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Preface

This book is an elaboration of themes that I previously explored in my paper “Why
do mathematicians re-prove theorems?” (Dawson 2006). It addresses two basic
questions concerning mathematical practice:

1. What rationales are there for presenting new proofs of previously established
mathematical results?
and

2. How do mathematicians judge whether two proofs of a given result are essentially
different?

The discovery and presentation of new proofs of results already proven by other
means has been a salient feature of mathematical practice since ancient times.1 Yet
historians and philosophers of mathematics have paid surprisingly little attention to
that phenomenon, and mathematical logicians have so far made little progress in
developing formal criteria for distinguishing different proofs from one another, or
for recognizing when proofs are substantially the same.

A number of books and papers have compared alternative proofs of particular
theorems (see the references in succeeding chapters), but no extended general study
of the roles of alternative proofs in mathematical practice seems hitherto to have
been undertaken.

Consideration of particular case studies is, of course, a necessary prerequisite for
formulating more general conclusions, and that course will be followed here as well.
The aim is not, however, to arrive at any formal framework for analyzing differences
among proofs. It is rather

a) to suggest some pragmatic criteria for distinguishing among proofs, and
b) to enumerate reasons why new proofs of previously established results have so

long played a prominent and esteemed role in mathematical practice.

1Wilbur Knorr, e.g., noted that “multiple proofs were frequently characteristic of pre-Euclidean
studies” (Knorr 1975, p. 9).
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viii Preface

Chapter 1 addresses the first of those aims, following clarification of some perti-
nent logical issues. Chapter 2 then outlines various purposes that alternative proofs
may serve. The remaining chapters provide detailed case studies of alternative
proofs of particular theorems. The different proofs considered therein both illustrate
the motives for giving alternative proofs and serve as benchmarks for evaluating the
worth of the pragmatic criteria in terms of which they are analyzed.

York, PA, USA John W. Dawson, Jr.
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Chapter 1
Proofs in Mathematical Practice

Before proceeding to consider the questions posed in the Preface, it is necessary
to clarify some logical issues. Paramount among them is the question: What is
a proof?

The notion of what constitutes a proof in a formalized theory is perfectly precise:
It is a finite sequence of well-formed formulas, the last of which is the statement
to be proved and each of which is either an axiom, a hypothesis, or the result of
applying one of a specified list of rules of inference to previous formulas of the
sequence. That notion of proof, central to mathematical logic, has led to important
advances in the understanding of many foundational and metamathematical issues,
and it is widely believed that all current mathematical theories can be formalized
within the framework of first-order Zermelo-Fraenkel set theory. Nevertheless,
formal proofs are not the focus of the present inquiry.

One reason they are not is that formal proofs have not yet become the stuff of
mathematical practice:1 The notion of a formalized theory is of very recent origin,
and strictly formal proofs appear almost exclusively in texts on logic and computer
science, not in ordinary mathematical discourse. In addition, mathematicians do not
ordinarily resort to formalization in order to judge whether two (informal) proofs
that deduce the same conclusion from the same premises are essentially the same.
Rather, it is usually easy to tell, on informal grounds, whether such proofs are
essentially different or merely variants of one another. Intuitively, they are different
if they employ different concepts or tactics.

Furthermore, as Yehuda Rav has stressed, mere expressibility within the language
of set theory does not imply that “all . . . current conceptual proofs can be formalized
as derivations” within that theory (Rav 1999, p. 20, fn 20). That is so in part because
informal proofs often involve “topic-specific moves” that “have no independent

1That may well change soon, however, given that computer proofs of such major results as the
Four-color Theorem, the Prime Number Theorem, and the Jordan Curve Theorem have now been
obtained.

© Springer International Publishing Switzerland 2015
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2 1 Proofs in Mathematical Practice

logical justification,” but serve rather as conceptual “bridges between the initially
given data, or between some intermediate steps, and subsequent parts of the
argument” (Ibid., p. 26). And, as the logician Jon Barwise noted,

current formal models of proof are severely impoverished : : : . For example, . . . proofs
where one establishes one of several cases and then observes that the others follow by sym-
metry considerations [constitute] a perfectly valid (and ubiquitous) form of mathematical
reasoning, but I know of no system of formal deduction that admits of such a general rule.
(Barwise 1989, p. 849)

That is not to say, however, that formal methods are of no use in comparing
informal proofs. Indeed, formal methods may sometimes help to clarify whether
two proofs of a statement really establish the same result. For example, one primary
motive for presenting alternative proofs is to eliminate superfluous hypotheses (as
in Goursat’s improvement of Cauchy’s theorem on integrals of analytic functions)
or controversial assumptions (such as the Axiom of Choice). But should a proof
based on fewer or weaker hypotheses be regarded as establishing the same or
a stronger theorem?

