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Introduction

“... the difficulty of concepts increases as they approach
the primary truths in nature ...”

N. I. Lobachevsky

Lobachevsky geometry: sources, philosophical
significance, and its role in contemporary science

The aim of this book is to reveal the potential of Lobachevsky’s geometry in the
context of its emergence in various branches of current interest in contemporary
science, first and foremost in nonlinear problems of mathematical physics. Looking
“geometrically” at a wide circle of problems from the standpoint of Lobachevsky
geometry allows one to apply in their study unified approaches that rest upon the
methods of non-FEuclidean hyperbolic geometry and its highly developed tools.

The discovery of non-Euclidean hyperbolic geometry by the great Russian
mathematician Nikolai Ivanovich Lobachevsky, announced by him of the 12th
of February, 1826, inaugurated an important historical stage in the development
of mathematical thought as an axiomatically impeccably built new field of ana-
lytical knowledge. At the foundations of Lobachevsky’s geometry lies a complete
rethinking of the system of axioms of an intuitive geometry and the principles of
its construction. Lobachevsky’s geometry represented the crowning of attempts,
undertaken over many centuries by thinkers of different historical periods, at es-
tablishing the correctness of Euclid’s geometry that arose already at the dawn of
our era.

The system of axioms of the “new” geometry proposed by Lobachevsky differs
from the axioms of Euclidean geometry only through the formulation of Postulate
V (the Axiom of Parallels). Let us give descriptive formulations of the correspond-
ing variants of the Aziom of Parallels.

Euclid’s Postulate V: in a plane, given a line and a point not on it, at most one
line parallel to the given line can be drawn through the point.

Lobachevsky’s Axiom of Parallels: through every point that does not lie on a given
straight line there pass at least two distinct straight lines which lie in the same
plane as the given straight line, and which do not intersect that straight line.

A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems, 1
DOI 10.1007/978-3-319-05669-2_1, © Springer International Publishing Switzerland 2014



2 Introduction

The axioms of Euclid’s geometry that were not modified (19 axioms) form
the content of the so-called Absolute Geometry, a uniqued fundamental component
of the classical geometries.

Initially, the realization of what Lobachevsky’s ideas mean did run into cer-
tain difficulties, the roots of which are in all probability hidden in the primary
associative psychological perception of the notions and terminology it uses. For
this reason we should mention at the outset that in Lobachevsky’s geometry a
“straight line” must be understood as a shortest (geodesic) line, i.e., a line along
which the distance between any two points on it is minimal. At the same time,
the notion of “parallelism” of two “straight lines” presumes only that they do not
intersect and discards the familiar Euclidean property that two parallel straight
lines are equidistant (lie at the same distance from one another). Thus, in the
new non-FEuclidean geometry there arises, it seems, a separation, of holding out
classical notions and properties, interpretable “together” in Euclid’s geometry.

The conceptual result of Lobachevsky’s investigations is that Postulate V (or
the Axiom of Parallels) is an independent (self-standing) assertion, which is not
logically connected with the other adopted axioms. The possibility of “varying”
the formulation of the “Axiom of Parallels” results in the emergence of “inde-
pendent” geometries (the three known classical geometries: Euclidean, hyperbolic,
and spherical). Of these, the hyperbolic geometry constructed by Lobachevsky has
the special promising potential demanded by the modern scientific knowledge.

The new geometry, which rests on the introduced system of axioms, was
referred to as an “imaginary” geometry already by Lobachevsky himself, who
regarded it as a possible “theory of spatial relations”.

The subsequent historical development of this theory confirmed objectively
its depth and the fundamental prospects of its potential, as well as its definite
influence on the development of such domains of knowledge as geometry in general,
logic, differential equations, function theory, nonlinear problems of fundamental
science, and so on. The path to recognition of the new mathematical theory did
run, in particular, through achievements in the geometry of surfaces of negative
curvature, the theory of functions of one complex variable, and the theory of partial
differential equations.

In modern mathematical physics, the nonlinear modeling of Lobachevsky ge-
ometry shows up in such attributes of the aforementioned fields of knowledge as
solitons, Backlund transformations, pseudospherical surfaces, singularities, attrac-
tors, transcendents, and so on. As it turns out, in the investigation of many actual
nonlinear problems one can find a “unifying non-Euclidean common denominator”.

Lobachevsky’s works on the “theory of parallels” and
their influence on the development of geometry

Noting the particular significance of N. I. Lobachevsky’s geometric ideas and his
contribution to the development of the foundations of the axiomatic structure
of mathematical systems, we list below his works that founded the axioms of
non-Fuclidean hyperbolic geometry. The chronology of their public appearance
establishes beyond doubt the priority of N. I. Lobachevsky, and subsequently of
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the Russian scientific school of geometry, in the development of the concepts of
non-Euclidean hyperbolic geometry, in particular, of its relationships with other
promising branches of mathematics and fundamental science.

