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Preface

Modeling, analysis, and control of complex large-scale systems are becoming in-
creasingly important. Large-scale systems are often the result of networked interac-
tions among an ample number of subsystems. Examples of large-scale networked
systems include biochemical reaction networks, communication networks such as
mobile phone networks and the Internet, complex chemical production processes,
neural networks, fish and bird swarms, and circuit networks in microprocessors.
The objective of the 2011 summer school Large-Scale Networks in Engineering
and Life Sciences of the International Max Planck Research School Magdeburg was
to provide insights and tools for modeling, analysis, optimization, and control of
large-scale networks in life sciences and engineering. The chapters provided in this
book are based on the lectures given during this summer school. They cover a wide
range of applications and focus on mathematical modeling of the different network
structures in these areas. Thus, this book complements recent monographs on the
theory of networks such as “Networks: An Introduction” by Newman (Cambridge
University Press, 2010) and “The Structure of Complex Networks” by Estrada (Ox-
ford University Press, 2011) or the edited volume “Network Science. Complexity in
Nature and Technology” by Estrada, Fox, and Higham (Springer, 2010).

The chapters in this book are mostly self-contained introductions to network
modeling in various areas. They can be read independently and may serve as the
basis for a seminar series or, in combination with the introductory texts mentioned
above, as course supplements for a course on Network Theory and Applications.
We hope the book will be useful for graduate students or beginners in the respec-
tive fields with a solid mathematical background, but also as a compendium for
network researchers. Since different fields employ different techniques as outlined
below, we expect that fruitful ideas can result from studying how other disciplines
approach network structures.

Basically, the book can be partitioned into four parts. The first part, consisting
only of Chap. 1, treats the mathematical theory of (bio)-chemical reaction networks.
It can also serve as a self-contained introduction into the geometric theory of ordi-
nary differential equations. Two different applications of network theory in electri-
cal engineering areas are the topic of Chaps. 2 and 3; these can be considered as

v



vi Preface

the second part. Optimization of and on networks is a fundamental issue in discrete
mathematics and is treated in the fourth chapter, which can be considered again as
a part on its own. The last three chapters discuss biological networks from different
view points and together form a fourth part of the book.

In the following, we provide a brief introduction to the individual chapters of this
book. Chapter 1 by Flockerzi gives an “Introduction to the Geometric Theory of Or-
dinary Differential Equations with Applications to Chemical Processes”. Though
providing the fundamentals of the geometric theory of differential equations in a
general setting, it is tailored to applications to (bio-)chemical reaction networks and
chemical separation processes. Thus, quite often, the ordinary differential equations
under investigation are derived from underlying partial differential equations as in
the search for solutions of quasi-linear partial differential equations by the method
of characteristics. The geometric theory addresses invariant and integral manifolds,
e.g., center manifolds for bifurcation problems and slow invariant manifolds for net-
works with slow and fast variables and/or processes. In applications, the associated
reduction methods are based on suitable quasi-stationary approximations of such
(slow) invariant manifolds. Several model problems illustrate applications of the
derived methods to different instances of chemical reaction networks.

In the second chapter, Reis introduces “Circuit Modelling with Differential–
Algebraic Equations”. Electrical circuits underlie most electronic devices in every-
day life, ranging from computers to tablets and cell phones to car electronics. Math-
ematical models of these circuits are based on graph and network theory and are
the core of circuit and device simulation in industrial design processes. The chap-
ter provides a basic and self-contained introduction to the mathematical description
of electrical circuits consisting of resistances, capacitances, inductances, as well
as voltage and current sources. The standard methods for the modeling of circuits
by differential–algebraic equations—“modified nodal analysis” and “modified loop
analysis”—are presented, and a detailed analysis of the mathematical properties of
these equations is included.

The third chapter by Egerstedt, de la Croix, and Kingston on “Interacting with
Networks of Mobile Agents” discusses the design of control, communication, and
coordination strategies for multi-agent networks, a central issue in current research
in systems and control theory. Applications of distributed, mobile agent systems
or “swarms” include, but are by no means limited to, multi-agent robotics, dis-
tributed sensor networks, interconnected manufacturing chains, and data networks.
The question discussed is how humans can control or influence the behavior of
the swarm. Lagrangian and Eulerian models are proposed to model the movements
of the agents. Both of them are amenable to human manipulation. Interaction of
the agents are modeled by graphs/networks, and controllability and manipulability
notions for the human-swarm interaction are introduced, based on which control
strategies are developed.

Chapter 4 “Combinatorial Optimization: The Interplay of Graph Theory, Lin-
ear and Integer Programming Illustrated on Network Flow” by Wagler deals with
combinatorial optimization which is the main mathematical discipline dealing with
optimizing networks. It uses basic elements from graph theory, geometry, linear and
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integer programming. The network flow problem is used as a running example to
illustrate the concepts and methods introduced. It does not require prior knowledge
in advanced optimization techniques. Basic introductions into linear programming,
including the simplex method, and integer programming are provided.

The 5th chapter, by Klamt, Hädicke, and von Kamp, is dedicated to the “Stoi-
chiometric and Constraint-Based Analysis of Biochemical Reaction Networks”. Al-
though the methods presented therein rely solely on the stoichiometry of metabolic
networks, they provide essential information on key functional properties and de-
liver various testable predictions. The chapter presents the relevant mathematical
foundations of different approaches of this kind and discusses various applications
in biology and biotechnology.

The contribution of Blätke, Rohr, Heiner, and Marwan in Chap. 6 is focused on
“A Petri Net Based Framework for Biomodel Engineering”. Petri nets provide a
versatile framework for the computation of biochemical reaction networks and gene
regulatory networks, particularly useful in the context of systems biology. Starting
with basic definitions, the authors provide an introduction to different classes of
Petri nets, static and dynamic modeling applications, database-assisted automatic
composition and modification of Petri nets as well as automatic reconstruction of
networks based on time series data sets.

