While the first RWR-capable logic system has yet to be constructed,

we make an argument, via detailed review of the literature and the state of the art and

suggestion of some original ideas, that the time is ripe for their construction.

The book is intended to serve two purposes: to provide a reasonably accessible

overview of the RWR problem and the available technologies and concepts for its solu-

tion; and to provide a sketch of one possible avenue toward solution.

Toward the “overview” goal, we review a number of concepts and technologies – some

recently developed, some more classical – that address aspects of the RWR problem. While

our treatment centers on formal logic, we also introduce material from other areas such as

graph databases, probability theory, cognitive architecture and so forth as appropriate.

After reviewing a variety of other logical approaches, we present our own approach to

real-world reasoning, which is based on the Probabilistic Logic Networks (PLN) frame-

work (Goertzel et al., 2008); and give some detailed suggestions regarding how one might

address the scalable real-world inference problem effectively via integrating PLN with

other ideas and technologies described. Our goal in this regard is not to propose a par-

ticular highly-specific technical solution, but rather to describe a class of possible solutions

that might be described as “scalable spatiotemporal uncertain logic systems”. In this vein,

in the later chapters we give a number of detailed examples showing the kinds of results

one might expect to obtain by approaching a large knowledge store containing information

about everyday human activities with the Probabilistic Logic Networks inference frame-

work that we have developed in prior publications.

1.1 The Advantages of a Logical Approach

There are many advantages to the logic-based approach relative to others, some of

which will be alluded to as the text progresses, but perhaps the largest advantage is its

relative representational transparency. That is, if the knowledge stored in a knowledge base,

and the patterns recognized in this knowledge base, are represented in a logical format, then
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it is reasonably tractable for humans to inspect this knowledge and these patterns. This is

a major practical advantage in terms of allowing hybridized human/artificial intelligence –

and, given the comments made above about the interesting but erratic performance of AI

algorithms in our domain, this seems a very important point.

Given the advantage of logic-based approaches in terms of representational trans-

parency, the only reason to choose an opaque approach over a logic-based approach would

be if the opaque approach were dramatically superior in its capabilities. However, this cur-

rently seems not to be the case: in fact the evidence so far seems to indicate that logic-based

approaches are the most powerful ones in this sort of context.

Some theorists have argued against logic-based approaches to real-world data on the

grounds that there are problems with “grounding” logical symbols in real-world data (the

so-called “symbol grounding problem” (Goertzel et al., 2006a)). However, these objections

do not hold up to scrutiny. It is true that logic-based approaches cannot function adequately

for real-world applications unless the logical symbols used are explicitly associated with

observed data-patterns, but there are well-understood technologies for making such associ-

ations. Historically, many logic-based AI systems have been used in an “ungrounded” way,

not containing components that directly connect the logical terms used with real-world ob-

servations – but this is a problem of poor system architecture, not a flaw of the logic-based

approach in itself.

1.2 Main High-Level Conclusions

To give a small hint at what is to come, the main conclusions at the end of our investi-

gation are that

• the logic-based approach has the in-principle power to solve the problem of querying

and analyzing very large scale spatiotemporal knowledge bases, in a manner respecting

the contextual and causal knowledge contained therein

• there is a significant amount of scientific and technological knowledge in the literature

regarding nearly every aspect of the application of logic-based technology to this prob-

lem

• the Achilles heel of current relevant logic-based technology is scalability

• the keys to achieving scalability in this context are conceptually understood – adaptive

inference control and attention allocation – but have not been explored nearly as thor-

oughly as they need to be
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• it seems likely that special techniques may be useful for adaptively controlling real-world

scalable inference as opposed to inference in other domains (e.g. mathematical theorem

proving)

• one viable way to achieve scalable real-world reasoning may be to use the Probabilistic

Logic Networks framework, perhaps within an integrative AGI design like OpenCog

which provides flexible means for adaptive inference control

We thus suggest that a critical focus of research should be on the development of methods

for exploiting the specific statistical structure of real spatiotemporal data, to adaptively

guide logical inference methods in performing query and analytical processing.

1.3 Summary

We now briefly review the chapters to follow, summarizing the main themes and ideas

to be introduced.

1.3.1 Part I: Representations and Rules for Real-World Reasoning

Part I of the book reviews a host of approaches described in the literature for represent-

ing and reasoning about real-world knowledge, including temporal, spatial, contextual and

causal knowledge.