I.  “FEzxposition succincte des principes de la géométrie avec une demon-
stration rigoureuse du theorem des paralléles”.
February 12, 1826.

(“A concise exposition of the principles of geometry with a rigorous
proof of the theorem on parallels”.)

This is the first public scientific announcement on the discovery of the new
non-Euclidean geometry, made by N. I. Lobachevsky on the 12th of February 1826,
as a report at the session of the Physical and Mathematical Section of Kazan
university. The manuscript of the report was handed to three professors for safe
keeping (however, the manuscript did not survive).

II. “On the foundations of geometry” (Russian). Kazanskii Vestnik,
1829-1830.

This is a systematic exposition of Lobachevsky’s theory of parallel lines, the
foundations of a new “imaginary” geometry. The work was published in separate
parts over the period from February 1829 to August 1830 in the Kazanskii Vestnik
(The Kazan Messenger).

In this study Lobachevsky discusses first how, in his understanding, one has
to first establish and then logically develop the primary notions in geometry, and
subsequently obtain propositions and theorems. Further, developing these ideas,
Lobachevsky provides a systematic treatment (although in compressed form) of
the foundations of the theory of parallel straight lines, “reaching” in this way
the frontiers of analytic geometry: he finds the equations of straight lines and of
the most important curves. The final part of the memoir is devoted to effective
applications of the imaginary geometry to the calculation of simple and multiple
definite integrals. It is precisely in the possible applications of his new theory that
Lobachevsky always saw an additional confirmation of its truth and objectivity.

ITII. “Imaginary geometry” (Russian). Uchenye Zapiski Kazanskogo Uni-
versiteta, 1835.

IV. “Application of imaginary geometry to certain integrals” (Russian).
Uchenye Zapiski Kazanskogo Universiteta, 1836.

In these works Lobachevsky provides a more detailed, and accordingly more
accessible exposition of the ideas and results contained in the memoir [II]. In
his treatment of the subject, Lobachevsky chooses here the opposite approach:
starting from the relations that connect the sides and angles in a triangle in the
imaginary geometry, he shows that these relations cannot lead to contradictory
conclusions. Based on the relations used he obtains geometric properties of trian-
gles and parallel straight lines. He also considers applications of the new geometry
to calculus.

Soon after their publications, the works [III] and [IV] were also printed, with
minor changes and additions, in French, in the well-known European mathematical
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Journal Crelle—*“Journal fiir die reine und angewandte Mathematik”; this made
them more accessible to mathematical circles in Europe:

IITa. “Géométrie imaginaire”. Journal fir die reine und angewandte Ma-

thematik, 1836.

IVa. “Application de la géométrie imaginaire & quelques integrals”. Jour-
nal fir die reine und angewandte Mathematik, 1837

These articles were studied in detail by C. F. Gauss, the most prominent
mathematician of the XIXth century, who also came very close to realizing that
a non-Fuclidean geometry exists, calling it in his works anti- Fuclidean. However,
Gauss expressed his high praise of Lobachevsky’s results only in his private corre-
spondence with mathematician colleagues.

V. “New foundations of geometry with a complete theory of parallels”
(Russian). Uchenye Zapiski Kazanskogo Universiteta, 1835-1838.

This is the largest work of N. I. Lobachevsky, which sums up in detail, and in
the necessary cases develops, the results of his earlier works. It is from this memoir
that one can draw the most completely information on the global scientific, world-
outlook and philosophical views of this great mathematician.

In this work the fundamental notions of geometry are discussed in detail:
adjacency, cuts and the definition of the notion of point connected with them,
lines, surfaces, and also the basic theorems on perpendicular straight lines and
planes, relations in triangles, linear and angular measures, measuring of areas,
and others. Starting from more general fundamental premises (compared with
earlier works), a theory of parallel straight lines is constructed in detail. The
fundamental equations of the imaginary geometry are introduced. As a whole, in
this work Lobachevsky establishes the precise axiomatic foundations of geometry
and defines the principles of its logical development, accompanying them with the
corresponding foundational results in each of the fields he considered.

VI. “Geometrische Untersuchungen zur Theorie der Parallellinien”.
Berlin, 1840
(“Geometric investigations on the theory of parallels”).

The aim of this small, but, as it turned out, rather needed brochure, pub-
lished in Berlin in 1840, was to present in an intuitive and visual manner all the
fundamental ideas and results that constituted Lobachevsky’s new non-Euclidean
geometry. This aim was achieved; indeed, it is through this publication that the
wide mathematical community (and first of all, the European one) was able to
become acquainted and accept the ideas of the new geometry.

VII. “Pangeometry” (Russian). Uchenye Zapiski Kazanskogo Imper-
atorskogo  Universiteta (Scientific Memoirs of Kazan Imperial
University), 1855.

(see: “Pangeometry”, Edited and translated by Athanase Papadopou-
los, Heritage of European Mathematics, European Mathematical So-
ciety Publishing House, Ziirich, 2010.)
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This is essentially a summarizing work on geometry, in which Lobachevsky,
then already with the experience of a venerable mathematician, did collectively
generalize and complete, all the result and ideas stated in his earlier works.

