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Introduction

The present volume contains contributions and lecture notes of the XI Sympo-
sium on Probability and Stochastic Processes, held at Centro de Investigación en
Matemáticas, México (CIMAT), November 18–22 in 2013.

This Symposium traces its roots back to December 1988 at CIMAT, when it
was held for the first time, and constitutes one of the main events in the area
happening biannually in various academic institutions in Mexico. During these more
than 25 years, this series of symposia continuously accomplishes its main goal of
exchanging ideas and discussing the current developments in the field by gathering
national and international researchers as well as graduate students.

On this occasion, the Symposium was part of many activities organised in
Mexico to celebrate the International Year of Statistics 2013. It gathered scholars
from over 10 countries and included a wide set of topics that highlighted the
interaction between statistics and stochastic processes. The scientific programme
included two courses: ’Probabilistic aspects of minimal spanning trees’ by Louigi
Addario-Berry and ’Spatial point pattern analysis’ by Carlos Díaz-Avalos. The
event also benefited from six plenary conferences delivered by Loïc Chaumont,
Janos Englander, Enrique Figueroa, Daniel Hernández, Andreas Kyprianou and
Mark Podolskij; eight thematic sessions; eight contributed talks; and several poster
presentations.

The volume begins with the lecture notes by Addario-Berry, providing with
an accessible description of some features of the multiplicative coalescent and its
connection with random graphs and minimum spanning tree. The tutorial is then
followed by the illustrative article by Arizmendi and Gaxiola where they show that
the large N-fold limit of the spectral distribution of a connected graph converges
to a certain centred Bernoulli distribution. Baudoin studies stochastic differential
equations driven by Brownian loops in a free Carnot group providing with sufficient
conditions to ensure that solutions admit smooth densities. By considering a
simple age distribution, Blath, Eldon, González Casanova and Kurt investigate
the behaviour of the genealogy of a Wright-Fisher population model under the
influence of a strong seed-bank effect. A Vervaat-like pathwise construction of a
process with cyclically exchangeable increments with a predetermined minimum
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vi Introduction

is introduced and analysed by Chaumont and Uribe; it consists of inverting the
paths of the process at an adequately chosen random time � , which surprisingly
happens to be independent and to follow a uniform distribution. Motivated by
different extensions of the so-called Bercovici-Pata bijection, Dominguez-Molina
and Rocha Arteaga obtain an interesting sample path representation by covariation
processes of matrix Lévy processes of rank-one jumps. Using the thermodynamic
interpretation of the ˛ parameter of a Poisson-Dirichlet distribution, i.e. as the ratio
between the temperature T and a critical temperature Tc, Feng and Zhou study
the asymptotic behaviour of such distribution as the temperature approaches the
critical value. Gordienko, Martinez and Ruiz de Chavez provide estimates of the
stability index with respect to the total variation metric and Prokhorov distance
for a total-reward Markov decision chains with an absorbing set. The problem of
determining a price for a contingent claim in an incomplete market is analysed
by Hernández-Hernández and Sheu; they propose a pricing based on the utility,
which is assumed to be exponential, and show that there exists a unique solution
to optimal control problems. Relying heavily on the use of the so-called Dynkin-
Kuznetsov N-measures, Murillo and Pérez Garmendia provide a pathwise backbone
decomposition for supercritical superprocesses with nonlocal branching. Their
result complements a related result obtained for supercritical superprocesses without
nonlocal branching. Pedersen and Sauri present a detailed study of the stationary
distribution of Lévy semi-stationary processes with a gamma kernel; they establish
conditions for absolute continuity, infinite divisibility and self-decomposability,
together with descriptions of its characteristics. The paper by Podolskij constitutes
a thorough review of the theory of ambit fields, which is a flexible model for
dynamical structures in time and/or space; the interesting list of open problems
included will challenge any reader and generate deep research in the field.

In summary, the high quality and variety of these contributions give a broad
panorama of the rich academic programme of the Symposium and of its impact. It is
worth noting that all papers, including the invited course lecture notes, were subject
to a strict refereeing process with high international standards. We are very grateful
to the referees, many of whom are leading experts in their fields, for their careful
and useful reports. Their comments were implemented by the authors allowing to
improve the material here presented.

We would also like to extend our gratitude to all the authors whose original
contributions appear published here as well as to all the speakers and session
organisers in the Symposium for their stimulating talks and support. Their valuable
contributions encourage the interest and activity in the area of probability and
stochastic processes in Mexico.

We hold in high regard the editors of the series Progress in Probability: Davar
Khoshnevisan, Andreas E. Kyprianou and Sidney I. Resnick for giving us the
possibility to publish the Symposium Volume in this prestigious series.

Special thanks go to the Symposium venue CIMAT and its staff for its great
hospitality and for providing excellent conference facilities. We are indebted to Rosy
Davalos whose outstanding organisational work permitted us to concentrate mainly
in the academic aspects of the conference.
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The Symposium as well as the edition of this volume would not have been
possible without the generous support of our sponsors: Centro de Investigación
en Matemáticas, International Year of Statistics 2013 (Mexico), Laboratorio Inter-
nacional Solomon Lefschetz CNRS-CONACYT, Instituto de Investigaciones en
Matemáticas Aplicadas y Sistemas and Instituto de Matemáticas, UNAM.

Finally, we hope the reader of this volume enjoys learning about the various
topics treated as much as we did editing it.