Chapter Two reviews many of the varieties of formal logic that have been developed

during the last century, with a focus on those approaches that appear most relevant to the

large-scale information-management problem. We begin with a basic review of predicate

and term logic, and then move on to subtler variations such as modal logic (the logic of

possibility) and deontic logic (the logic of obligation). We also discuss the methods that

logic systems use to actually draw logical conclusions based on the information provided

to them: forward chaining, in which information items are combined exploratorily to come

to new conclusions; and backward chaining, in which a question is posed to the system

and it then seeks to find the answer using multiple logical inference steps based on the

information at its disposal.

Chapter Three considers various methods of handling uncertainty in formal logic, in-

cluding fuzzy sets and logic, possibility theory, probability theory, and imprecise and in-

definite probabilities. Uncertainty management is critical to our target application, because

a great percentage of real-world data is uncertain, and most of the conclusions one can

draw based on real-world data are also uncertain. So, logic systems that only deal with
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absolute truth or falsehood are not going to be very useful for our target application. But,

the literature contains a huge number of different methods for dealing with uncertainty –

and one of our conclusions is that there isn’t necessarily a single best approach. Rather,

a practical solution may integrate more than one approach, for instance using both fuzzy

and probabilistic methods as appropriate. Figures 1.1 and 1.2 from Chapter Three illustrate

several of the possible methods for representing time within logic:

Fig. 1.1

Chapter Four grapples with the various ways logicians and computer scientists have

devised to represent time within logic. This is a core issue for our current pursuit, because

a large percentage of real-world knowledge involves time. The most standard method for

handling time within logic is Allen’s interval algebra, which treats time-intervals rather

than points as the atomic temporal entities, and enumerates a set of rules for combining and

reasoning about time-intervals; but it suffers the deficit of being crisp rather than explicitly

handling uncertainty. So we review several methods of extending interval algebra to deal

with uncertainty, including methods involving fuzziness, probability, and combinations of

the two. Figure 1.3 from Chapter Four illustrates the logical relationships between time

intervals specified by Allen’s interval algebra:
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Fig. 1.2

Fig. 1.3

And the Figure 1.4, also from Chapter Four, is a graphical representation of some temporal

relationships between events, using a probabilistic variation of Allen’s interval algebra:

Continuing the theme of its predecessor, Chapter Five deals with temporal inference,

reviewing the multiple methods presented in the literature for incorporating time into logic.

These include methods that simply treat time like any other logical information, and also

methods that give time a special status, including reified and modal techniques. We con-

clude that methods giving time a special status are likely to be dramatically more efficient,

and express a particular favor for reified techniques compatible with Allen’s interval al-

gebra (discussed above) and its variations. We give some concrete examples of temporal

inference regarding peoples’ daily activities.
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Fig. 1.4

For instance, one of the example problems we consider involves a query regarding

“which people were in the same place as Jane last week,” and a knowledge base with the

following information:

• Susie and Jane use the same daycare center, but Jane uses it everyday, whereas Susie

only uses it when she has important meetings (otherwise she works at home with her

child).

• Susie sends a message stating that Tuesday she has a big meeting with a potential funder

for her business.

Given this information, inference is needed to figure out that on Tuesday Susie is likely to

put her child in daycare, and hence (depending on the time of the meeting!) potentially to

be at the same place as Jane sometime on Tuesday. To further estimate the probability of

the two women being in the same place, one has to do inference based on the times Jane

usually picks up and drops off her child, and the time Susie is likely to do so based on the

time of her meeting. We show in detail how temporal inference methods can be used to

carry out this commonsense inference, and other similar examples.