The name “Pangeometry” itself implies and understanding of geometry in
its widest sense—as an all-geometry, which draws in all known (at that time)
geometric representations on space structures.

In 1856 a French translation of this work appeared in a collection of scientific
papers prepared for the 50th anniversary of Kazan University:

“Pangéométrie ou précis de géométrie fondée sur une théorie
générale et rigoureuse des paralleles”. Uchenye Zapiski Kazanskogo
Universiteta, 1856.

The works [I]-[VII] constitute the geometric herritage of the prominent Rus-
sian mathematician N. I. Lobachevsky, which allowed to broaden the understand-
ing of the very meaning of geometry as the science of the structure of space and,
accordingly, of the principles of its construction and establishment. Lobachevsky’s
contribution to geometry became a fundament and a kind of standard that make
possible the advancement of the mathematical world view as a whole.

In this connection let us mention the special role of the geometric investi-
gations of B. Riemann. In his 1854 lectures “Uber die Hypothesen welche der
Geometrie zu Grunde liegen” (“On the hypotheses which lie at bases of geome-
try”) Riemann formulated an original idea of mathematical space, the manifold,
in his terminology. According to Riemann, geometry should be considered as a
mathematical theory of continuous manifolds (different collections of homogeneous
objects of, generally speaking, different nature). In his investigations Riemann de-
velops a series of results on the intrinsic geometry of surfaces, a branch of geometry
founded by C. F. Gauss in his treatise “Disquisitiones generales circa superficies
curvas” (1827) (“General investigations of curved surfaces”). Intrisic geometry
studies those properties of a surface that are connected with direct measurements
on the surface. Riemann did effectively apply the notion of linear element, a metric
introduced on a manifold.

The geometric theory treated by Riemann rests on three conceptual compo-
nents, namely, the existence of the non-Euclidean Lobachevsky geometry, Gauss’
achievements in the theory of intrinsic geometry of surfaces, and the notion of
multi-dimensional space that took shape in mathematics at that time. An indis-
putable historical contribution of this research is the introduction of objects that
are today known as Riemannian spaces—spaces that are characterized by their
own curvature and which generalize our representations about Euclidean spaces,
Lobachevsky’s non-FEuclidean hyperbolic spaces, and the spaces of elliptic geome-
try studied by Riemann himself. The problem, formulated in Riemann’s work, of
understanding the origins of metric properties of spaces became the harbinger of
definite achievements in the general theory of relativity and, as will be shown in
this book, remained of actual interest in problems of geometric interpretation of
nonlinear differential equations of contemporary mathematical physics.

The fact that Lobachevsky singled out the aziom of parallels as an indepen-
dent, “self-standing” axiomatic assertion showed that a certain revision, a renewed
understanding and systematization of the axioms of geometry (axioms that lie at
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the foundation of absolute geometry), was needed. The solution of this fundamen-
tal mathematical problem and, thinking globally, deep philosophical question, was
presented by the prominent mathematician David Hilbert at the crossroads of the
XIX-XX centuries.

In his 1899 work “The foundations of geometry”, Hilbert proposed a com-
plete, separated into groups, system of axioms, which allows one, in the framework
of modern geometry, to develop all ensuing “geometric constructions” and obtain
the relations that connect them. At the basis of Hilbert’s approach is the adoption
of three primary systems of “things”: “points”, “straight lines”, and “planes”, the
elements of which can be in certain relationships, ruled by terms such as “be-
longs”, “are situated”, “between”, “parallel”, “congruent”, “continuous”, and so
on. The meaning of these very “things” (primary geometric “objects”), as well as
of the “relations” that connect them, is completely defined by the the logic context
of a complete set of stated axioms, divided into five groups: axioms of belonging
(or connection, or incidence), axioms of order, axioms of congruence, the axiom of
continuity, and the axiom of parallels. A detailed discussion of Hilbert’s axiomatics
is given in §1.1.

It is important to note that already Hilbert himself did emphasize that as
initial “things” one can take, in principle, elements of any nature, not necessarily
rigidly associated with the usual stereotypes of our perception of space. For exam-
ple, a “straight line” (thing) does not have to be a (Euclidean) straight line, and
so on. What matters is that in the system of “things” used the full compatibility of
the adopted system of axiomatic statements is preserved. This “geometric vision”
of Hilbert harnesses the serious potential of the global understanding of geome-
try, as well as generalized principles of axiomatic construction of a mathematical
theory.

Identifying the primary structural component— bricks—of the space being
modeled and prescribing the types of rules that connect them is an initial problem
of utmost importance in the process of creating a geometric theory. This is a
primary complex of problems, each model solution of which further deepens our
knowledge of the structure of real space and builds a “bridge” between Reality
and the descriptive formalism that approximates it.