Ramsés H. Mena Chavez
Juan Carlos Pardo

Víctor Manuel Rivero
Gerónimo Uribe
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Partition Functions of Discrete Coalescents:
From Cayley’s Formula to Frieze’s �.3/ Limit
Theorem

Louigi Addario-Berry

Abstract In these expository notes, we describe some features of the multiplicative
coalescent and its connection with random graphs and minimum spanning trees.
We use Pitman’s proof (Pitman, J Combin Theory Ser A 85:165–193, 1999) of
Cayley’s formula, which proceeds via a calculation of the partition function of the
additive coalescent, as motivation and as a launchpad. We define a random variable
which may reasonably be called the empirical partition function of the multiplicative
coalescent, and show that its typical value is exponentially smaller than its expected
value. Our arguments lead us to an analysis of the susceptibility of the Erdős-Rényi
random graph process, and thence to a novel proof of Frieze’s �.3/-limit theorem
for the weight of a random minimum spanning tree.

1 Introduction

Consider a discrete time process .Pi; 1 � i � n/ of coalescing blocks, with the
following dynamics. The process starts from the partition of Œn� D f1; : : : ; ng into
singletons: P1 D ff1g; : : : ; fngg. To form PiC1 from Pi choose two parts P;P0 from
Pi and merge them. We assume there is a function � such that the probability of
choosing parts P;P0 is proportional to �.jPj; jP0j/; call � a rate kernel.

Different rate kernels lead to different dynamics. Three kernels whose dynamics
have been studied in detail are �.x; y/ D 1, �.x; y/ D x C y, and �.x; y/ D
xy; these are often called Kingman’s coalescent, the additive coalescent, and the
multiplicative coalescent, respectively. In these cases there is a natural way to enrich
the process and obtain a forest-valued coalescent.

These notes are primarily focussed on the properties of the forest-valued
multiplicative coalescent. We proceed from a statistical physics perspective, and
begin by analyzing the partition functions of the three coalescents. Here is what we
mean by this. Say that a sequence .P1; : : : ;Pn/ of partitions of Œn� is an n-chain if

L. Addario-Berry (�)
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West,
Montréal, QC H3A 2K6, Canada
e-mail: louigi@math.mcgill.ca

© Springer International Publishing Switzerland 2015
R.H. Mena et al. (eds.), XI Symposium on Probability and Stochastic Processes,
Progress in Probability 69, DOI 10.1007/978-3-319-13984-5_1
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2 L. Addario-Berry

P1 D ff1g; : : : ; fngg is the partition of n into singletons, and for 1 � i < n, PiC1
can be formed from Pi by merging two parts of Pi. Think of �.x; y/ as the number
of possible ways to merge a block of size x with one of size y. Then corresponding
to an n-chain P D .P1; : : : ;Pn/ there are

n�1Y

iD1
�.jAi.P/j; jBi.P/j/

possible ways that the coalescent may have unfolded; here we write Ai.P/ and Bi.P/
for the blocks of Pi that are merged in PiC1. Writing Pn for the set of n-chains, it
follows that the total number of possibilities for the coalescent with rate kernel � is

X

PD.P1;:::;Pn/2Pn

n�1Y

iD1
� .jAi.P/j; jBi.P/j/ ;

and we view this quantity as the partition function of the coalescent with kernel �.
The partition functions of Kingman’s coalescent and the additive and multiplica-

tive coalescents have particularly simple forms: they are

ZKC.n/ D nŠ.n � 1/Š ;
ZAC.n/ D nn�1.n � 1/Š ; and

ZMC.n/ D nn�2.n � 1/Š :

These formulae are proved in Sect. 2. A corollary of the formula for ZKC.n/ is
that the number of increasing trees with n vertices is .n � 1/Š; this easy fact is well-
known. The formula for ZAC.n/ is due to Pitman [13], who used it to give a beautiful
proof of Cayley’s formula; this is further detailed in Sect. 2.1.

It may seem surprising that the partition function of the multiplicative coalescent
is so similar to that of the additive coalescent: near the start of the process, when
most blocks have size 1, the additive coalescent has twice as many choices as the
multiplicative coalescent. Later in the process, blocks should be larger, and one
would guess that usually xy > x C y. Why these two effects should almost exactly
cancel each other out is something of a mystery. On the other hand, the similarity of
the partition functions may suggest that the additive and multiplicative coalescents
have similar behaviour.

A more detailed investigation will reveal interesting behaviour whose subtleties
are not captured by the above formulae. We will see in Sect. 2.3 that there is
a naturally defined “empirical partition function” OZMC.n/ such that ZMC.n/ D
E
h OZMC.n/

i
. However, OZMC.n/ is typically exponentially smaller than ZMC.n/ (see

Corollary 4.3), so in a quantifiable sense, the partition function ZMC.n/ takes the
value it does due to extremely rare events. Correspondingly, it turns out that the
behaviour of the additive and multiplicative coalescents are typically quite different.
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To analyze the typical value of OZMC.n/, we are led to develop the connection
between the multiplicative coalescent and the classical Erdős-Rényi random graph
process .G.n; p/; 0 � p � 1/. The most technical part of the notes is the proof of
a concentration result for the susceptibility of G.n; p/; this is Theorem 4.4, below.
Using a well-known coupling between the multiplicative coalescent and Kruskal’s
algorithm for the minimum weight spanning tree problem, our susceptibility bound
leads easily to a novel proof of the �.3/ limit for the total weight of the minimum
spanning tree of the complete graph (this is stated in Theorem 5.1, below).1

1.1 Stylistic Remarks

The primary purpose of these notes is expository (though there are some new results,
notably Theorems 4.2 and 4.4). Accordingly, we have often opted for repetition over
concision. We have also included plenty of exercises and open problems (the open
problems are mostly listed in Sect. 7). Some exercises state facts which are required
later in the text; these are distinguished by a ~.