In Chap. 7, “Hybrid Modeling for Systems Biology”, von Stosch, Carinhas and
Oliveira deal with the theoretical fundamentals of hybrid semi-parametric model-
ing to integrate extensive experimental data sets obtained by “omics” technologies
developed over recent years into global quantitative models. Their approach com-
bines available knowledge about mechanisms in the form of parametric mathemati-
cal models (bottom-up) with nonparametric models that are determined from exper-
imental data (top-down). Examples are given for small metabolic networks of insect
cells (Spodoptera frugiperda, Sf9) used for production of baculoviruses, dynamic
models of metabolism of animal cells (baby hamster kidney, BHK) in fed-batch
cultures with unknown reaction kinetics, and a signal transduction network involv-
ing transcription factor A (TFA) with intrinsic time delays.

Finally, we would like to express our gratitude to all authors of the chapters in this
book for their dedicated effort to provide useful tutorials, a task often much more
time consuming than writing about latest research results to an informed community.
Numerous experts in network theory and applications served as reviewers for the
chapters. We are very grateful for their help in improving readability and tutorial
value of the individual manuscripts. Last but not least, our thanks go to Barbara
Hellriegel and Katherina Steinmetz from Springer Basel AG for their never ending
endurance in waiting for the final manuscript as well as their support throughout the
development of this project.

Peter Benner
Rolf Findeisen

Dietrich Flockerzi
Udo Reichl

Kai Sundmacher

Magdeburg
June 23, 2014
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Chapter 1
Introduction to the Geometric Theory of ODEs
with Applications to Chemical Processes

Dietrich Flockerzi

Abstract We give an introduction to the geometric theory of ordinary differen-
tial equations (ODEs) tailored to applications to biochemical reaction networks and
chemical separation processes. Quite often, the ordinary differential equations un-
der investigation are “reduced” partial differential equations (PDEs) as in the search
of traveling wave solutions. So, we also address ODE topics that have their origin
in the PDE context.

We present the mathematical theory of invariant and integral manifolds, in par-
ticular, of center and slow manifolds, which reflect the splitting of variables and/or
processes into slow and fast ones. The invariance of a smooth manifold is charac-
terized by a quasilinear partial differential equation, and the widely used approx-
imations of invariant manifolds are derived from such PDEs. So we also offer, to
some extent, an introduction to quasilinear PDEs. The basic ideas and crucial tools
are illustrated with numerous examples and exercises. Concerning the proofs, we
confine ourselves to outline the crucial steps and refer, especially in the first three
sections, to the literature.

The final Sects. 1.4 and 1.5 on reaction–separation processes and on chromato-
graphic separation present new results, including their proofs. They are the outcome
of many fruitful discussions with my colleagues Malte Kaspereit and Achim Kienle.

Keywords Stability · Integral manifolds and method of characteristics · Center
manifolds and asymptotic phases · Reduction methods and bifurcations ·
Quasi-stationary approximations and singular perturbations · Slow invariant
manifolds · Reactive and chromatographic separation networks

Outline This contribution is not written as an introduction to the basic theory of
ODEs. We assume the reader to have some experience with linear algebra (spec-
tral theory, Schur normal form), analysis (multidimensional integration, contraction
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principle), and ODEs (explicit solution methods, linear systems, stability, simple
bifurcations).

We recapitulate certain properties of ODEs in Sect. 1.1 in order to prepare the
stage and to open up new perspectives for the geometric theory of ODEs. Sec-
tion 1.2, dedicated to two-dimensional systems, introduces invariant manifolds in
the familiar form of invariant orbits and addresses computational aspects for the
associated partial differential equations (e.g., method of characteristics). Moreover,
Sect. 1.2 presents the necessary tools for discussing more complicated bifurcation
phenomena (normal forms, blow-up transformations). The concluding Sect. 1.2.5
sheds some new light on eigenspaces of linear systems and provides the key idea for
the general nonlinear geometric theory by characterizing the eigenspaces as the sets
of initial values leading to solutions of restricted exponential growth as t→±∞.

Section 1.3 deals with the classical local stable, unstable and center manifolds for
n-dimensional systems and introduces the fundamental reduction principle: Ques-
tions about the asymptotic behavior in an n-dimensional state space can often be
answered by reduced systems in a state space of dimension m with m< n. Ideally,
one has m = 1 or m = 2 as for the standard scenarios of stationary bifurcations or
Hopf bifurcations. For systems with two time scales t and τ = t/ε, we discuss ex-
tensively the validity of quasi-stationary approximations and of quasi-steady-state
approximations in Sects. 1.3.5 and 1.3.6. Considering reaction–separation networks,
Sect. 1.4 continues this study of two-time-scale systems and offers the reduction to
a separation model without a reactive part. Finally, Sect. 1.5 extends the method
of characteristics (Sect. 1.2.2) to systems of first-order quasilinear PDEs and ad-
dresses chromatographic separation processes using equilibrium theory. We obtain
innovative spectral results for adsorption equilibria, described by Langmuir-type
isotherms, in particular, by bi-Langmuir isotherms (see [36]).

All sections start with a short outline and are divided in various subsections. Their
titles and the headings of all the results and remarks may serve as a grasshopper’s
guide through this contribution. For readers who are especially interested in appli-
cations from systems biology and chemical engineering, we refer to the topics of

– activator–inhibitor models in Exercise 1.26, in Sect. 1.1.4.3, and in Sect. 1.3.6,
– volume transport and traveling waves in Sect. 1.1.2.3, Sect. 1.2.2 (see Exer-

cises 2.6 and 2.7), in Exercise 3.7(3) and Remark 3.16, and, finally, in Sect. 1.5,
– reaction networks in Sect. 1.1.4.3 and in Sects. 1.4.2 and 1.4.3 with the introduc-

tory Example 1.28,
– chromatographic separation in Sect. 1.5 with the introductory Exercise 2.7.