Suppose, for example, that a theorem T is first proved from a set of hypotheses
H , but that later a proof of T is found that employs as hypotheses only some proper
subset P of H . Have we given two different proofs of T , or have we proved in
the first case the implication

V
H ) T (where

V
H denotes the conjunction of

all the hypotheses in H ) and in the second case the implication
V
P ) T (a

stronger result)? Formally, the distinction is merely a matter of perspective, since
the Deduction Theorem for first-order logic establishes the equivalence of A ` T
and `VA) T for any set A of non-logical axioms. To avoid confusion, however,
the first perspective will be adopted here, according to which it is the proof, rather
than the theorem, that has been strengthened; and for precision, all and only those
premises that are actually employed in a proof will be regarded as the hypotheses of
the deduction. It then follows that two proofs of the same theorem based on logically
inequivalent sets of premises must be regarded as different, since the totality of
contexts (models of the premises) in which one proof is valid is not the same as
those in which the other is.

In some cases, formal considerations may lead to conclusions that differ from
those arrived at informally. For example: If a statement S is known to imply
a statement T , should a proof of S ipso facto be regarded as a proof of T ?
Informally, the answer ought to be “no” in general, since the proof that S implies
T may itself be highly non-trivial.2 Formally speaking, however, it follows from
(the strong form of) Gödel’s completeness theorem for first-order logic that if S and
T are any two theorems provable from some first-order set of axioms A, then so is

2Nevertheless, as a colleague has rightly noted, if T is a statement whose proof has long been
sought and the implication S ) T has already been established, one who proves S is often said
to have proved T . For example, Andrew Wiles proved the Taniyama conjecture, but is often said
to have proved Fermat’s Last Theorem.



1 Proofs in Mathematical Practice 3

S ) T : For bothS and T , and therefore also the equivalenceS ” T , must hold
in every structure that satisfies the axioms, and so, by Gödel’s theorem, S ” T

must be provable from the axioms A. Thus, given a proof of S , applying modus
ponens to the proofs of S and of S ) T would yield a proof of T , even though,
from a semantic standpoint, S might be utterly irrelevant to T .

Such proofs do not occur in actual mathematical practice. But what if the
implication S ) T is more easily seen (especially if S is harder to prove than T )?
For example, should a proof that the series of reciprocals of the primes diverges,
or a proof of Bertrand’s Postulate, be deemed a proof of the infinitude of the
primes? Should a proof of the Pythagorean Theorem be deemed a proof of the
Law of Cosines? The answer is somewhat subjective, and it seems impossible to
draw a clear-cut boundary. In Aigner and Ziegler’s Proofs from the Book (Aigner
and Ziegler 2000), for example, a proof that the aforementioned series diverges is
included among proofs of the infinitude of the primes, but a proof of Bertrand’s
Postulate is given in a separate section. As for the Law of Cosines, a direct proof
of it — that is, one that does not employ the Pythagorean Theorem3 — certainly
establishes the Pythagorean Theorem as a special case. But in practice, as in Euclid,
the Pythagorean Theorem is proved first and then used as a tool to prove the Law
of Cosines — a proof which, though relatively straightforward, is not trivial. Thus,
although logically equivalent to the Law of Cosines, in practice the Pythagorean
Theorem exhibits a certain conceptual primacy. It does not seem proper, therefore,
to regard a direct proof of the Pythagorean Theorem as a proof per se of the Law of
Cosines; rather, one may distinguish proofs of the latter according to whether they
do or do not rely on the Pythagorean Theorem.

We do not, then, eschew the use of formal methods in the analyses to be
undertaken here. But the formal model of what constitutes a proof is an abstraction
designed to “provide an explanation of . . . [how] an informal proof is judged to
be correct [and] what it means for a [mathematical statement] to be a deductive
consequence” of certain other statements.4 For those purposes, the formal model of
proof serves very well. It seems ill suited, however, for dealing with the broader sort
of questions considered here.