2 A Tale of Three Coalescents

2.1 Cayley’s Formula and Pitman’s Coalescent

We begin by describing the beautiful proof of Cayley’s formula found by Jim
Pitman, and its link with uniform spanning trees. Cayley’s formula states that the
number of trees with vertices f1; 2; : : : ; ng is nn�2, or equivalently that the number
of rooted trees with vertices labeled by Œn� WD f1; 2; : : : ; ng is nn�1. To prove this
formula, Pitman [13] analyzes a process we call Pitman’s coalescent. To explain
the process, we need some basic definitions. A forest is a graph with no cycles; its
connected components are its trees. A rooted forest is a forest in which each tree t
has a distinguished root vertex r.t/.

Pitman’s Coalescent, Version 1. The process has n steps, and at step i
consists of a rooted forest Fi D fT.i/1 ; : : : ;T

.i/
nC1�ig with nC1� i trees. (At step

(continued)

1We find this proof of the �.3/ limit for the MST weight pleasing, as it avoids lemmas which
involve estimating the number of unicyclic and complex components in G.n; p/; morally, the
cycle structure of components of G.n; p/ should be unimportant, since cycles are never created
in Kruskal’s algorithm!
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1, these trees are simply isolated vertices with labels 1; : : : ; n.) To obtain FiC1
from Fi, choose a pair .Ui;Vi/, where Ui 2 Œn� and Vi is the root of some tree
of Fi not containing Ui, uniformly at random from among all such pairs. Add
an edge from Ui to Vi, and root the resulting tree at the root of Ui’s old tree.
The forest FiC1 consists of this new tree together with the n � i � 1 unaltered
trees from Fi.

The coalescents we consider all have the general form of Pitman’s coalescent:
they are forest-valued stochastic processes .Fi; 1 � i � n/, where Fi D
fT.i/1 ; : : : ;T

.i/
nC1�ig is a forest with vertices labeled by Œn�.

Pitman’s Coalescent, Version 2. Consider the directed graph K!n with
vertices f1; : : : ; ng and an oriented edge from k to ` for each 1 � k ¤ ` � n.
Let W D fW.k;`/ W 1 � k ¤ ` � ng be independent copies of a continuous
random variable W, that weight the edges of K!n . Let F1 be as in Version 1.
For i 2 f1; : : : ; n � 1g, form FiC1 from Fi by adding the smallest weight edge
.k; `/ whose head ` is the root of one of the trees in Fi. (Each tree of Fi is
rooted at its unique vertex having indegree zero in Fi.)

Note that in Version 2, for each i 2 f1; : : : ; ng and each tree T of Fi, all edges of
T are oriented away from a single vertex of T; so, viewing this vertex as the root of
T, the orientation of edges in T is fully specified by the location of its root.

Exercise 1 View the trees of Version 2 as rooted rather than oriented. Then the
sequences of forests .F1; : : : ;Fn/ described in Version 1 and Version 2 have the
same distribution.

Say that a finite set fXi; i 2 Ig of random variables is exchangeable if for any two
deterministic orderings of I as, say, i1; : : : ; ik and i01; : : : ; i0i, the vectors .Xi1 ; : : : ;Xik /

and .Xi01
; : : : ;Xi0k

/ are identically distributed. In particular, if the elements of fXi; i 2
Ig are iid then the set is exchangeable.

Exercise 2 Suppose that the edge weights W are only assumed to be exchangeable
and a.s. pairwise distinct. Show that the sequences of forests .F1; : : : ;Fn/ described
in Version 1 and Version 2 still have the same distribution.

To prove Cayley’s formula, we compute the partition function of Pitman’s
coalescent: this is the total number of possibilities for its execution. (To do so, it’s
easiest to think about Version 1 of the procedure.) For example, when n D 3, there
are 6 possibilities for the first step of the process: 3 choices for the first vertex, then
2 choices of a tree not containing the first vertex. For the second step, there are 3
choices for the first vertex; there is only one component not containing the chosen
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vertex, and we must choose it. Thus, for n D 3, the partition function has value
ZAC.3/ D 6 � 3 D 18. More generally, for the n-vertex process, when adding the i’th
edge we have n choices for the first vertex and n � i choices of tree not containing
the first vertex, so a total of n.n � i/ possibilities. Thus the partition function is

ZAC.n/ D
n�1Y

iD1
n � .n � i/ D nn�1.n � 1/Š (2.1)

It is not possible to recover the entire execution path of the additive coalescent
from the final tree, since there is no way to tell in which order the edges were added.
If we wish to retain this information, we may label each edge of T.n/1 with the step
at which it was added. More precisely, L.e/ is the unique integer i 2 f1; : : : ; n � 1g
such that e is not an edge of Fi but is an edge of FiC1. It follows from the definition
of the process that the edge labels are distinct, so L W E.T.n/1 / ! f1; : : : ; n � 1g is a
bijective map.