Over the years, I was inspired and influenced by the work of many authors: I would
like to refer to the ODE books [2, 16, 17, 63, 67, 77], the PDE books [11] and [25],
and the monographs [10, 23, 26, 68, 69, 83] and [22, 75, 76] from the more applied
side. I apologize for not mentioning all the other valuable sources. Finally, I thank
Hector Rubiera Landa for his assistance with the figures.
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1.1 Basic Theory of Ordinary Differential Equations

This introductory section discusses the basic questions and concepts in the theory of
ordinary differential equations. The presentation is tailored to the geometric theory
of systems of ordinary differential equations: It emphasizes the concepts and tools
in simple settings and introduces illustrating academic examples and “real-world”
processes from chemical engineering in their simplest versions.

Section 1.1.1 is dedicated to scalar differential equations, including their bifurca-
tion diagrams, and to n-dimensional linear systems. By introducing scalar differen-
tial inequalities, we arrive at comparison theorems and the crucial Gronwall lemma.
First consequences of the fundamental theorem on existence and uniqueness of so-
lutions are discussed in Sect. 1.1.2: We comment on sensitivity analysis, on volume
transport, and on bounded system response and establish Lyapunov’s theorem on
first approximations. The following Sects. 1.1.3 and 1.1.4 present the basic results
from stability theory, in particular LaSalle’s invariance principle, as they can be
found in any textbook on ODEs. Illustrations include activator–inhibitor systems
and reversible reaction networks from systems biology and chemical engineering
(see Sect. 1.1.4.3).

1.1.1 Questions of Existence and Uniqueness

We first pose the standing hypothesis and the formulation of initial value problems
and then address the basic questions of existence and uniqueness, of approximations
and reductions.

Standing Hypothesis Let f : D→ R
n be a continuous function on a nonempty,

open, and connected set D ⊂R×R
n, and let (τ, ξ) be an element of D.

Problem Formulation Does there exist an open interval I � τ and does there exist
a continuously differentiable function ϕ : I → R

n (symbolically, ϕ ∈ C1(I,Rn))
with ϕ(τ)= ξ and

(
t, ϕ(t)

) ∈D, dϕ

dt
(t)= f (t, ϕ(t)) ∀t ∈ I?

In case a function ϕ(·) has these properties, it is called a solution of the initial
value problem (IVP)

dx

dt
= f (t, x), x(τ )= ξ, (1.1)

on I with respect to D or, in short terms, a solution of the differential equation
dx
dt
= f (t, x) for given initial data (τ, ξ) ∈D. With ẋ := dx

dt
, a more precise notation

of a solution of (1.1) (on I with respect to D) is given by ϕ(· ; τ, ξ):
ϕ̇(t; τ, ξ)= f (t, ϕ(t; τ, ξ)) for all t ∈ I with ϕ(τ ; τ, ξ)= ξ. (1.2)
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In case (τ, ξ) determines the solution uniquely, we will discuss ϕ(t; τ, ξ) as a func-
tion of all arguments (cf. Theorem 1.18). The variable t is often interpreted as time,
and the variable x as state, so that τ and ξ refer to the initial time and to the ini-
tial state, respectively. We call D a region in R× R

n. Typically, D is taken in the
form D = J ×G with an open interval J and a nonempty, open, and connected set
G⊂R

n.
In case f in (1.1) is independent of t , the initial value problem is called au-

tonomous or time-invariant. Of course, the right-hand side f of the differential
equation provides the slope of any solution x = ϕ(·). The first Taylor polynomial
at τ is given by ξ + f (τ, ξ)(t − τ).

Basic Questions

(1) When does a solution ϕ(·; τ, ξ) of the IVP (1.1) exist? When is it unique? What
is the maximal interval [τ, t+) of existence in forward time? What causes a
finite t+? When does one have t+ = ∞? How does a solution “behave” for
t→ t+?

(2) Are there special initial values ξ leading to simple solutions like constant or
periodic solutions? Given a particular solution, for example, a steady-state so-
lution ξ∗, how do solutions “behave” that start near ξ∗ at time τ?

(3) Can the asymptotic behavior of a solution ϕ(·) of (1.1) on [τ,∞) be determined
by some reduced system?

For example, by a scalar test function V = V (x), for instance, V (x)= xTx,
so that properties of v(t) := V (ϕ(t)) and v̇(t) = Vx(ϕ(t))f (t, ϕ(t)) allow one
to draw conclusions on the asymptotic behavior of ϕ(·) (comparison theorems,
Lyapunov functions). Or, for example, by a simpler reduced initial value prob-
lem ẏ = g(t, y), y(τ )= η, where the asymptotic behavior of y-solutions deter-
mines the asymptotic behavior of x-solutions? In more precise terms:

• Do there exist transformations S(t, ·) from the y-domain into the x-domain
and R(t, ·) from the x-domain into the y-domain such that the difference of
the solutions x(·)= ϕ(· ; τ, ξ) and y(·)= ψ(· ; τ, η) with η := R(τ, ξ) satis-
fies

lim
t→∞

∣∣ϕ(t; τ, ξ)− S(t,ψ(t; τ,R(τ, ξ)))∣∣= 0, (1.3)

so that η = R(τ, ξ) is the initial value in the y-space that synchronizes the
two solutions x(·) and y(·) asymptotically?

(4) Under what circumstances does a “good” approximation f̃ (t, x) of f (t, x) im-
ply that the corresponding solution ϕ̃(t; τ, ξ) is a “good” approximation of the
solution ϕ(t; τ, ξ)?

(5) When can solutions of (1.1) be computed analytically? What are sufficient con-
ditions for having robustness in numerical solvers? When is it a priori known
that a given IVP is a “delicate” one for numerical solvers?

All these questions can be stated for the past, that is, for backward time on (t−, τ ]
or (−∞, τ ]. This can be done by reversing the time via the substitution s := −t and
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ψ(s) := ϕ(t; τ, ξ). For a (1.1)-solution ϕ(· ; τ, ξ), the chain rule leads to

dψ(s)

ds
= dϕ(t; τ, ξ)

dt
(−1)=−f (t, ϕ(t; τ, ξ))=−f (−s,ψ(s))

and ψ(−τ)= ξ , so that ψ(·) is the solution of the IVP

dy

ds
= f (−s, y), y

(
τ ∗
)= ξ, (1.4)

with τ ∗ := −τ , now in “forward time” s.
We illustrate some phenomena and methods for initial value problems of the

form (1.1) in low space dimension n. The examples are chosen such that solutions
can be computed explicitly. In general, necessary conditions are exploited to derive
candidate solutions. Such candidate solutions have to be verified in the end.