All these foundational problems occupied the thoughts of thinkers in all pe-
riods of history. The principles on their rigorous scientific resolution with the aim
of building a geometric theory were extremely clearly formulated by the promi-
nent Russian geometer N. V. Efimov: “Geometry operates with notions that arise
from experience as a result of a certain abstraction of the objects of real world, in
which one pays attention to only certain properties of real objects; in rigorously
logic arguments when one proves theorems one deals only with these properties of
the objects—hence these properties must be mentioned in axioms and definitions;
all the other properties, which we got used to imagine when we hear the words
“point”, “straight line”, “plane”, play no role whatsoever in logical constructions
and should not be mentioned in the fundamental statements of geometry”.

Thus, Lobachehvsky’s new non-Euclidean geometry became a kind of impulse
to rethinking the bases and principles of the construction of modern geometry in
general.
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Recognition of non-Euclidean hyperbolic geometry and
its philosophical significance

The unquestionable priority of N. I. Lobachevsky in the discovery of non-Euclidean
hyperbolic geometry is established by his first public report “Ezposition succincte
des principes de la géométrie avec une demonstration rigoureuse du theoreme des
paralléles”, made on the 12th of February, 1826, at Kazan University. Further-
more, the fundamental contribution of this mathematical genius to the develop-
ment of analytical foundations of the new geometry, the Lobachevsky geometry, is
firmly established by a cycle of his scientific treatises, published over the subse-
quent 30 year period.! The first printed work of Lobachevsky was “On the foun-
dations of geometry” (1829-30, [II]), which Lobachevsky himself called an extract
from “Exposition”.

This work has priority also over the scientific work of the prominent Hungar-
ian mathematician Janos Bolyai, published in 1831 as an appendix “Appendiz, Sci-
entam spatii absolute veram exhibens (“Appendix Explaining the Absolutely True
Science of Space independent of the truth or falsity of Euclid’s axiom XTI (which can
never be decided a priori)”), which contains his results on the fundamental propo-
sitions of non-Euclidean geometry. However, the brilliant independent geometric
ideas of Janos Bolyai were not destined to have significant continuation because
of the following life conflict. At the beginning of 1832 Bolyai’s work reached C.
F. Gauss, who in a letter to his long-standing friend Farkas Bolyai (Jdnos’ father)
communicated that the results he did draw from “it Appendix” where a subject
of his thoughts already for a long time and, essentially, were identical with the
conclusions that he reached?, concerning which now he cannot further undertake
fast attempts to publication (“To praise it would amount to praising myself. For
the entire content of the work ... coincides almost exactly with my own medita-
tions which have occupied my mind for the past thirty or thirty-five years”). Later,
in a letter to Gerling,®> Gauss wrote about Bolyai’s work: “I consider this young
geometer, v. Bolyai, to be a genius of the first class ...” J. Bolyai, however took
Gauss’ judgement with prejudice, deciding that Gauss intended to take away the
priority of his ideas. It is probably precisely J. Bolyai’s prejudice to C. F. Gauss
that became a kind of barrier to the further in-depth development of the geometric
theory that he announced. No longer than a decade after, Bolyai was recognized
as one of the prominent geometers of the first half of the XIXth century, and in
1902, with the occasion of the anniversary of 100 years from his birth, a prize
bearing his name was established, laureates of which were later geometers like H.
Poincaré (1905) and D. Hilbert (1910).

The advancement of the new non-Euclidean hyperbolic geometry is inti-
mately related to the personality of Carl Friedrich Gauss, the greatest German
mathematician, whose very deep mind and extraordinary mathematical insight
allowed him to immediately understand and accept the objective existence and
prospects of the geometry that was taking shape. This is confirmed by the afore-
mentioned opinion-letter to Bolyai and the subsequent comments of this great

ncluding translations into foreign languages by well-known European publishers.
2But not published by Gauss.
3V. S. Malakhovsky, “Selected Chapters on the History of Mathematics”.
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mathematician on the extensive work of N. I. Lobachevsky that he made in his
private correspondence with colleagues in mathematics. Unfortunately, for reasons
known only to Gauss himself, he did not feel that he could publicly discuss at extent
this system of representations on the new non-Euclidean geometry which, beyond
any doubt, emerged independently in his thinking, and, probably, was reflected in
personal scientific notes, a fact witnessed not only by Gauss’ own comments, but
also by the the conclusions reached by the historians of mathematics of his time.

The translations of Lobachevsky’s works of 1836 “Géométrie imaginaire”
([IIa]) into French (1840) and “Geometric investigations on the theory of paral-
lels” ([VI]) into German became accessible to Gauss. Becoming acquainted with
Lobachevsky’s investigations, Gauss expressed careful opinions about them, but
only in private correspondence. An example is the following fragment from a let-
ter of Gauss to his astronomer friend H. Schumacher (1846): “You know that
for 54 years now (even since 1792) I have held the same conviction (with some
later enrichment, about which I don’t want to comment here). I have found in
Lobachevsky’s work nothing that is new to me. In developing the subject, the au-
thor followed a road different from the one I took myself; Lobachevsky carried out
the task in a masterly fashion and in a truly geometric spirit. I consider it a duty
to call your attention to this work, since I have no doubt that it will give you a
tremendous pleasure ...”