Accordingly, the term ‘proof’ will here be taken to refer to an informal argument,
put forward to convince a certain audience that a particular mathematical statement
is true — and, ideally, to explain why it is true — an argument that is subsequently
accepted as valid by consensus of the mathematical community. As such, whether
a proof succeeds in producing conviction that the result it purports to prove is true

3It seems that only very recently has such a proof of the Law of Cosines been given. See
http://www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml (discussed further in Chapter 5
below).
4Quoted from Avigad (2006), an article whose concerns overlap to some extent with those of the
present text. Avigad suggests that a more fruitful model for analyzing broader aspects of proofs
that occur in mathematical practice may be that employed by workers in the field of automated
deduction.

http://www.cut-the-knot.org/pythagoras/CosLawMolokach.shtml


4 1 Proofs in Mathematical Practice

depends not only on the formal correctness of the argument, but on the mathematical
knowledge and sophistication of the audience to which it is presented, as well as that
of the mathematical community at large.

The issue here is both a historical and a pedagogical one: On the one hand,
standards of rigor have not remained constant, so arguments that once were accepted
as convincing by the community of mathematicians of the time may no longer be
so regarded; and who is to say that a proof accepted as valid today will not some
day be found wanting?5 On the other hand, a rigorously correct proof may fail to be
convincing to those who lack the requisite background or mathematical maturity;
and some results (such as the Jordan Curve Theorem) may appear so obvious that
mathematical sophistication is required even to understand the need for them to be
proved.

Recognition of those facts is essential for any meaningful study of the role of
alternative proofs in mathematical practice. For to dismiss as proofs arguments that
once were, but are no longer, deemed to be correct or complete is to misrepresent
mathematical history, by attributing to proofs a permanence they do not possess; and
in the present context, it would also eliminate from consideration two of the primary
motives for seeking alternative proofs, namely, correcting errors or filling perceived
gaps in previous proofs (as, e.g., in Hilbert’s rigorization of Euclidean geometry),
and presenting arguments that, though perhaps less rigorous, are more perspicuous
or persuasive to a given audience.6

The primary aim in what follows will be to examine how alternative proofs of
various well-known theorems differ. In most cases it will be evident that the proofs
do differ, and that intuitive feeling can be justified in various ways. For example,
proofs that are direct, or are constructive, may be distinguished from those that
are not. A proof that employs a particular technique (mathematical induction, for
example, or a certain rule of inference) differs tactically from one that does not.
One proof may give greater information than another — for example, by providing
a method for finding a solution to an equation, rather than merely exhibiting one, or
by better indicating why a result is true. (Showing, e.g., that a convergent real power
series has a particular radius of convergence by showing that the corresponding
complex series has a singularity at a certain point is more informative than simply

5It is interesting to note, however, how many arguments later deemed to be ‘faulty’ have yielded
correct results — have contained a ‘germ’ of truth, so to speak. In some cases, the methods
originally used to prove such results have been discarded and the theorems reestablished by
other, quite different means, while in other instances the original approaches have subsequently
been revalidated in light of more sophisticated analyses. (One example is Laurent Schwartz’s
theory of distributions, which provided a rigorous foundation for arguments based on Dirac’s ‘ı-
function.’ Another is Abraham Robinson’s creation of non-standard analysis, in terms of which the
Newtonian concept of infinitesimal was made comprehensible and arguments based upon it were
seen to be correct.)
6Proofs may, for example, be crafted to serve the needs of a particular segment within or
outside of the mathematical community (students, for example, or lay persons with an interest
in mathematics).
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applying the ratio test to the given series.) Different proofs may yield different
numerical consequences, one yielding a better numerical bound, say, than another,
or a smaller number that exhibits a certain property. A result employed as a lemma
in one proof of a theorem may appear as a corollary of that theorem if it is proved by
other means. One proof of a theorem may be valid in a wider context than another.
Or one proof of a theorem may be comprehensible to a particular audience while
another is not.

Proofs may also differ in how primitive notions are organized into higher-level
concepts, reflecting an interplay between proofs and definitions.