Remark 1.1 (Separation of variables for ẋ = a(t)b(x)) We consider scalar initial
value problems with continuous f : D→ R for D = R× R. If f (t, x) in (1.1) is
independent of x and given by a continuous function t 	→ a(t), then the function
ϕ(t; τ, ξ)= ξ + ∫ t

τ
a(s)ds is a unique solution of the initial value problem (1.1).

Now, let the right-hand side f = f (t, x) in (1.1) be the product of a continuous
function t 	→ a(t) and a continuous function x 	→ b(x), and let ϕ(·) be a solution of

ẋ = f (t, x)= a(t)b(x), x(τ )= ξ, (1.5a)

on an open interval I containing τ . Then we have

ẋ(t)

b(ϕ(t))
= a(t) (1.5b)

as long as the division by b(ϕ(t)) is allowed. For b(ξ) 
= 0, the function b(ϕ(·))
does not vanish on an open interval J ⊂ I containing τ . In case of b(ξ) = 0, we
have the t-independent solution x∗(t) := ξ of (1.5a). Such a t-independent solution
is called an equilibrium, a stationary, or a steady-state solution. For initial value
problems (1.5a) with unique solutions, the equation b(ξ) = 0 entails ϕ(t) = ξ for
all t ∈R.

For initial values ξ with b(ξ) 
= 0, (1.5b) implies

∫ t

τ

ϕ̇(s)

b(ϕ(s))
ds =

∫ ϕ(t)

ξ

dx

b(x)

whenever the integration and the subsequent substitution are admissible. With anti-
derivatives A(t) of a(·) and B(x) of 1

b(·) and with

M(t, x) := B(x)−A(t)=
∫ x ds

b(s)
−
∫ t

a(s) ds, (1.5c)
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we arrive at the implicit representation

M(t, x)−M(τ, ξ)= B(x)−B(ξ)− [A(t)−A(τ)]= 0

of the solution x = ϕ(t). Because of d
dt
M(t, ϕ(t)) = 0, the expression M(t, x) is

equal to the constant M(τ,ϕ(τ)) =M(τ, ξ) along the solution x = ϕ(t); later on,
M will be called a first integral or a conservation law. Finally, if B is invertible in
a neighborhood of ξ with inverse function B−1, we are led to the explicit necessary
condition

x = ϕ(t)= B−1(B(ξ)+A(t)−A(t)) (1.5d)

wherever the preceding steps have been admissible. In a final step, we have to prove
the sufficiency, that is, we have to verify that (1.5d) defines indeed a solution of
(1.5a) on a suitable t-interval. The presented method for solving (1.5a) is called
separation of variables. Since it relies on the computation of antiderivatives and
inverse functions, it does not necessarily lead to explicit formulae for the solutions
of (1.5a).

1.1.1.1 Variation of Constants

Remark 1.2 (Variation of constants for scalar ẋ = a(t)x + u(t)) We first consider
scalar initial value problems of the form

ẋ = f (t, x)= a(t)x + u(t), x(τ )= ξ, (1.6a)

with continuous a : R→ R and u : R→ R, so that the right-hand side f : R ×
R→ R is continuous in (t, x) and affine in x. For u(·) ≡ 0, we have the uniquely
determined solution

x(t)=Φ(t, τ )ξ, Φ(t, τ ) := exp

(∫ t

τ

a(s) ds

)
(1.6b)

on the whole R (by separation of variables). For an inhomogeneity u(·) 
≡ 0, we
use the transformation x 	→ y =Φ(τ, t)x of the state variable x, which leads to the
“trivial IVP”

ẏ(t)= [Φ(t, τ )]−1
u(t)=Φ(τ, t)u(t), y(τ )= ξ,

with the solution

y(t)= ξ +
∫ t

τ

Φ(τ, s)u(s) ds.

Hence, we arrive at the explicit representation

ϕ(t; τ, ξ)=Φ(t, τ )ξ +
∫ t

τ

Φ(t, s)u(s) ds, t ∈R, (1.7)
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of the uniquely determined solution of (1.6a). Here, the claimed uniqueness is eas-
ily shown (see also Remark 1.12(c)). For a constant a(t) ≡ α, we have Φ(t, τ ) =
eα(t−τ).

This method of solving affine initial value problems is called variation of con-
stants because of x(t)=Φ(t, τ )ξ in (1.6b) is replaced by x(t)=Φ(t, τ )y(t) with a
time-varying y.

By a recursive application of Remark 1.2 we deduce the solution of n-
dimensional affine systems

ẋ = f (t, x)=A(t)x + u(t), x(τ )= ξ ∈R
n, (1.8)

with a continuous upper triangular (n× n)-matrix A(·) and a continuous n-vector
u(·). With the solution xn(t) of the last equation, we solve for xn−1(t), and so on.
The solution x(t) of (1.8) is then still given by an expression as in (1.7), where
Φ(t, τ ) now stands for a certain (n× n)-matrix that is continuously differentiable
in t .