Now fix a rooted tree t with vertices f1; : : : ; ng, and consider the restricted
partition function ZAC;t.n/; this is simply the number of possibilities for the
execution of the process for which the end result is the tree t. We claim that
ZAC;t.n/ D .n � 1/Š. This is easy to see: for any labelling ` of the edges of t with
integers f1; : : : ; n � 1g, there is a unique execution path for which .T.n/1 ;L/ D .t; `/,
and there are .n � 1/Š possible labellings `. Thus, the probability of ending with the
tree t is ZAC;t.n/=ZAC.n/ D 1=nn�1. Since this number doesn’t depend on t, only on
n, it follows that every rooted labelled tree with n vertices is equally likely, and so
there must be nn�1 such trees.

Note The preceding argument is correct, but treads lightly around an important
point. When performing the process, the number of possibilities for the i’th edge
does not depend on the first i � 1 choices, so the probability of building a particular
tree t by adding its edges in a particular order is Œnn�1.n � 1/Š��1 regardless of
the order. Of course, the set of possible choices at a given step must depend on the
history of the process – for example, we must not add a single edge twice. More
generally, thinking of Version 2, applying the procedure to a graph other than K!n
need not yield a uniform spanning tree of the graph, and indeed may not even build
a tree. (Consider, for example, applying the procedure to a two-edge path.)

By stopping Pitman’s coalescent before the end, one can use a similar analysis
to obtain counting formulae for forests. Write ZAC.n; k/ for the total number of
possibilities for Pitman’s coalescent stopped at step k (so ending with n C 1 � k
forests). We write .m/` to denote the falling factorial

Q`�1
iD0.m � i/.

Exercise 3

(a) Show that ZAC.n; k/ D nk�1.n � 1/k�1 for each for 1 � k � n.
(b) An ordered labeled forest is a sequence .t1; : : : ; t`/ where each ti is a rooted

labelled tree and all labels of vertices in the forest are distinct. Show that
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for each 1 � ` � n the number of ordered labeled forests .t1; : : : ; t`/ withS`
iD1 V.ti/ D Œn�, is ` � nn�`�1 � .n/`.

We briefly discuss a special case of Version 2. Suppose that W.k;l/ is exponential
with rate X.k;`/, where X D fX.k;`/ W 1 � k ¤ ` � ng are independent copies of
any non-negative random variable X. By standard properties of exponentials and the
symmetry of the process, the dynamics in this case may be described as follows.

Pitman’s Coalescent, Version 3. Let F1 be as in Version 1. For
i 2 f1; : : : ; n � 1g, choose an edge whose head is the root of any one of the
trees in Fi, each such edge .k; l/ chosen with probability proportional to its
weight X.k;l/; add the chosen edge to create the forest FiC1.

Consider Version 3 of the procedure after i � 1 edges have been added.
Conditional on X and on the forest .T.i/1 ; : : : ;T

.i/
n�iC1/, the probability of adding a

particular edge .k; `/ whose head is a root, is proportional to X.k;`/, so is equal to

X.k;`/Pn�iC1
mD1

P
j2f1;:::;ngnV.T.i/m /

X
. j;r.T

.i/
m //

:

Now fix any sequence f1; : : : ; fn of forests that can arise in the process. Write fi D
.t.i/k ; 1 � k � n C 1� i/ and for i D 1; : : : ; n � 1 write .ki; `i/ for the unique edge of
fiC1 not in fi. Then by the above,

P fFi D fi; 1 � i � n j Xg D
n�1Y

iD1

X.ki;`i/Pn�iC1
mD1

P
j2f1;:::;ngnV.t.i/m /

X
. j;r.t

.i/
m //

:

By Exercise 1 and the above analysis, it follows that for any such sequence f1; : : : ; fn,

E

2

4
n�1Y

iD1

X.ki;`i/Pn�iC1
mD1

P
j2f1;:::;ngnV.t.i/m /

X
. j;r.t

.i/
m //

3

5 D 1

nn�1.n � 1/Š :

It is by no means obvious at first glance that this expectation should not depend on
law of X, let alone that it should have such a simple form.

2.2 Kingman’s Coalescent and Random Recursive Trees

Pitman’s coalescent starts from isolated vertices labeled from f1; : : : ; ng, and builds
a rooted tree by successive edge addition. At each step, an edge is added to some
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vertex, from some root (of a component not containing the chosen vertex). When
we calculated ZAC.n/, it was important that the number of possibilities at each step
depended only on the number of trees in the current forest and not, say, their sizes,
or some other feature.

Pitman’s merging rule (to any vertex, from a root) yielded a beautiful proof of
Cayley’s formula. It is natural to ask what other rules exist, and what information
may be gleaned from them. Of course, from any vertex, to a root just yields the
additive coalescent, with edges of the resulting tree oriented towards the root rather
than towards the leaves. What about from any root, to any (other) root, as in
the following procedure? In a very slight abuse of terminology, we call this rule
Kingman’s coalescent. We again start from a rooted forest F1 of n isolated vertices
f1; : : : ; ng. Recall that we write Fi D fT.i/1 ; : : : ;T

.i/
nC1�ig.

Kingman’s Coalescent. At step i, choose an ordered pair .Ui;Vi/ of distinct
roots from fr.T.i/1 /; : : : ; r.T

.i/
nC1�i/g, uniformly at random from among the .nC

1� i/.n � i/ such pairs. Add an edge from Ui to Vi, and root the resulting tree
at Ui. The forest FiC1 consists of this new tree together with the n � i � 1

unaltered trees from Fi.