Gauss played a special role in the geometric contributions of Lobachevsky
achieving recognition, expressing (in the form of “personal communications”) his
authoritative opinion on the results about the new non-Euclidean geometry to
a sufficiently wide circle of respected scientist of his time. It is due to Gauss’
recommendation that in 1842 Lobachevsky was elected corresponding member of
the Royal Society of Gottingen.

Thus, we see that at the source of the propositions of the new non-Euclidean
geometry in the first half of the XIX-th century stood three giants of mathemat-
ics: N. I. Lobachevsky, J. Bolyai, and C. F. Gauss. However, the historical role
Lobachevky played in this direction was special, since besides the titanical work
at elaborating the new theory, he took upon himself the heavy burden of “adapt-
ing” it to the scientific and social communities, which in essence is always a main
condition for the strengthening and advancement of any “revolutionary” body of
knowledge.

The work of the Italian mathematician E. Beltrami “Saggio di interpretazione
della geometria non-euclidea” (1868) represented the next stage in strengthening
the position of the new non-Euclidean geometry; the results obtained therein al-
lowed to bring Lobachevsky’s geometry out of the category of “imaginary geome-
tries” as a geometry that admits its own interpretation (though only partially)
in the framework of the habitual Euclidean representations. Beltrami, studying
the behavior of geodesics on the surface of the pseudosphere, established that the
metric of the pseudosphere is identical in form with the metric of the Lobachevsky
plane in a certain domain of it (more precisely, in a horodisc). That is, the conclu-
sion was reached that on the pseudosphere, which is a surface in Euclidean space,
there are realized all intrinsic-geometric laws of Lobachevsky’s two-dimensional
geometry (as applied to the indicated domain).
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The final acceptance of non-FEuclidean hyperbolic geometry by the scien-
tific community came with the introduction of “virtual Euclidean representations
(models)” for the complete Lobachevsky plane and is connected with the model in-
terpretations of the two-dimensional Lobachevsky geometry proposed by F. Klein
(in 1871) and H. Poincaré (in 1882). The Cayley-Klein model (the Klein model
in the disc of the Euclidean plane which uses Cayley’s projective metric) and
the Poincaré model in the disc and in the half-plane (in the complex plane) are
discussed in detail in §1.2.

Speaking about the coming into life of Lobachevsky’s geometry, it is neces-
sary also to mention the works of the Russian mathematician F. Minding during
the years 1838-1839 (see §1.3) in which, in particular, he described all surfaces
of revolution of constant negative curvature, namely, the pseudosphere and the
surfaces know today as the Minding bobbin and Minding top, and obtained the
form of the linear element for surfaces of this type. Interestingly, Minding himself
noted the validity of the formulas of trigonometry on surfaces of constant negative
curvature, derivable from the corresponding trigonometric formulas in spherical
geometry by replacing the trigonometric functions involved by the “analogous”
hyperbolic functions. Beltrami (in 1868) referred to these results of Minding when
he analyzed the pseudosphere and emphasized that the aforementioned trigono-
metric relations are trigonometric formulas in Lobachevsky’s geometry. Unfortu-
nately, Minding himself did not pose the problem of connecting his results with the
Lobachevsky geometry that was taking shape at that time. And Lobachevsky, by
irony of fate, missed those issues of the scientific journal he regularly browsed that
contained Minding’s works, in which the first intuitive geometrical images of the
new non-Euclidean geometry arose. What an extraordinary historical occurrence!

Historians of mathematics should also devote consideration to the personal-
ity of J. C. M. Bartels* and his “special mission of accompanying and supporting”
the creators of contemporary non-Euclidean geometry. Already at the beging of
his career of mathematician and pedagogue, Bartels became the teacher of the
future king of mathematics C. F. Gauss at the Katherinenschule in Braunschweig.
It is due to Bartels’ efforts that the young Gauss received from the Duke of Braun-
schweig a scholarship to continue his education. In the 12-year period of his activity
that followed (starting with 1808), Bartels served as a professor at the newly es-
tablished Kazan University, and according to recollections of his contemporaries,
in known situations he watched over and defended his capricious student Niko-
lai Ivanovich Lobachevsky. Finally, from 1820 on, Bartels taught and engaged
in scientific research at the Dorpat (now Tartu) University, where he founded the
Centre for Differential Geometry. Afterwards, at the end of the 30th (in the XIXth
century), F. Minding, a professor also at Dorpat University, obtained important
results on surfaces of revolution of constant negative curvature, on which a partial
realization of non-Euclidean hyperbolic geometry takes place. It is amazing that
no accounts or results are available that could shed light on Bartels’ own about
judgements about the new non-Euclidean geometry and on discussion with his
colleagues on this theme. However, there is no doubt that under the influence ex-
erted by this prominent mathematician his students acquired a high mathematical

4Johann Christian Martin Bartels was a German and Russian mathematician, a corresponding
member of the St. Petersburg Academy of Science.
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culture. The scale of Bartels’ personality is also witnessed by the fact that for his
exceptional contribution to science and education he was awarded the (practically
inaccessible to scientists) high Russian government title of secret adviser.