In case of an n-dimensional system

ẋ =Ax + b(t), x(τ )= ξ, (1.9a)

with a constant (n× n)-matrix A and a continuous n-vector b(·), we first compute
the upper triangular Schur normal formR =Q∗AQ ∈C

n×n with unitaryQ ∈C
n×n,

for example, (1.15) for n = 2. The subsequent coordinate transformation x(t) =
Qy(t) along solutions of (1.9a) leads to the affine differential equation

ẏ(t)=Ry(t)+ u(t), y(τ )= η :=Q∗ξ, u(t) :=Q∗b(t) (1.9b)

for the vector-valued function y (y(t) ∈ C
n, t ∈ R). The complex-valued solution

y(t) of (1.9b), still of the form (1.7), then defines the real-valued solution x(t) of
(1.9a) via x(t)=Qy(t). With the matrix exponential

exp(Rt) :=
∞∑

j=0

1

j !R
j tj ∈R

n×n, t ∈R, (1.9c)

satisfying Q exp(Rt)Q∗ = exp(QRQ∗t)= exp(At), we have

x(t)=Qy(t)= exp
(
A(t − τ))ξ +

∫ t

τ

exp
(
A(t − s))b(s) ds. (1.9d)

We observe that the transformation x(t) = Qy(t) has led to a cascade of one-
dimensional affine differential equations. In the special case of a diagonal matrix R,
the transformation offers a reduction from an n-dimensional linear system to n one-
dimensional linear systems that are completely decoupled. We summarize these re-
sults in the following proposition.
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Proposition 1.3 (Fundamental matrix/Variation of constants)

(a) The n-dimensional linear initial value problem

ẋ =Ax, x(τ)= ξ, (1.10)

with A ∈ R
n×n possesses a unique solution x(t) = ϕ(t; τ, ξ) = Φ(t − τ)ξ ,

which is linear in ξ . The so-called “fundamental matrix”

Φ(t)≡ exp(At) :=
∞∑

j=0

1

j !A
j tj ∈R

n×n, t ∈R, (1.11a)

satisfies

Φ̇(t)=AΦ(t), Φ(0)= In×n, and det
(
Φ(t)

)= etrace(A)t 
= 0. (1.11b)

(b) If all eigenvalues λj of A satisfy the estimate

Re(λj ) < ρ for some ρ ∈R, (1.12a)

then there exists a constantM ≥ 1 such that

∣∣ϕ(t; ξ)∣∣≤M|ξ |eρt for t ≥ 0. (1.12b)

In case A is diagonalizable (over C), the estimate Re(λj ) ≤ ρ is sufficient for
(1.12b).

(c) The affine initial value problem

ẋ =Ax + b(t), x(τ )= ξ, (1.13a)

with continuous inhomogeneity b :R→R
n has a unique solution, given by the

variation-of-constants formula

x(t)= ϕ(t; τ, ξ)= exp
(
A(t − τ))ξ +

∫ t

0
exp
(
A(t − s))b(s) ds (1.13b)

as the sum of a particular solution of the inhomogeneous system (1.13a) and the
general solution of the associated homogeneous system (1.10).

The formula for det(Φ(t)) in (1.11b) proves Φ(t) to be regular for all t ∈R and
describes the volume transport. At the initial time t = 0, the expression det(Φ(0))
gives the volume det(Q)= 1 of the unit cube Q= [0,1]n, at time t > 0 it gives the
volume of the set ϕ(t;0,Q) := {Φ(t)ξ : ξ ∈Q}, that is, the volume of the evolution
of Q under the solution mapping ϕ(t;0, ·) : Q→ R

n. See Liouville’s formula in
Sect. 1.1.2.3.
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Example 1.4 (Time-varying matrices and growth rates) Part (b) of the above propo-
sition does not apply to general time-varying matricesA(t) as the following example
shows:

The eigenvalues λj (t) of the matrix A(t)=Ω(t)A0Ω
−1(t), defined via

A0 =
(−1 −4

0 −2

)
, Ω(t)= eJ t =

(
cosωt − sinωt
sinωt cosωt

)
for J =

(
0 −ω
ω 0

)
,

are given by λ1(t)=−1 and λ2(t)=−2 (ω 
= 0). Nevertheless, there exist ωs and
ξ s such that the IVP

ẋ =A(t)x, x(0)= ξ, (1.14)

allows unbounded solutions on [0,∞). This can be easily seen with the help of
the transformation x = Ω(t)y along solutions x(t) of (1.14) since it leads to ẏ =
[A0 − J ]y.

Example 1.5 (Resonance) Given a two-dimensional linear system ẋ =Ax with real
(2× 2)-matrix A and initial condition x(0)= ξ , we first establish its Schur normal
form: We choose a unitary transformation

x ∈R
2 	→ y := S∗x ∈C

2 with S = (u1, u2) ∈C
2×2, S∗S = I = SS∗,

leading to the equivalent initial value problem

ẏ = S∗ASy =
(
λ1 μ

0 λ2

)
y =:Ry, y(0)= η := S∗ξ (1.15)

with λj = u∗jAuj , j = 1,2, and μ = u∗1Au2. This system is in cascade form, so
variation of constants leads to

y = Ψ (t)η=
(
eλ1t μm(t)

0 eλ2t

)
η, m(t)=

{
eλ1t t, λ1 = λ2,

[eλ2t − eλ1t ]/[λ2 − λ1], λ1 
= λ2.

Hence, we have Ψ (t)=∑∞
j=0

1
j !R

j tj = exp(Rt) and

x = ϕ(t;0, ξ)= SΨ (t)S∗ξ =
∞∑

j=0

1

j !
[
SRS∗

]j
tj ξ = exp(At)ξ =:Φ(t)ξ (1.16)

for the solution of the above IVP in R
2. The exceptional case where the eigenval-

ues satisfy λ1 = λ2 =: λ and where Ψ (t) is given by eλt
( 1 t

0 1

)
is called a case of

resonance. Here, χ(t) := e−λt‖ϕ(t, ξ)‖ is not bounded on [0,∞).
Remark 1.6 (Saddle, node, focus, center) Given a two-dimensional linear system
ẋ = Ax with real (2× 2)-matrix A, we choose a real similarity transformation x ∈
R

2 	→ y := T −1x ∈R
2 to arrive at a real system

ẏ =Ry (1.17)
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with R being equal to one of the following matrices Rj :

R1 =
(
λ1 0
0 λ2

)
, R2 =

(
λ μ

0 λ

)
, or R3 =

(
α −β
β α

)
(1.18)

for μ 
= 0 and β 
= 0. The solutions of ẏ = Ry as functions of time can easily be
determined (see Example 1.5).