Our convention is that when an edge is added from u to v, the root of the resulting
tree is u; this maintains that edges are always oriented towards the leaves. For
Kingman’s coalescent, when i trees remain there are i.i � 1/ possibilities for which
oriented edge to add. Like for Pitman’s coalescent, this number depends only on the
number of trees, and it follows that the total number of possible execution paths for
the process is

ZKC.n/ D
nY

iD2
i.i � 1/ D nŠ.n � 1/Š : (2.2)

What does this number count?
To answer the preceding question, as in the additive coalescent let L W E.T.n/1 / !

f1; : : : ; n � 1g label the edges of T.n/1 in their order of addition. It is easily seen
that for Kingman’s coalescent, the edge labels decrease along any root-to-leaf path;
we call such a labelling a decreasing edge labelling.2 Furthermore, any decreasing
edge labelling of T.n/1 can arise. Once again, the full behaviour of the coalescent

is described by pair .T.n/1 ;L/, and conversely, the coalescent determines T.n/1 and
L. These observations yield that the number of rooted trees with vertices labelled

2It is more common to order by reverse order of addition, so that labels increase along root-to-leaf
paths; this change of perspective may help with Exercise 4.



8 L. Addario-Berry

f1; : : : ; ng, additionally equipped with a decreasing edge labelling, is nŠ.n � 1/Š.
The factor nŠ simply counts the number of ways to assign the labels f1; : : : ; ng to
the vertices. By symmetry, each vertex labelling of a given tree is equally likely to
arise, and so we have the following.

Proposition 2.1 The number of pairs .T;L/, where T is a rooted tree with n vertices
and L is a decreasing edge labelling of T, is .n � 1/Š.
Exercise 4 (Random recursive trees) Prove Proposition 2.1 by introducing and
analyzing an n-step procedure that at step i constructs a rooted tree with i vertices.

Before the next exercise, we state a few definitions. For a graph G, write jGj for
the number of vertices of G. If T is a rooted tree and u is a vertex of T, write Tu for
the subtree of T consisting of u together with its descendants in T (we call Tu the
subtree of T rooted at u). Also, if u is not the root, write p.u/ for the parent of u in
T. Finally, write aut.T/ for the number of rooted automorphisms of T.

Exercise 5 Show that for a fixed rooted tree T, the number of decreasing edge
labellings of T with labels 1; 2; : : : ; jV.T/j � 1 is

1

aut.T/
�
Y

v2V.T/

.jTvj � 1/ŠQ
fu2V.T/Wp.u/Dvg jTujŠ :

Our convention is that an empty product equals 1; a special case is that 0Š D 1. It
follows from the preceding exercise that, writing Tn for the set of rooted trees with
n vertices,

X

T2Tn

1

aut.T/
�
Y

v2V.T/

jE.Tu/jŠQ
fu2V.T/Wp.u/Dvg jV.Tu/jŠ D .n � 1/Š I

another formula that one may not find obvious at first glance.
To finish the section, note that just like for Pitman’s coalescent, we might well

consider a version of this procedure that is “driven by” iid non-negative weights
X D fX.k;`/ W 1 � k ¤ ` � ng. (Recall that we viewed these weights as exponential
rates, then used the resulting exponential clocks at each step to determine which
edge to add.) At each step, add an oriented edge whose tail and head are both the
roots of some tree of the current forest, each such edge chosen with probability
proportional to its weight. For this procedure, conditional on X, after adding the
first i � 1 edges, the conditional probability of adding a particular edge .k; `/ is

X.k;`/P
1� j¤m�n X

.r.T
.i/
j /;r.T

.i/
m //

:
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Now fix any sequence f1; : : : ; fn of forests that can arise in the process, write fi D
.t.i/k ; 1 � k � n C 1 � i/, and for i D 1; : : : ; n � 1 write .ki; `i/ for the unique edge
of fiC1 not in fi. Then we have

P fFi D fi; 1 � i � n j Xg D
n�1Y

iD1

X.ki;`i/P
1�m¤j�n X

.r.t
.i/
m /;r.t

.i/
j //

:

It follows from the above analysis that for any such sequence f1; : : : ; fn,

E

2

4
n�1Y

iD1

X.ki;`i/P
1�m¤j�n X

.r.t
.i/
m /;r.t

.i/
j //

3

5 D 1

nŠ.n � 1/Š
:

Once again, it is not even a priori clear that this expectation should not depend
on the law of X.

Exercise 6 (First-passage percolation) Develop and analyze a “Version 3” variant
of the tree growth procedure from Exercise 4, using exponential edge weights.

2.3 The Multiplicative Coalescent and Minimum Spanning
Trees

The previous two sections considered merging rules of the form any-to-root
and root-to-root, and obtained Pitman’s coalescent and Kingman’s coalescent,
respectively. We now take up the “any-to-any” merging rule. This is arguably the
most basic of the three rules, but its behaviour is arguably the hardest to analyze.
We begin as usual from a forest F1 of n isolated vertices f1; : : : ; ng, and write
Fi D fT.i/1 ; : : : ;T

.i/
nC1�ig. In the multiplicative coalescent there is no natural way

to maintain the property that edges are oriented toward some root vertex, so we
view the trees of the forests as unrooted, and their edges as unoriented. Given a set
S, write

�S
k

�
for the set of k-element subsets of S.