Chapter Six builds on the treatment of time and presents an analogous discussion of

a more complex subject, space (critical to our core theme as a substantial percentage of

real-world knowledge involves spatial as well as temporal information). We review the

Region Connection Calculus, which models the logic of space in terms of a fixed set of

logical relationships between logical terms that correspond to spatial regions. As this is a

simple but limited technique, we then consider more complex approaches to representing

space in logic, including directional calculus, and occupancy grids as utilized in robotics

(which are extremely general yet also resource-intensive, and so should only be used when



18 Real-World Reasoning

simpler methods fail). The following diagram, drawn from Chapter Six, depicts the re-

lationships between various spatial regions and spatially distributed phenomena (NTPP

stands for Non-Tangential Proper Part, and O stands for Overlapping; these are spatial-

relationship predicates drawn from the Region Connection Calculus formalism):

Fig. 1.5

Next, as well as time and space, another critical aspect of real-world reasoning is con-

text. Nearly all real-world knowledge implicitly or explicitly gains its meaning from the

specific context in which it is understood by human knowledge producers and consumers to

exist. So if logical methods are to be applied effectively to real-world data, it is important

that they explicitly represent contextuality. In Chapter Seven, we review a number of ap-

proaches to representing contextuality in logic, and give detailed examples of several. We

also consider one example of context representation that is particularly acutely relevant to

our application area: the use of contextual logic to handle user modeling. If different users

of an information system have different biases and interests, then a logic based system can

pay attention to this and give them different information via treating each user as a separate

context and then doing contextually-biased reasoning.

In addition to context representation, Chapter Seven treats contextual inference, re-

viewing a number of techniques presented in the literature, and again finding favor in those

methods that explicitly represent context as a special relationship within the base logic.

We give a concrete examples of contextual inference applied to practical problems regard-

ing people and their interrelationships. One example we consider involves the following

assumptions:

• Alison is an accountant who is also a musician. Alison is emotional in the context of

music, but not in the context of accounting. She frequently mentions Canadian place
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names in the context of music (maybe she’s a Canadian music fan), but not in the context

of accounting.

• Bob is in a similar situation, but he frequently mentions Canadian related stuff in both

the music and accounting contexts.

• Clark is also in a similar situation, but he frequently mentions Canadian related stuff

only in the accounting context, not the music context.

• People who have a lot to do with Canadian people, and a lot to do with money, have a

chance of being involved in suspicious log trafficking activities.

We then show how contextual inference methods can be used to estimate the probability

that Clark may be involved with log trafficking.

Chapter Eight turns briefly to causal reasoning, reviewing the multiple formalisms used

to represent the notion of causality, and connecting causation to probabilistic and inductive

reasoning.

1.3.2 Part II: Acquiring, Storing and Mining Logical Knowledge

Our focus in this book is doing logical reasoning on real-world knowledge, and this

is a large and critical topic – but, once one has a large store of real-world knowledge in

logical format, reasoning per se is not the only thing that must be done with it. Part II, a

brief interlude at the center of the book, consists of three short chapters which lightly touch

three other important issues to do with large stores of logical knowledge: acquiring logical

knowledge via transforming real-world data, storing and querying large volumes of logical

knowledge, and mining patterns from large logical knowledge stores. Each of these topics

could be a book in itself, and here we only roughly sketch the main problems involved and

give some pointers into the literature.

Chapter Nine very briefly reviews existing relevant literature, discussing the use of nat-

ural language processing technology to map text and voice into sets of logical relationships;

and the use of image processing and heuristic algorithms to create logical relationships out

of tables, graphs and diagrams. For instance, the following diagram drawn from Chapter

Six shows some logical relationships that current NLP technology can extract from the

simple sentence “Gone for dinner with Bob”:

Another key question that must be answered if logic-based methods are to be applied to

massive real-world data stores is: how can a huge amount of logical knowledge be stored

and manipulated? This is not a question about logic per se, it’s a question about modern

computer systems, database and database-like technologies, and so forth. In Chapter Ten,
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Fig. 1.6

we review a number of current technologies, including relational databases, RDF triple-

stores, object databases, and hypergraph and graph databases. Our conclusion is that at

present the latter form the best option, and we give some specific examples of how to

translate complex logical knowledge into the specific format required for a graph database.