An outstanding achievement of human thought can become part of the over-
all intellectual-spiritual heritage only when it reflects, to a certain extent, the
demands of the scientific and cultural society of its time. This is equally true for
Lobachevsky’s geometry, as a theory that expands the boundaries of the mathe-
matical ideas and philosophy of space. Undoubtedly, a historical factor concomi-
tant with Lobachevsky’s doctrine was the intellectual society in XIXth century
Russia, divided at times by contradictions in world outlook, yet constantly pre-
serving the need for a deep understanding of the meaning of existence, this being
a characteristic trait of Russian national mentality.

Overall, in Russia the situation around Lobachevsky’s doctrine turned out to
be rather positive. This is demonstrated by fact Lobachevsky had the opportu-
nity to regularly present parts of the theory he was developing in publications of
Kazan University, who he led as rector starting in 1827, and to organize and par-
ticipate in public debates. Nevertheless, there were also some negative instances,
such as academician M. V. Ostrogradsky’s rejection of the work “On the founda-
tions of geometry”, submitted to the Council of Kazan University in the Academy
of Sciences. Also, in 1834, F. Bulgarin’s well-known literature and general poli-
tics journal “Crin oteuecrsa” (“Son of the fatherland”) published an extensive
(anonymous) paper that “ridiculed” in a narrow-minded manner the doctrine of
the new non-Euclidean geometry, as well as Lobachevsky himself. At the same
time, though, one must speak also about the begining of the penetration of the
ideas of the new geometric theory in European scientific circles and, generally,
about the rise of the scientific interest in problems related to the direction of re-
search under discussion, a confirmation of which is represented, for instance, by
the construction of the “Minding surfaces”, and so on.

In Russia, as time went on, something bigger than just recognition as a geo-
metric discovery was awaiting Lobachevsky’s theory: the fruits of the scientific in-
vestigations of Lobachevsky found reflection in the thinking of the most prominent
Russian minds of the XIXth century and became integral part of the discussions of
Russian intellectuals in their endless quest for understanding the universe. Opin-
ions on non-Euclidean geometry can be found, for example, in the philosophical
polemic of the main heroes of the novel “The Brothers Karamazov” by the great
Russian writer and thinker F. M. Dostoyevsky:® “Yet there have been and still
are geometricians and philosophers, and even some of the most distinguished, who
doubt whether the whole universe, or to speak more widely, the whole of being,
was only created in Euclid’s geometry; they even dare to dream that two parallel
lines, which according to Euclid can never meet on earth, may meet somewhere
in infinity.”®

Dostoyevsky, who had a serious basic mathematical education, sensed the
subtleties of the circle of problems reached by the mathematical thought at the
middle of the XIXth century, composed of questions on the foundation of mathe-
matics, abstract problems of the geometry of space, and so on.

5See, e.g., “The Brothers Karamazov”, Farrar, Straus and Giroux, 2002.
6See the translation at http://fyodordostoevsky.com/etexts/the_brothers_karamazov.txt
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One can also speak of the particularly pronounced predisposition of the Rus-
sian national culture as a whole to comprehend, in particular, the new ideas of
non-Euclidean geometry, which, it seems, were laid at the roots of its civilization.
Important “facets”, it would appear, of the unusual non-Euclidean geometry were,
at the contemplative level of perception, imprinted in consciousness over a period
of almost a thousand year of history of the new civilization in ancient Russia
(Pycn), which adopted the spiritual Christian principles of Byzantium and intro-
duced in this inheritance the truly Slavic traditions and knowledge, expressed in
special forms (shapes, images) that are not found in any other culture. Among such
forms, for example, are the onion-shaped cupolas (domes) that crown the tops of
innumerable Russian orthodox churches. The upper part of such an onion cupola,
which extends in a harmonious way its central part (a sphere), rising towards the
Sky, realizes a shape that from a contemporary analytic point of view belongs to
hyperbolic geometry (it is the classical shape of a surface of revolution of negative
curvature). It is natural to regard this part of the cupola as a model of a part
of the upper sheet of the pseudosphere”, a canonical surface that tends towards
the point at infinity on the Absolute. Such an embodiment of the cupola shape
in space can be traced through the Russian orthodox tradition starting from at
least the first half of the XIIth century, and signifies the trinity of intuitive geome-
tries accessible to human perception. To wit, starting with the indicated historical
period, one can speak with confidence about the appearance of artificial forms
that from the contemporary point of view belong to hyperbolic geometry or, in
other words, about the results of the precise practical development of elements of
non-Fuclidean geometry. It is particularly remarkable that all that was mentioned
above took place more than five hundred years before the discovery by I. Newton,
G. Leibniz, and others of the differential and integral calculus, which lies at the
foundations of the contemporary scientific and technological paradigm.