Consider, for example, proving that det.AB/ D det.A/ det.B/. If, for n � n
matrices A; det.A/ is defined as

P
�2Sn sgn.�/ a1�1 : : : an�n , where Sn denotes the

set of all permutations of f1; : : : ; ng and aij denotes the entry in row i and column
j of A, one may compute directly that

det.AB/ D
X

�2Sn
sgn.�/

0

@
X

k1

a1k1bk1�1

1

A : : :

0

@
X

kn

anknbkn�n

1

A

D
X

k1;:::;kn

a1k1 : : : ankn

X

�2Sn
sgn.�/bk1�1 : : : bkn�n

D det.B/
X

k2Sn
sgn.k/a1k1 : : : ankn

D det.B/ det.A/ D det.A/ det.B/I

but the defining formula is complicated and the index chasing even more so.
Instead, with that same definition for det.A/, many linear algebra texts introduce

the elementary row operations and the corresponding elementary matrices E , show
how each row operation on A results in the matrix EA, and compute easily that
det.EA/ D det.E/ det.A/ for any n � n matrix A and any elementary matrix E .
If A is nonsingular, some sequence of m row operations reduces it to the n � n
identity matrix I , so Em : : : E1A D I . Noting that the inverse of any row operation
is itself a row operation, A D E�1

m : : : E�1
1 , so

det.AB/ D det.E�1
m : : : E�1

1 B/

D det.E�1
m / : : : det.E�1

1 / det.B/

D �det.E�1
m / : : : det.E�1

1 /
�

det.B/

D det.A/ det.B/:

On the other hand, if A is singular, then so is AB, for any n � n matrix B , so A and
AB each reduce to a matrix with one or more rows of zeros, whence det.AB/ D 0 D
det.A/ D det.A/ det.B/.
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The proof just given is much more perspicuous than the direct one. However,
because of its use of inverses, it presumes that the entries in the matrices are
elements of a field, whereas the direct proof applies in the wider context of matrices
whose entries are elements of a commutative ring.

A third alternative, adopted in texts such as Hoffman and Kunze (1961), is
to define a determinant function to be a function from n � n matrices over a
commutative ring R to elements of that ring which is linear as a function of each
row of the matrix, which assigns the value 0R to any matrix having two identical
rows, and which assigns the value 1R to the identity matrix. One then proves that
there is exactly one such function, which may be expressed in terms of the entries
of the matrix by the aforementioned formula. Without reference to that formula,
however, one can show that if D is any function from the n � n matrices over R to
R that is a linear function of each row of any such matrix and that is alternating (that
is, D.A/ D �D.A0/ whenever A0 is obtained from A by interchanging two of its
rows), then D.A/ D det.A/D.I /. Such a functionD is given by D.A/ D det.AB/,
for any fixed n � n matrix B . So

det.AB/ D D.A/ D det.A/D.I / D det.A/ det.IB/ D det.A/ det.B/:

In this example, changing the definition of det.A/ from one couched in terms of
the entries of the matrix to one that incorporates some of the desired properties of
the determinant function leads, without loss of generality, to a more abstract proof
that is both more perspicuous than the computational one and that explains why the
formula for det.A/ in terms of the entries of A is what it is.

In comparing different proofs, it must of course be recognized that differences
are often a matter of degree. The judgment whether two proofs are essentially
different or merely variants of one another (and similar judgments as to whether
one is ‘simpler’, or ‘more pure’, than another — notions discussed further in the
next chapter) is thus a subjective one to a certain extent. Chapter 3 provides a very
simple but illustrative example.

The next chapter enumerates some of the reasons why mathematicians have been
led to seek alternative proofs of known results. The remaining chapters then provide
detailed case studies of particular instances.
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Chapter 2
Motives for Finding Alternative Proofs

Even if we have succeeded in finding a satisfactory solution, we
may still be interested in finding another solution. We desire to
convince ourselves of the validity of a theoretical result by two
different derivations as we desire to perceive a material object
through two different senses. Having found a proof, we wish to
find another proof as we wish to touch an object after having
seen it.

— George Pólya, How to Solve It

Four motives for seeking new proofs of previously established results have already
been mentioned in Chapter 1: the desires

(1) to correct errors or fill perceived gaps in earlier arguments;
(2) to eliminate superfluous or controversial hypotheses;
(3) to extend a theorem’s range of validity; and
(4) to make proofs more perspicuous.

Euclid’s efforts to avoid, wherever possible, employing proofs involving super-
position of figures exemplify the first of those motives; the persistent attempts, prior
to the works of Bolyai and Lobachevsky, to deduce the parallel postulate from the
other axioms of Euclidean geometry, the second; Henkin’s completeness proof for
first-order logic, applicable to uncountable languages as well as to countable ones,
the third; and objections, by sixteenth- and seventeenth-century mathematicians, to
Archimedean proofs by the method of exhaustion, the fourth.