The following table, drawn from Chapter Ten, summarizes some of our findings in more

depth:

Technology Strengths Weaknesses

Relational

DBs

• Mature, enterprise grade

solutions

• Ease of integration with

other systems

• Poor conceptual fit for

logical information storage

• Inadequate model for

reasoning

• Complex scalability

Object-

Oriented

DBs

• Better conceptual fit than

relational DBs (still not

perfect)

• Mature solutions

• Single data model

• Small ecosystem

• Not designed for reasoning

Continued on next page
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continued from previous page

Technology Strengths Weaknesses

Graph DBs • Flexible, dynamic data

model

• Good performance and

scalability

• Designed with data analysis

in mind

• Less mature than competing

technologies

Hypergraph

DBs

• Best data model fit

• Designed with reasoning

and data analysis in mind

• Alpha stage technology

RDF

Triplestores

• Semantic web friendly

• Adequate data model for

some inferences

• Less mature technology

• Rigid data model

Document-

oriented

DBs

• Flexible data model

• Performance and scalability

• Rapidly maturing solutions

• Not adequate for reasoning

and analysis

• More work is left for

application layer

Column-

oriented

DBs

• Very flexible, dynamic data

model

• Performance and scalability

• Rapidly maturing solutions

• More work is left for

application layer

• Not designed for reasoning

Key-value

DBs

• Extremely good

performance and scalability

• Mature and rapidly

maturing solutions

• No data model, leaving

most work for application

layer

• Not designed for reasoning

Chapter Ten turns to one of the most important applications desirable to carry out on

large data stores – “data mining” (also known as “information exploitation”, “pattern dis-

covery”, etc.). Most existing datamining techniques are either specialized for relational
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databases, or don’t scale beyond small knowledge stores. We review here some specific

datamining algorithms in depth. One conclusion drawn is that, for datamining to really

be effective in this context, it will need to be hybridized with inference. Datamining tech-

nology, in itself, will always find too many potentially interesting patterns for any human

user to want to explore. So logical inference technology is needed to filter the results of

datamining, either via interaction with the datamining process, or via postprocessing.

1.3.3 Part III: Real World Reasoning Using Probabilistic Logic Networks

The second major of the book provides a detailed exploration of the applicability of

one particular logical framework, Probabilistic Logic Networks, to real-world reasoning

problems. This part is different from the previous ones, in that it comprises primarily

original work, rather than literature survey and summary.

Chapters Twelve and Thirteen summarize Probabilistic Logic Networks (PLN), the par-

ticular uncertain logic system called which several of the authors (Goertzel and Pennnachin

and Geisweiller) and their colleagues have developed over the last years (and published ex-

tensively on elsewhere). We outline the basic mechanisms via which PLN deals with a

variety of aspects of inference, including term and predicate logic, extensional and inten-

sional inference, and contextual, causal, spatial and temporal inference.

Chapter Fourteen turns to the specific problem of inference about changes in large

knowledge bases. We consider several concrete examples including the following causal

inference scenario:

• Before March 2007, Bob never had any Canadian friends except those who were also

friends of his wife.

• After March 2007, Bob started acquiring Canadian friends who were not friends of his

wife.

• In late 2006, Bob started collecting Pokemon cards. Most of the new Canadian friends

Bob made between March 2007 and Late 2007 are associated with Pokemon cards

• In late 2006, Bob started learning French. Most of the new Canadian friends Bob made

between March 2007 and Late 2007 are Quebecois.

We show in detail how a PLN inference engine, combining temporal inference with causal

inference and numerous other aspects, can attempt to answer the question: What is the

probable cause of Bob acquiring new Canadian friends who are not also friends of his

wife?
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Chapter Fourteen also considers spatial inference in the context of change analysis,

giving particular attention to the incorporation of the Region Connection Calculus (RCC)

into PLN. It is shown how a fuzzy/probabilistic version of RCC may be used together

with a fuzzy/probabilistic version of Allen’s interval algebra to carry out commonsense

inferences about the causes of peoples’ activities and relationships, based on knowledge

involving time and space. To exemplify the practical use of these ideas, we extend the

example of Bob and his Pokemon cards, from the previous chapter, to include the case

where some of Bob’s friends live near Canada but not actually in Canada, and the inference

system has to deal with the notion of “fuzzy Canadian-ness” as related to spatial geometry.