(i) In case of R = R1 and negative λ1, λ2, the origin is called an (exponen-
tially) stable node of (1.17) and hence of ẋ = Ax. For λ2 < λ1 < 0, the axis
Y1 := {(y1,0) ∈ R

2} is invariant in the sense that, for an initial value η ∈ Y1,
the corresponding solution remains in Y1 for all t . The axis Y1 represents the
slow stable eigenspace corresponding to the exponential decay eλ1t , and the
invariant axis Y2 := {(0, y2) ∈ R

2} represents the fast stable or strongly stable
eigenspace corresponding to the (faster) exponential decay eλ2t . All initial val-
ues outside of Y2 lead to solutions that decay exponentially toward the origin
along the slow stable eigenspace with the rate eλ1t .

In case of R = R1 and λ1 > 0 > λ2, the two invariant axes Y1 and Y2 rep-
resent the unstable and stable eigenspaces with associated exponential decay
rate eλ1t as t →−∞ and eλ2t as t →+∞, respectively. The origin is then
called a saddle point of (1.17) and hence of ẋ =Ax.

By separation of variables (for λ1 
= 0 
= λ2), we obtain the “invariant
curves” in the y-space

y2 = Γ1(y1)= η2

(
y1

η1

)λ2/λ1

or y1 = Γ2(y2)= η1

(
y2

η2

)λ1/λ2

(1.19)

whenever the right-hand sides are well defined. For example, any (1.17)-
solution y(t) = ϕ(t;0, η) with η2 = Γ1(η1) satisfies y2(t) = Γ1(y1(t)) on its
interval of existence. Of course, the shape and the smoothness of the function
y2 = Γ1(y1) depends heavily on the quotient λ2/λ1. For example, in the case
of λ2 < λ1 < 0, Γ1 is in class Cm if and only if λ2 ≤mλ1.

(ii) In case of R = R2 and negative λ, the origin is still called an (exponentially)
stable node of (1.17) and hence of ẋ = Ax. Here, there is just one invariant
linear subspace, namely Y1. In case of R = R3, the origin is called an (expo-
nentially) stable focus for negative α and a center for α = 0.

(iii) The origin y = 0 of (1.17) or, equivalently, the origin x = 0 of ẋ = Ax is
called hyperbolic if each eigenvalue has a nonzero real part. Otherwise it is
called nonhyperbolic or critical.

In Examples 1.27, 2.5, and 2.10 and in Sect. 1.2.5, we present alternative ways to
discuss such linear systems. These alternatives prepare the stage for the discussion
of nonlinear systems.
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1.1.1.2 Uniqueness and Comparison Theorems

We address questions on the maximal interval of existence and on the uniqueness of
solutions.

Exercise 1.7 (Maximal interval of existence for ẋ = axγ ) Consider initial value
problems of the form ẋ = axγ , x(τ)= ξ , for constant a 
= 0 and various positive γ
and show:

(a) The IVP ẋ = ax2, x(τ ) = ξ ≥ 0, on D = R× R with positive a possesses for
each ξ a uniquely determined solution on an interval (−∞, t+). The maximal
t+ = t+(ξ) is finite, and the solution becomes unbounded as t→ t+.

(b) The IVP ẋ =− 1
2x , x(1)= ξ > 0, on D =R× (0,∞) possesses for each ξ > 0

a uniquely determined solution on an interval (−∞, t+). The maximal t+ =
t+(ξ) is finite, and the solution approaches the boundary of D.

(c) The IVP ẋ = ax1/3, x(τ )= ξ ≥ 0, on D = R×R with negative a provides an
example where solutions of initial value problems are not uniquely determined.
Compare Example 1.8.

Example 1.8 (Fluid level in a tank (Torricelli’s law)) We consider the autonomous
scalar IVP (1.1) on R×R with f (x)= 0 for x < 0 and f (x)=−√x for x ≥ 0. We
take the initial value x(0)= ξ to be nonnegative. One might interpret the state x as
the fluid level in a tank. Then, the chosen right-hand side f reflects Torricelli’s law.

We always have the trivial solution ϕ0(t)≡ 0 in case of ξ = 0. If ϕ(t) is a solution
with a positive initial value ξ , then we arrive, by separation of variables, at

ϕ(t)=
(√
ξ − t

2

)2

for 0≤ t < 2
√
ξ

satisfying ϕ(t)→ 0 as t→ 2
√
ξ . It is easily verified that the function

ϕ∗(t)=
{
ϕ(t) on [0,2√ξ),
0 on [2√ξ,∞)

is a continuously differentiable solution of (1.1). The tank runs empty in finite time
T = 2

√
ξ and remains empty afterwards. In backward time, we do not have the

uniqueness: If the tank is empty at some time T∗ > 0, that is, x(T∗)= 0, we cannot
derive the initial fluid level ξ . We note that, given two solutions x1(t) and x2(t) of
the present IVP, the function δ(t) := |x2(t)−x1(t)|2 ≥ 0 satisfies δ̇(t)≤ 0, implying
the uniqueness in forward time.

Example 1.8 shows that the continuity of f (t, x) is not sufficient for the unique
solvability of the initial value problem (1.1). We introduce a slightly stronger hy-
pothesis by asking f to satisfy local Lipschitz conditions with respect to x, that is,
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by asking f to be continuous in (t, x) and to be Lipschitz-continuous in x. We
formulate this more restrictive hypothesis as

Hypothesis 1.9 (HLip) The function f :D→R
n, defined on a regionD ⊂R×R

n,
is Lipschitz-continuous, that is, for any (τ, ξ) ∈D, there exist a box

Qα,β =
{
(t, x) : |t − τ | ≤ α, |x − ξ | ≤ β}⊂D

and a (Lipschitz) constant L≥ 0 such that

∣∣f (t, x2)− f (t, x1)
∣∣≤ L|x2 − x1| onQα,β. (1.20)

Remark 1.10 (Lipschitz continuity) The Lipschitz constant L provides a (locally
uniform) bound for the difference quotient |f (t, x2)− f (t, x1)|/|x2 − x1|, x1 
= x2,
of f . In case f is continuous in (t, x) and continuously differentiable with respect
to x in a neighborhood U of ξ , it satisfies such a local Lipschitz condition because
of

∣∣f (t, x2)− f (t, x1)
∣∣≤
∫ 1

0

∣∣fx
(
t, x1 + s(x2 − x1)

)∣∣ds|x2 − x1| ≤ L|x2 − x1|,
(1.21)

where L stands for an upper bound of |fx(t, x1 + s(x2 − x1))| for s ∈ [0,1] and
(t, x1), (t, x2) ∈Qα,β ⊂U .