That Euclid employed the method of superposition when it appeared unavoid-
able, as in the proof of proposition I,4 (justifying the side-angle-side criterion for
congruence), suggests that the ancients considered superposition to be a perspicuous
principle, but one that rested on spatial intuition and so was not rigorously justified
by Euclid’s (planar) axioms. On the other hand, the rigor of Archimedes’s proofs
by exhaustion was never questioned. But such proofs seemed to many merely to
establish that a result was true, without providing understanding of why it was, or of
how the proof might have been discovered.1 Proofs by mathematical induction are
open to similar objections.

1There is a growing literature on the notion of explanatory proofs (those that convey understanding
as well as conviction). The article Mancosu (2001) and the book Mancosu (1996) provide useful
introductions to that subject.

© Springer International Publishing Switzerland 2015
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8 2 Motives for Finding Alternative Proofs

The desire to avoid employing superposition arguments in Euclidean proofs also
exemplifies another respect, separate from that of rigor, in which a proof may be
deemed deficient: that it fails to exhibit purity of method.

Concern for purity of method has arisen frequently in the history of mathematics.
Particular instances of such concern include the ancient Greek requirement that
geometric constructions be restricted to those performable with straightedge and
compass alone; the desires that synthetic proofs be found for results obtained
in analytic geometry, that intrinsic proofs be given for theorems in differential
geometry or topology, and that proofs of results in model theory not invoke syntactic
considerations; the preference for minimizing appeals to analytical or topological
methods in proving the Fundamental Theorem of Algebra (discussed further in
Chapter 8 below); the quest to find an ‘elementary’ proof of the Prime Number
Theorem2 (one not employing the methods of analytic number theory), whose
unexpected success was among the achievements that led to the award of a Fields
Medal to Atle Selberg; and Hilbert’s (failed) program to establish the consistency of
formalized Peano arithmetic using methods formalizable within that theory itself.
In a somewhat broader sense, concern for methodological propriety is reflected
in such aspects of mathematical practice as the desire to replace indirect or non-
constructive proofs by direct or constructive ones, or the debate over whether
theorems of analysis ought to be proved by ‘soft’ (functional-analytic) means
(which, though ‘slick,’ may obscure underlying conceptual motivations) or by ‘hard’
calculations involving inequalities (which may be lengthy and tedious).

In considering questions of purity, several caveats are in order. First, as remarked
in the preceding chapter, in many cases one should more properly speak of degrees
of purity. Second, it must be recognized that different notions of purity may conflict.
Consider, for example, Desargues’s Theorem in the Plane, which states that if two
triangles in the same plane are oriented so that the lines joining corresponding
vertices are concurrent, then the corresponding sides, if extended as lines, will
intersect in three collinear points. As a theorem of projective geometry, one might
in the name of purity seek a proof solely by projective means. But as a theorem of
plane geometry, one might equally well desire a purely planar proof. Those two aims
cannot be reconciled, however, since Hilbert showed that any planar proof of that
theorem must invoke the metric notion of similarity.3 In addition, it should be noted
that some proofs — for example, model-theoretic consistency proofs, in which basic
notions are given alternative semantic interpretations — inherently violate purity of
method.

Proofs that violate purity of method may, however, possess merits of their own.
The example given in the previous chapter of determining the radius of convergence

2In its simplest form, the Prime Number Theorem (the subject of Chapter 10 below) states that

limx!1 �.x/

�
x

lnx
D 1, where �.x/ denotes the number of primes less than x.

3See Chapter 9 below for a detailed discussion of Desargues’s Theorem. An illuminating discussion
of Hilbert’s proof is given on pp. 222–229 of Hallett (2008).
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of a real power series is a case in point: consideration of the singularities of the
corresponding complex series makes it clear why the radius of convergence is what
it is — an insight that could not be obtained without introducing the complex
perspective. The more general context here has greater explanatory power.

Concern for purity of method implies a restriction on means of proof, but
not conversely. Other reasons for restricting allowable means of proof include
reconstructing proofs employed in antiquity, given what we know about the
state of mathematical knowledge in particular ancient cultures,4 and benchmarking
(demonstrating the power of a given methodology by employing it to prove theorems
in areas where it might seem not to be applicable).5

Methodologically ‘pure’ proofs demand fewer conceptual prerequisites for their
understanding, since they employ no notions beyond those implicit in the statement
of the theorem to be proved. They may, however, be long and complex (as are
elementary proofs of the Prime Number Theorem), and thus lack elegance, an
aesthetic characteristic that is hard to define but is nonetheless readily perceived
and highly esteemed by mathematicians.