The multiplicative coalescent. To obtain FiC1 from Fi, choose an pair
fUi;Vig uniformly at random from the set of pairs fu; vg 2 �

Œn�
2

�
for which

u and v are different trees of Fi. Add an edge from Ui to Vi to form the forest
FiC1.
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This is known as the multiplicative coalescent, because the number of possible
choices of an edge joining trees T.i/j and T.i/k is jT.i/j jjT.i/k j. It follows that the number
of possible edges that may be added to the forest Fi is

X

1� j¤k�nC1�i

jT.i/j jjT.i/k j D 1

2

0

@n2 �
X

T2Fi

jTj2
1

A :

The above expression is more complicated than for the additive coalescent or
Kingman’s coalescent: it depends on the forest Fi, for one.

In much of the remainder of these notes, we investigate an expression for
the partition function ZMC.n/ of the multiplicative coalescent that arises from the
preceding formula. To obtain this expression, recall the definition of an n-chain
from Sect. 1, and that Pn is the set of n-chains.

Exercise 7 Show that jPnj D .nŠ/2

n�2n�1 .

The multiplicative coalescent determines an n-chain in which the i’th partition is
simply P.Fi/ WD fV.T.i/j /; 1 � j � n C 1 � ig. It is straightforward to see that the
number of possibilities for the multiplicative coalescent that give rise to a particular
n-chain P D .P1; : : : ;Pn/ is simply

n�1Y

iD1
jAi.P/jjBi.P/j ;

where Ai.P/ and Bi.P/ are the parts of Pi that are combined in PiC1. It follows that

ZMC.n/ D
X

PD.P1;:::;Pn/2Pn

n�1Y

iD1
.jAi.P/jjBi.P/j/ :

This certainly looks more complicated than in the previous two cases. However,
there is an exact formula for ZMC.n/ whose derivation is perhaps easier than for
either ZAC.n/ or ZKC.n/ (though it does rely on Cayley’s formula).

Proposition 2.2 ZMC.n/ D nn�2.n � 1/Š
Proof Let S be the set of pairs .t; `/ where t is an unrooted tree with V.t/ D Œn� and
` W E.t/ ! Œn � 1� is a bijection. By Cayley’s formula, the number of trees t with
V.t/ D Œn� is nn�2, so S D nn�2.n � 1/Š.

For e 2 E.T.1/n /, let L.e/ D supfi W e 62 E.Fi/g. Then L W E.T.1/n / ! Œn � 1� is
a bijection. Thus the pair .T.1/n ;L/ is an element of S. To see this map is bijective,
note that if .T.1/n ;L/ D .t; `/ then for each 1 � i � n, Fi is the forest on Œn� with
edges f`�1. j/; 1 � j < ig. The result follows. ut



Discrete Coalescents 11

The above proposition yields that ZMC.n/ D ZAC.n/=n. If we were to additionally
choose a root for T.1/n , we would obtain identical partition functions. This suggests
that perhaps the additive and multiplicative coalescents have similar structures. One
might even be tempted to believe that the trees built by the two coalescents are
identically distributed; the following exercise (an observation of Aldous [3]), will
disabuse you of that notion.

Exercise 8 Let T be built by the multiplicative coalescent, and let T 0 be obtained
from the additive coalescent by unrooting the final tree. Show that if n � 4 then T
and T 0 are not identically distributed.

Despite the preceding exercise, it is tempting to guess that the two trees are still
similar in structure; this was conjectured by Aldous [3], and only recently disproved
[2]. In the remainder of the section, we begin to argue for the difference between the
two coalescents, from the perspective of their partition functions. For 1 � k � n,
write ZMC.n; k/ for the partition function of the first k steps of the multiplicative
coalescent,

ZMC.n; k/ D
X

PD.P1;:::;Pk/2Pn;k

k�1Y

iD1
.jAi.P/jjBi.P/j/ ;

where Pn;k is the set of length-k initial segments of n-chains. We have, e.g.,
ZMC.n; 1/ D 1, ZMC.n; 2/ D �n

2

�
, and ZMC.n; n/ D ZMC.n/.

The argument of Proposition 2.2 shows that ZMC.n; k/ D un;k � .k �1/Š, where un;k

is the number of unrooted forests with vertices Œn� and k �1 total edges. The identity

un;k D
 

n

n C 1 � k

!
nk�2

nC1�kX

iD0

��1
2n

�i
 

n C 1 � k

i

!
.n C 1 � k C i/ � .k � 1/i;

was derived by Rényi [14], and I do not know of an exact formula that simplifies the
above expression. We begin to see that there is more to the multiplicative coalescent
than first meets the eye.

If we can’t have a nice, simple identity, what about bounds? Of course, there is
the trivial upper bound ZMC.n; k/ � .n.n � 1/=2/k�1, since at each step there are at
most

�n
2

�
pairs to choose from; similar bounds hold for the other two coalescents.

To improve this bound, and more generally to develop a deeper understanding of
the dynamics of the multiplicative coalescent, our starting point is the following
observation.