Side by side with the aforementioned contribution of N. I. Lobachevsky to
the development of a global mathematical conception, we should address also the
philosophical value of Lobachevsky’s geometry as a theory that influences the
development of various fields of knowledge. The general philosophical value of
Lobachevsky’s geometry can be described as follows. First, this geometric the-
ory had a decisive role in the formation of the analytic conception of possible
intuitive geometries (side by side with the Euclidean and spherical geometries) in
the Euclidean space habitual to a human being (a passive observer). Figuratively
speaking, Lobachevsky’s geometry became the third, crowning crystal in the triad
of intuitive geometries. Second, the geometric theory itself became a tool 8(rather
than an aim, and, the more so, not a “scientific end in itself”), promoting the de-
velopment of other fields of knowledge that lie at the foundation of contemporary
philosophy and practice.

The stable growth in strength of a scientific theory over a long period of
history is not possible without devoted followers, prominent scholars capable of
developing its fundamental ideas. The author finds his duty to mention here a
pleiad of eminent Russian scientists-mathematicians, “guardians of the space of

7Concerning the pseudosphere see §1.3 and §2.4.
8 Already Lobachevsky himself actively applied the theory he developed to the calculation of
complicated definite integrals, regarding this as an additional argument in favor of its truth.
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Lobachevsky’s ideas”, the names of which are connected with the advancement and
popularization of Lobachevsky’s geometric doctrine in Russia and abroad over the
last, more than 150 years. Here we should mention, among others, A. V. Vasil'ev,’
A. P. Kotel'nikov, P. A. Shirokov, B. L. Laptev, A. P. Norden, V. F. Kagan,
Yu. Yu. Nut, A. S. Smogorzhevskii, N. V. Efimov, and E. G. Poznyak. Special
contributions to the development of Lobachevsky’s geometry and its applications
are due to the scientific geometrical schools of Kazan and Moscow universities.

Structure and contents of the book

The exposition in the book begins with the consideration of the key elements lying
at the foundation of Lobachevsky’s geometry, including its interpretations (mod-
els), and is carried out in a form adapted to the methods of modern geometry,
function theory, and the theory of nonlinear differential equations. The central
part of the book is devoted to problems connected with various aspects of the
realization of hyperbolic geometry in Euclidean space, the study of pseudospheri-
cal surfaces, and the elaboration of effective geometric approaches to the study of
certain nonlinear partial differential equations of mathematical physics, in partic-
ular, in the context of physical applications. The main text is organized into five
chapters, preceded by the Introduction.

The first chapter is devoted to the foundations of Lobachevsky’s geometry,
consisting of three basic “ingredients”: axiomatics, model interpretations, and the
analysis of surfaces of revolution of constant negative curvature. These sections
are structured with a view to the subsequent applications of the results presented
in actual problems of mathematical physics. We also consider examples of C'-
regular surfaces of revolution with different signs of the curvature, which realize a
harmonious combination of the classical intuitive geometries.

The second chapter deals with general problems connected with the real-
ization of the two-dimensional Lobachevsky geometry in the three-dimensional
Euclidean space E3. Here it is natural to interpret the Lobachevsky geometry as
geometry of a two-dimensional Riemannian manifold of constant negative curva-
ture. In this connection we introduce the fundamental systems of equations of
the theory of surfaces in E? and discuss specific features of the application of the
tools presented to the analysis of surfaces of constant negative Gaussian curva-
ture. In this chapter we consider such canonical geometric objects as the Beltrami
pseudosphere and Chebyshev nets. We also examine D. Hilbert’s results on the
impossibility of realizing the complete Lobachevsky plane in the space E3. We
mention the fundamental connection between surfaces of pseudospherical type and
the sine-Gordon equation, a geometrically universal nonlinear partial differential
equation. We give a brief survey of a number of fundamental results on isometric
immersions of Riemannian metrics of negative curvature in Euclidean spaces.

The third chapter is devoted to geometric aspects of the sine-Gordon equa-
tion. We study the geometric notion of Backlund transformation for pseudospher-