Proofs that are elegant may employ sophisticated concepts, but they are usually
short, often employ novel perspectives or strategies, and generally convey imme-
diate understanding and conviction (producing an Aha! reaction). Reading such
proofs yields deep intellectual enjoyment and satisfaction, akin to that experienced
in viewing fine works of art or listening to great music. Elegant proofs are, however,
often of limited generality, involving insights applicable only to a particular
problem.

Another aesthetic criterion according to which proofs may be compared is
simplicity. One proof may be simpler than another in various respects. For
example:

(1) It may be significantly shorter.
(2) It may involve fewer conceptual prerequisites.
(3) It may reduce the extent of computations to be performed or the number of

cases to be considered.

A well-known example of (3) is Hilbert’s basis theorem for invariants of
algebraic forms,6 whose non-constructive proof swept away in one stroke a tangle
of laborious calculations in invariant theory, including much of the life work of the
mathematician Paul Gordan.

4One example is discussed in Chapter 4.
5Such as using topological arguments to prove results in mathematical logic. Another example is
Errett Bishop’s text Foundations of Constructive Analysis (Bishop 1967), which Bishop himself
called “a piece of constructivist propaganda,” written to demonstrate how large a part of abstract
analysis can be developed within a constructive framework.
6In the form proved by Hilbert, the theorem states that every ideal in the ring of multivariate
polynomials over a field is finitely generated, so that for any set of polynomial equations, there is
a finite set of such equations that has the same set of solutions.



10 2 Motives for Finding Alternative Proofs

Remarkably, Hilbert himself believed that among all proofs of a theorem there
must always be one that is simplest. He said so explicitly in the statement of
what he had intended would be the twenty-fourth problem in the list he drew up
for presentation in his famous address at the Second International Congress of
Mathematicians. Due to time constraints, however, he mentioned only ten of the
problems during the lecture itself. Thirteen more appeared in the version of his
address published in the Conference Proceedings, but the twenty-fourth problem
came to light only in the mid-1990s, when it was discovered in one of the notebooks
in Hilbert’s Nachlass.7 It asked for “Criteria of simplicity, or proof of the greatest
simplicity of certain proofs,” with the understanding that “under a given set of
conditions there can be but one simplest proof.” Hilbert never posed the problem
in public, perhaps because of the difficulty of making the notion of “simplicity”
formally precise.8 Accordingly, judgments of whether one proof is simpler than
another have up to now been based primarily on informal criteria like those above.

In addition to the practical and aesthetic rationales so far considered for
presenting new proofs of previously established theorems, there are also more
personal motives for doing so. For mathematics is, after all, a human endeavor. Skill
in proving theorems is best developed by attempting to prove results on one’s own,
and in the course of doing so, one may well devise an argument not previously given,
since people do not all think alike. In some cases, one may not be aware of other
proofs that have been given—different proofs, e.g., may arise in different cultures,
or a new result may be discovered, simultaneously and independently, by different
individuals using different arguments. Like all fields of scholarship, mathematics
is also a competitive enterprise, and having seen a proof presented by someone
else, one may be challenged to devise one’s own proof of it. Thus, apart from the
reasons already enumerated, alternative proofs may arise simply as expressions
of individual patterns of thought, perhaps reflecting personal predilections or
preferences for using particular tools.

Here an analogy may be made between mathematics and the sport of moun-
taineering. Mathematicians are driven to solve problems for the same reason that
mountaineers are driven to climb mountains: because they are there; and as in
mountaineering, pioneering a new route to a summit, perhaps using restricted
means, may be just as challenging and exciting (and be accorded just as much
respect by one’s peers) as being the first to make the ascent.9 Mascheroni’s work
showing that the compass alone suffices to carry out all straightedge and compass
constructions may, for example, be compared with ascents by climbers who disdain

7“Mathematisches Notizbuch” (Cod. ms. D. Hilbert 600), preserved in the Handschriftenabteilung
of the Niedersächische Staats- und Universitätsbibliothek, Göttingen.
8See Thiele and Wos (2002) for further details on the history of the twenty-fourth problem and on
results related to it found recently by those working in automated theorem proving.
9Jon Krakauer, e.g., in his book Into Thin Air, wrote: “Getting to the top of any given mountain
was considered much less important than how one got there: prestige was earned by tackling the
most unforgiving routes with minimal equipment, in the boldest style imaginable.”