Given an n-chain P D .P1; : : : ;Pn/, for the multiplicative coalescent we have

P f.P.Fi/; 1 � i � n/ D Pg D
n�1Y

iD1

2jAi.P/jjBi.P/j
n2 �P

�2Pi
j�j2 :
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This holds since for 1 � i � n � 1, given that P.Fj/ D Pj for 1 � j � i, there
are .n2 �P

�2Pi
j�j2/=2 choices for which oriented edge to add to form FiC1, and

P.FiC1/ D PiC1 for precisely jAi.P/jjBi.P/j of these. It follows that

ZMC.n/ D
X

PD.P1;:::;Pn/2Pn

P f.P.Fi/; 1 � i � n/ D Pg �
n�1Y

iD1

n2 �P
�2Pi

j�j2
2

D
X

PD.P1;:::;Pn/2Pn

P f.P.Fi/; 1 � i � n/ D Pg � 2�.n�1/

� E

8
<

:

n�1Y

iD1

0

@n2 �
X

T2Fi

jTj2
1

A

ˇ̌
ˇ̌
ˇ̌ .P.Fi/; 1 � i � n/ D P

9
=

;

D 2�.n�1/ � E

2

4
n�1Y

iD1

0

@n2 �
X

T2Fi

jTj2
1

A

3

5 : (2.3)

A mechanical modification of the logic leading to (2.3) yields the following
expression, valid for each 1 � k � n:

ZMC.n; k/ D 2�.k�1/E

2

4
k�1Y

iD1

0

@n2 �
X

T2Fi

jTj2
1

A

3

5 : (2.4)

Write

OZ!MC.n; k/ D
k�1Y

iD1

0

@n2 �
X

T2Fi

jTj2
1

A ;

let OZ!MC.n/ D OZ!MC.n; 1/, and let OZMC.n; k/ D 2�.k�1/ OZ!MC.n; k/ and OZMC.n/ D
OZMC.n; n/. With this notation, (2.3) and the subsequent equation state that

E
h OZMC.n; k/

i
D ZMC.n; k/ D 1

2k�1E
h OZ!MC.n; k/

i
: (2.5)

The random variable OZMC.n/ is a sort of empirical partition function of the
multiplicative coalescent. The superscript arrow on OZ!MC.n; k/ is because the factor
2k�1 may be viewed as corresponding to a choice of orientation for each edge of
Fk. The random variable OZMC.n/ of course contains more information than simply
its expected value, so by studying it we might hope to gain a greater insight into
the behaviour of the coalescent. Much of the remainder of these notes is devoted
to showing that E

h OZMC.n/
i

D ZMC.n/ is a terrible predictor of the typical value

of OZMC.n/. More precisely, there are unlikely execution paths along which the
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multiplicative coalescent has many more possibilities than along a typical path; such
paths swell the expected value of OZMC.n/ to exponentially larger than its typical size.

The logic leading to (2.3) and (2.4) may also be applied to the additive coalescent;
the result is boring but instructive. First note that

ZAC.n; k/ D
X

PD.P1;:::;Pk/2Pn;k

k�1Y

iD1
.jAi.P/j C jBi.P/j/ :

For the additive coalescent, the total number of choices at step i is n.n�i/, and given
that P.Fi/ D Pi, the number of choices which yield P.FiC1/ D PiC1 is Ai.P/CBi.P/.
Writing PAC for probabilities under the additive coalescent, we thus have

PAC f.P.Fi/; 1 � i � k/ D .P1; : : : ;Pk/g D
k�1Y

iD1

jAi.P/j C jBi.P/j
n.n � i/

Following the logic through yields

ZAC.n; k/ D EAC

"
k�1Y

iD1
n.n � i/

#
D EAC

�
nk�1.n � 1/k�1

�
:

Thus, the “empirical partition function” of the additive coalescent is a constant, so
contains no information beyond its expected value. (This fact is essentially the key
to Pitman’s proof of Cayley’s formula.)

The terms of the products (2.3) and (2.4), though random, turn out to behave in
a very regular manner (but proving this will take some work). Through a study of

these terms, we will obtain control of E
h
log OZMC.n/

i
, and thereby justify the above

assertion that OZMC.n/ is typically very different from its mean.

2.3.1 The Growth Rate of ZMC.n; bn=2c/

As a warmup, and to introduce a key tool, we approximate the value of
ZMC.n; bn=2c/ using a connection between the multiplicative coalescent and a
process we call (once again with a very slight abuse of terminology) the Erdős-
Rényi coalescent. Write Kn for the complete graph, i.e. the graph with vertices Œn�
and edges .fi; jg; 1 � i < j � n/.

The Erdős-Rényi coalescent. Choose a uniformly random permutation
e1; : : : ; e.n

2/
of E.Kn/. For 0 � i � �n

2

�
, let G.n/

i have vertices Œn� and edges

fe1; : : : ; eig.
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Our indexing here starts at zero, unlike in the multiplicative coalescent; this is
slightly unfortunate, but it is standard for the Erdős-Rényi graph process to index
so that G.n/

i has i edges. This process is different from the previous coalescent
processes, most notably because it creates graphs with cycles.

Note that we can recover the multiplicative coalescent from the Erdős-Rényi
coalescent in the following way. Informally, simply ignore any edges added by the
Erdős-Rényi coalescent that fail to join distinct components. More precisely, for
each 0 � m � �n

2

�
, let �m be the number of edges fUi;Vig, 0 < i � m such that Ui

and Vi lie in different components of G.n/
i�1. (See Fig. 1 for an example.)

Observe that

�m C 1 D
(
�m if G.n/

mC1 and G.n/
m have the same number of components

�m C 1 if G.n/
mC1 has one fewer component than G.n/

m :

In other words, �m increases precisely when the endpoints of the edge added to G.n/
m

are in different components. Further, the set

fem W m � 1; �m > �m�1g

contains n � 1 edges, since G.n/
0 has n components and G.n/

.n
2/

almost surely has only

one component.
Set I1 D 0 and for 1 < k � n let

Ik D inffm � 1 W �m D k � 1g :

Then for 1 < k � n, the edge eIk joins distinct components of G.n/
Ik�1, and by

symmetry is equally likely to be any such edge. Thus, letting Fk be the graph with
edges feIj W 1 � j � kg for 1 � k � n, the process fFk; 1 � k � ng is precisely
distributed as the multiplicative coalescent. This is a coupling between the Erdős-
Rényi graph process and the multiplicative coalescent; its key property is that for all

G
(4)
0

τ0 = 0

G
(4)
1

τ1 = 1

G
(4)
2

τ2 = 2

G
(4)
3

τ3 = 2

G
(4)
4

τ4 = 3

(a) (b) (c) (d) (e)

Fig. 1 An example of the first steps of the Erdős-Rényi coalescent. The multiplicative coalescent
is obtained by keeping only the thicker, blue edges
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1 � k � n, the vertex sets of the trees of Fk are the same as those of the components
of G.n/

Ik
.