The following figure illustrates the fuzzy spatial membership function corresponding to

Canada, used in the example inference:

Fig. 1.7

Finally (before Chapter Sixteen which is a brief conclusion), Chapter Fifteen confronts

the thorny conceptual and algorithmic issue of inference control: determining which infer-

ence steps to take, in which order, in order to answer a question, filter a datamining results

list, or carry out an analysis. Far from being “merely an efficiency issue,” inference con-

trol actually hits many of the deepest issues of AI, including the “frame problem” (briefly

stated, that AI systems tend to lack tacit background knowledge about what questions not

to bother asking because their answers are supposed to be obvious, or are irrelevant). We

discuss a number of specific techniques that may be able to achieve effective inference

control in the context of inference on large stores of spatiotemporal logical knowledge,
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including techniques that hybridize logic with other AI methods such as activation spread-

ing. Here the discussion broadens from logic per se to the topic of “cognitive architectures”

and general AI systems, the point being made that the integrative architectures underlying

many such systems exist largely in order to provide effective, scalable inference control.

As an example, the OpenCog cognitive architecture in which the PLN inference system is

embedded is briefly considered.



PART I

Representations and Rules for Real-World
Reasoning



Chapter 2

Knowledge Representation Using Formal Logic

Now we begin to dig into the nitty-gritty of our subject matter. Before discussing query-

ing and analysis of complex, heterogeneous spatiotemporal and contextual knowledge, we

must discuss representation of temporal knowledge (as well as, to a certain extent, spatial

knowledge) . . . and before that, we must address knowledge representation in general.

In the course of our investigation we must work through a number of difficult questions

regarding knowledge representation, including:

• Which of the many species of uncertain logic to use as the basis for our knowledge

representation

• How specifically to represent temporal knowledge?

• How specifically to represent spatial knowledge?

• What is the best low-level (e.g. graph) representation of logical knowledge for efficient

storage and processing?

“Logic” itself is not a monolithic entity; it comes in many different flavors. At the highest

level, there is the dichotomy between predicate logic and term logic (and there are also

systems that hybridize the two, e.g. (Goertzel et al., 2008; Wang, 2006a)). There are also

many types of logical system within each of these broad categories, some of which will be

reviewed later on.

The material in this chapter becomes somewhat formal and technical, for which we

apologize to the reader who lacks the relevant taste or experience; but which unfortunately

seems unavoidable if we are to give a serious treatment of our topic. The reader lacking ap-

propriate expertise may either consult relevant background material (Copi & Cohen, 1998),

or less ideally, skim this material and proceed to the later chapters, some of which will be

quite clearly comprehensible without grasp of these preliminaries, some less so.

27
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2.1 Basic Concepts of Term and Predicate Logic

Term logic, or traditional logic, was founded by Aristotle and was the dominating logi-

cal framework until the late nineteen century. Term logic uses subject-predicate statements

of the form “S is P” (for instance, “Socrates is a man”). There are singular and universal

terms (the former correspond to unique subjects). There are just four forms of propositions

in term logic:

• Universal and affirmative (e.g. “All men are mortal”)

• Particular and affirmative (e.g. “Some men are philosophers”)

• Universal and negative (e.g. “No philosophers are rich”)

• Particular and negative (e.g. “Some men are not philosophers”).

New conclusions are derived from premises by syllogisms. Aristotle introduced fourteen

syllogisms, of which we will give just two here for illustrative purposes:

• (Barbara) If every M is L, and if every S is M, then every S is L. (for instance, “if every

man is mortal, and if every philosopher is a man, then every philosopher is mortal”)

• (Celarent) If no M is L, and if every S is M, then no S is L. (for instance, “if no philoso-

pher is rich and if every poet is a philosopher, then no poet is rich”).

Syllogisms provide a method for deduction – deriving new facts from already proved facts.

In addition there are rules for induction and abduction:

• (Induction) If every M is L, and if every M is S, then every S is L. (for instance, “if every

poet is mortal, and if every poet is a philosopher, then every philosopher is mortal”)

• (Abduction) If every L is M, and if every S is M, then every S is L. (for instance, “if

every poet is mortal, and if every philosopher is mortal, then every philosopher is poet”)

Notice that the induction and abduction rules do not neccesarily derive true statements.

Nevertheless these are important forms of inference in the face of insufficient evidence, in

modern AI reasoning systems as well as in classical Aristotelian term logic (Dimopoulos &

Kakas, 1996). Induction and abduction are omnipresent in human commonsense inference.

Put simply, induction aims at generalization. In the above example (“if every poet

is mortal, and if every poet is a philosopher, then every philosopher is mortal”), the first

premise yields that all philosophers that are also poets are mortal, but then it is generalized

to conclude that all philosophers are mortal. Yet, it is possible that there are some philoso-