Theorem 1.11 (Scalar comparison theorem/Differential inequalities) We suppose
that f is a scalar continuous function on a neighborhood of

Q= {(t, x) ∈R
2 : τ ≤ t ≤ τ + α, |x − ξ | ≤ β}

with the Lipschitz property

∣∣f (t, x2)− f (t, x1)
∣∣≤ L|x2 − x1| onQ. (1.22a)

If continuously differentiable functions ϕ(t) and ψ(t) satisfy on [τ, τ + α]
(
t, ϕ(t)

) ∈Q, (
t,ψ(t)

) ∈Q,
ϕ̇(t)≥ f (t, ϕ(t)), ψ̇(t)≤ f (t,ψ(t)), ϕ(τ )≥ψ(τ),

(1.22b)

then ϕ(t)≥ψ(t) on [τ, τ + α].
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Proof The assumption thatΔ(t)= ϕ(t)−ψ(t) satisfies (i) Δ(s)= 0 for s ∈ [τ, τ +
α] and (ii) Δ(t) < 0 on an interval of the form (s, s + ε), ε > 0, leads by (1.22b)
to a contradiction: We have Δ̇(t)≥−L|Δ(t)| = LΔ(t) on [s, s+ ε] with Δ(s)= 0,
implying d

dt
[e−LtΔ(t)] ≥ 0 and Δ(t)≥ 0 on (s, s + ε). �

This proof reveals the key feature of the Lipschitz continuity of f : Locally, the
derivative Δ̇(t) = f (t,ψ(t) +Δ(t)) − f (t,ψ(t)) is bounded below by the linear
expression LΔ(t).

Remark 1.12 (Comparison theorem and uniqueness)

(A) The special case ψ̇(t)= f (t,ψ(t)), ϕ(τ)= ψ(τ), in (1.22b) tells us that ϕ(t)
is above ψ(t) for t ≥ τ . Hence, ϕ(t) is called a supersolution. Similarly, the
special case ϕ̇(t)= f (t, ϕ(t)), ϕ(τ)= ψ(τ), in (1.22b) leads to a subsolution
ψ(t).

(B) In case ψ̇(t)= f (t,ψ(t)), ϕ̇(t)= f (t, ϕ(t)), and ϕ(τ)=ψ(τ), we deduce the
uniqueness: ϕ(t)≡ ψ(t) on [τ, τ + α]. So we have the following corollary in
the scalar case:

• Given an IVP ẋ = f (t, x) , x(τ)= ξ , on a neighborhood of the setQαβ with
continuous f satisfying (1.21), any two solutions ϕ1(t; τ, ξ) and ϕ2(t; τ, ξ)
with (t, ϕ1(t)) and (t, ϕ1(t)) in Q on [τ − α, τ + α] are identical on [τ −
α, τ + α].

(C) We now derive the uniqueness result for the n-dimensional system (1.1) in the
setup of (HLip). Let Δ(t) = ϕ2(t; τ, ξ) − ϕ1(t; τ, ξ) be the difference of two
solutions on [τ − α, τ + α] with respect to Qα,β . We have

Δ̇(t)= f (t, ϕ2(t; τ, ξ)
)− f (t, ϕ1(t; τ, ξ)

)
, Δ(τ)= 0.

Together with the Lipschitz condition (1.20), an integration with respect to t ,
t ≥ τ , leads to a linear differential inequality for V (t) := ∫ t

τ
|Δ(s)|ds ≥ 0,

namely

V̇ (t)= ∣∣Δ(t)∣∣≤ L
∫ t

τ

∣
∣Δ(s)

∣
∣ds =: LV (t), V (τ)= 0. (1.23a)

This implies d
dt
[e−LtV (t)] ≤ 0 with e−LτV (τ) = 0. To the right of τ , we de-

duce e−LtV (t)≤ 0, and hence V (t)≡ 0. In an analogous manner we argue for
t ≤ τ .

In the preceding argument, the implicit estimate (1.23a) for |Δ(t)| has led to an
explicit estimate for V (t). The following result, often called the Gronwall lemma,
deals with a more general case. We would like to point out that, besides the variation-
of-constants formula, the Gronwall lemma is one of the crucial tools in the theory
of differential equations.



14 D. Flockerzi

Lemma 1.13 (Gronwall lemma) Let u,μ,ρ be nonnegative continuous functions
on the interval I = [τ, T ] with values in R. Then the implicit estimate

u(t)≤ μ(t)+ v(t), v(t) :=
∫ t

τ

ρ(s)u(s) ds on I (1.24)

entails the explicit estimate

u(t)≤ μ(t)+
∫ t

τ

μ(s)ρ(s) exp

[∫ t

s

ρ(σ ) dσ

]
ds on I. (1.25)

In case μ(t) satisfies μ(τ)≤ μ(s)≤ μ(t) for all τ ≤ s ≤ t ≤ T , (1.25) implies

u(t)≤ μ(t) exp

[∫ t

τ

ρ(σ ) dσ

]
on I. (1.26)

Proof Estimate (1.24) yields v̇(t) = ρu(t) ≤ ρ(t)μ(t) + ρv(t). A multiplication
with the positive

m(t, τ )= exp

[
−
∫ t

τ

ρ(σ ) dσ

]

leads to (mv)· ≤mρμ, then, by integrating over [τ, t], to

u(t)≤ μ(t)+ 1

m(t, τ )

∫ t

τ

m(s, τ )ρ(s)μ(s) ds = μ(t)+
∫ t

τ

μ(s)ρ(s)m(s, t) ds,

and hence to (1.25). In case of a monotone μ, we use the estimate μ(s) ≤ μ(t) in
the integrand of (1.25) to arrive at (1.26). �

1.1.1.3 Scalar Bifurcations

Example 1.14 introduces an argument that can be applied to any autonomous scalar
initial value problem ẋ = f (x), x(τ)= ξ , with a continuously differentiable right-
hand side f :R→R when “uniqueness” and “existence on R” are guaranteed:

• Let x− and x+ be zeros of f , and let f be positive on (x−, x+). For ξ ∈ (x−, x+),
the solution ϕ(t; τ, ξ) is strictly increasing in t with limt→±∞ ϕ(t; τ, ξ)= x±.