Having found the multiplicative coalescent within the Erdős-Rényi coalescent,
we can now use known results about the latter process to study the former. For a
graph G, and v 2 V.G/, we write N.v/ D NG.v/ for the set of nodes adjacent to v
(the neighbours of v), and write C.v/ D CG.v/ for the connected component of G
containing v. We will use the results of the following exercise.3

Exercise 9 ~
(a) Show that in the Erdős-Rényi coalescent, if all components have size at most s

then the probability a uniformly random edge from among the remaining edges
has both endpoints in the same component is at most .s � 1/=.n � 1/.

(b) Show that for all 0 � m � n=2, in G.n/
m , EjN.v/j � 2m=n.

(c) Prove by induction that for all 0 � m < n=2, in G.n/
m , E ŒjC.1/j� � n=.n � 2m/.

(Hint. First condition on N.1/, then average.)
(d) Prove that for all � > 0,

lim sup
n!1

P

�
G.n/
.1��/n=2 has a component of size > �n

	
D 0 :

(Hint. Given that the largest component of G.n/
m has size s, with probability at

least s=n vertex 1 is in such a component.)

Using the above exercise, we now fairly easily prove a lower bound on the partition
function of the first half of the multiplicative coalescent.

Proposition 2.3 For all ˇ > 0,

P
n OZ!MC.n; bn=2c/ � n.1�ˇ/n

o
! 1 as n ! 1 :

We begin by showing that typically It D .1C o.1//t until t � n=2.

Lemma 2.4 For all � > 0, lim supn!1 P
�
I.1��/n=2 � n=2

� D 0.

Proof Fix � > 0, let ı D �=3, and let E be the event that all components of G.1�ı/n=2
have size at most ın. For m � 0, conditional on G.n/

m , by Exercise 9(a), �mC1 � �m

stochastically dominates a Bernoulli.1� .s � 1/=.n � 1// random variable, where s
is the size of the largest component of G.n/

m .
For n large and s � ın we have 1 � .s � 1/=.n � 1/ � 1 � �=2. Therefore, on

E and for large n the sequence .�mC1 � �m; 0 � m < .1 � ı/n=2/ stochastically
dominates a sequence .Bm; 0 � m < .1 � ı/n=2/ of iid Bernoulli.1� �=2/ random

3Until further notice, we omit ceilings and floors for readability.
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variables. It follows that

P
˚
�.1�ı/n=2 � .1 � �/n=2
 � P fEcg C P

˚
�.1�ı/n=2 � .1 � �/n=2 j E




� P fEcg C P fBin..1 � ı/n=2; 1� �=2/< .1 � �/n=2g
D o.1/ ;

the last line Exercise 9(d) and Chebyshev’s inequality (note that .1 � ı/.1 �
�=2/n=2 > .1 � 5�=6/n=2). On the other hand, if �.1�ı/n=2 > .1 � �/n=2 then
I.1��/n=2 � .1 � ı/n=2 < n=2. ut
Proof of Proposition 2.3 View .F1; : : : ;Fn/ as coupled with the Erdős-Rényi coa-
lescent as above, so that Fk and G.n/

Ik
have the same components. Fix ı 2 .0; 1=4/

and let k D k.n/ D n=2 � 2ın. Let E1 be the event that In=2�ın < n=2.4 Since
ImC1 � Im C 1 for all m, we have

Ik � In=2�ın � ..n=2� ın/� k/ D In=2�ın � ın :

Thus, on E1 we have Ik � .1 � 2ı/n=2.
Next let E2 be the event that all component sizes in G.n/

.1�2ı/n=2 are at most ın. The

components of Fk are precisely the components of G.n/
Ik

, so if E1 \ E2 occurs then
since on E1 we have Ik � .1 � 2ı/n=2, all components of Fk have size at most ın.
In this case, for all i � k the components of Fi clearly also have size at most ın.

It follows5 that on E1 \ E2, for all i � k,
X

T2Fi

jTj2 � ın2

so on E1 \ E2,

OZ!MC.n; k C 1/ D
kY

iD1

0

@n2 �
X

T2Fi

jTj2
1

A

� n2k.1� ı/k (2.6)

D nn.1�4ı/ � .1 � ı/n=2 > nn.1�5ı/ ;

the last inequality holding for n large. By Exercise 9(d) and Lemma 2.4,
P .E1 \ E2/ ! 1 as n ! 1. Since OZ!MC.n; bn=2c/ � OZ!MC.n; k C 1/ for n large, the
result follows. ut

The following exercise is to test whether you are awake.

4We omit the dependence on n in the notation for E1; similar infractions occur later in the proof.
5To maximize

P
j x2j subject to the conditions that

P
j xj D 1 and that maxj xj � ı, take xj D ı for

1 � j � ı�1.