Example 1.14 (Logistic growth model—Outlook on Lyapunov functions) We con-
sider the scalar model of logistic growth

ẋ = f (x) := ax
(

1− x

K

)
, x(0)= ξ ≥ 0, (1.27a)

with a quadratic polynomial f :R→R and positive parameters a andK . Stationary
solutions are given by ϕ0(t)= ϕ(t;0,0)≡ 0 and ϕK(t)= ϕ(t;0,K)≡K .
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In the discussion to follow, we use the fact that IVPs of the form (1.27a) have
unique solutions. Initial values ξ ∈ (0,K) will lead to strictly increasing solutions
in (0,K), whereas initial values ξ > K will entail strictly decreasing solutions in
(K,∞). In case such solutions exist for all t ≥ 0, they will be convergent as t→∞.
By an indirect argument, the limiting value of such solutions ϕ(t;0, ξ) with ξ > 0
is necessarily given by K : The stationary solution K acts as a supersolution for
solutions ϕ(t; τ, ξ) with ξ ∈ (0,K) and as a subsolution for ϕ(t; τ, ξ) with ξ > K .

On the other hand, solutions ϕ(t;0, ξ) with ξ > 0 and ξ 
=K can be easily found
by separation of variables. With the help of partial fractions we arrive, formally, at

eat = ∣∣x(K − ξ)∣∣/∣∣ξ(K − x)∣∣.
Because of the above a priori bounds, we can drop the absolute values to obtain

x(t)= Kξ

Ke−at + ξ(1− e−at ) , t ≥ 0. (1.27b)

It is easily verified that x(t) is indeed the solution ϕ(t;0, ξ) of the IVP (1.27a) on
the time interval [0,∞) with the asymptotic value K = limt→∞ ϕ(t;0, ξ).

It is worth noting that the two assumptions on “uniqueness” and on “existence
on R

+” have already led to the asymptotic value K (without the explicit formula
(1.27b)).

For an alternative argument, we may consider the scalar nonnegative function

V (x)=−
∫ x

K

(
1− s

K

)
ds = 1

2K
(x −K)2, x ∈R,

vanishing only at x =K . Along a solution x(t)= ϕ(t;0, ξ) of (1.27a) with ξ > 0,
existing on [0,∞), we have

d

dt
V
(
x(t)

)= Vx
(
x(t)

)
f
(
x(t)

)=−ax
(

1− x(t)
K

)2

≤ 0.

Therefore, V (x(t)) is convergent as t →∞, necessarily toward 0. This implies
the convergence of x(t) toward K . Test functions of this type will later be called
Lyapunov functions.

Remark 1.15 (Bifurcation diagrams) In analogy to the logistic growth model
(1.27a), we may discuss the following parameter-dependent initial value problems:

ẋ = f1(x,α)= α − x2, x(0)= ξ, (1.28a)

ẋ = f2(x,α)= x(α − x), x(0)= ξ, (1.28b)

ẋ = f3(x,α)= x
(
α − x2), x(0)= ξ, (1.28c)

for (x,α) ∈R
2 and all t ∈R. We note that α can be considered as the state variable

by adjoining the trivial equation α̇ = 0. Each of the three IVPs in (1.28a)–(1.28c)
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Fig. 1 Bifurcation diagrams in the (α, x)-plane: To the left, saddle-node bifurcation for (1.28a)
showing an attractive branch of equilibria in the first and a repulsive branch in the fourth quadrant.
To the right: Pitchfork bifurcation for (1.28c) showing two attractive branches for α > 0 separated
by the branch (α,0) of trivial equilibria x = 0. Theses are attractive for α ≤ 0 and repulsive for
α > 0

reveals for α < 0, α = 0, and α > 0 a drastically different behavior for its solutions
and their asymptotic limiting sets. A sketch in the (α, x)-plane of these limiting
sets as t→±∞, that is, of the zero-set of f (x,α), is called a bifurcation diagram
offering a saddle-node bifurcation in (1.28a), a transcritical bifurcation in (1.28b),
and a pitchfork bifurcation in (1.28c) (see Fig. 1).

In each of the three cases, the trivial steady state x ≡ 0 is critical for the param-
eter value α0 = 0 in the sense that the derivative (fj )x vanishes at (x,α) = (0,0).
Hence, the sufficient conditions of the implicit function theorem for the unique solv-
ability of f (x,α) = 0, in terms of x = x(α) near (x,α) = (0,0), are not satisfied.
In general, Descartes’s rule and Newton’s diagram are helpful tools to discuss the
zeros of polynomial right-hand sides f (x,α).

A trivial extension of (1.28c) into a two-dimensional state space is provided by

ṙ = r(α − r2), θ̇ = ω > 0 (1.29a)

in polar coordinates (r, θ) with x = (r cos(θ), r sin(θ))T, r ≥ 0, θ ∈ [0,2π). The
corresponding x-system reads

ẋ = F(x,α) :=
(
α − r2 −ω
ω α − r2

)
x. (1.29b)

If α passes from negative to positive values, the trivial solution r = 0 changes
from being attractive to being repulsive. For α > 0, all nontrivial solutions approach
the circle C(α) := {(r, θ) : r =√α} in the x-space, called “limit cycle”; see Fig. 2.
One solution generating this limit cycle is given by

x∗(t)=√α(cos(ωt + θ∗), sin(ωt + θ∗)
)T

for a fixed θ∗ ∈ [0,2π). A solution x(t)= r(t)(cos(θ(t)), sin(θ(t)))T is asymptoti-
cally in phase with x∗(t) if and only if θ(t) = ωt + θ0 = ωt + θ∗, that is, θ0 = θ∗.