9Special mention is due to the scientific-biographical works of A. V. Vasil’ev [13], which
provide a detailed exposition of the life path of N. I. Lobachevsky and an analysis of his scientific
achievements.
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ical surfaces. At the same time we remark that the application of the method
of Bécklund transformations for the construction of exact solutions of nonlin-
ear differential equations is one of the most effective approaches in mathematical
physics. Special attention is given to the class of soliton solutions of the sine-
Gordon equation and their geometric interpretation on the example of classical
surfaces—the pseudosphere and the Dini surface—as well as to the study of the
classes of two-soliton and breather pseudospherical surfaces. We investigate the
Painlevé transcendental functions of the third kind, which form a special class
of self-similar solutions of the sine-Gordon equation, the geometric interpreta-
tion of which in E? is provided by Amsler’s pseudospherical surface. Further, we
study fundamental solvability questions for certain classical problems of mathe-
matical physics, namely, the Darboux problem and the Cauchy problem for the
sine-Gordon equation; we then use the results obtained to derive important geo-
metric generalizations and consequences. In particular, we show how to construct
solutions of the sine-Gordon equation on multi-sheeted surfaces. Moreover, based
on the unique solvability of the Cauchy problem for the sine-Gordon equation pre-
sented in this chapter we prove a theorem on the unique determinacy of pseudo-
spherical surfaces (the fact that a pseudospherical surface is uniquely determined
by the corresponding initial data on its irregular singularities). We discuss classical
questions connected with the Joachimsthal-Enneper surfaces, indicating the con-
nection between these surfaces and classes of solutions of the sine-Gordon equation
obtained by the method of separation of variables. The final section of the chap-
ter is devoted to the fundamental connection that exists between the method of
the inverse scattering transform and the theory of pseudospherical surfaces. This
connection is expressed by the fact that the basic relations that arise in these two
different branches of mathematics are structurally identical. On the whole, all the
essential questions considered in Chapter 3 point to the presence of a significant
geometric component connected with Lobachevsky’s geometry in a wide spectrum
of problems of topical problems of mathematical physics.

In Chapter 4 we present a geometric approach to the interpretation of cer-
tain nonlinear partial differential equations which connects them with special
coordinate nets on the Lobachevsky plane A2. We introduce the notion of the
Lobachevsky class of partial differential equations (A%-class), equations that admit
the aforementioned interpretation. The resulting geometric concepts for nonlinear
equations allow one to apply in their study the well developed tools and methods of
non-Euclidean hyperbolic geometry. Many well-known nonlinear equations, among
them the sine-Gordon, Korteweg-de Vries, Burgers, and Liouville equations, etc.,
which compose the A2 class, are generated by their own coordinate nets on the
Lobachevsky plane A2. This makes it possible to investigate these equations by
net (intrinsic-geometrical) methods that rest on Lobachevsky’s geometry. Over-
all, the chapter is devoted to laying the foundations of the geometric concept of
A2-equations; in it we also discuss the prospects of applying geometric methods
of hyperbolic geometry to the constructive analysis of differential equations.

In Chapter 5 we consider applications of the geometric formalism proposed
in Chapter 4 for nonlinear differential equations to problems of theoretical physics
and the theory of difference methods for the numerical integration of differential
equations.
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In the first part of the chapter we introduce the notion of non-Fuclidean
phase spaces, which are nonlinear analogs (with non-zero curvature) of the phase
spaces of classical mechanics and statistical physics, and of the Minkowski space
of the special theory of relativity.

The concept of non-Euclidean phase spaces rests on the principle of identity
between the metric of the phase space and the metric generated by the model
equation that describes the physical process under investigation. Due to the non-
triviality of the curvature of non-Euclidean phase spaces, they exhibit singularities,
which acquire the physical meaning of attractors and determine the behavior of
regular phase trajectories. Non-Euclidean phase spaces represent a kind of “curvi-
linear (non-Euclidean) projection screens” on which the evolution of the physical
process under consideration is displayed in regular manner. This in turns leads to
the establishment of general principles governing the evolution of the correspond-
ing physical systems. By the nature of the approaches employed, the material
discussed belongs first and foremost to the methodology of mathematical physics.

In the second part of the chapter, based on the elaborated methodology
of discrete coordinate nets on the Lobachevsky plane, we propose a geometric
algorithm for the numerical integration of A2-equations. The realization of such an
approach is connected exclusively with the planimetric analysis (in the framework
of hyperbolic geometry) of piecewise-geodesic discrete nets in the plane A% which
in the limit go over into the smooth coordinate net that generated the A%-equation
under study. The implementation of the method is demonstrated on the example
of the sine-Gordon equation; to construct the geometric algorithm for its numerical
integration, one needs to study discrete rhombic Chebyshev nest on the plane A2.

In the framework of the general geometric approach, the present monograph
covers a rather wide spectrum of problems, starting with problems on the founda-
tion of geometry and ending with methods for the integration of nonlinear partial
differential equations of mathematical physics and the formulation of a number
of general principles governing the evolution of physical systems. In the author’s
view, making such a diverse material accessible to the reader was possible only by
varying the level of rigorousity of the exposition so that it reflects in each individual
problem considered the established traditions and methodology of study.

The book is addressed to a wide circle of specialists in various fields of math-
ematics, physics, and science in general.



Chapter 1

Foundations of Lobachevsky
geometry: axiomatics, models,
images in Euclidean space

This first chapter is devoted to an exposition of the foundations of Lobachevsky
geometry, formed by three classical components: axiomatics, model interpreta-
tions, and investigation of surfaces of constant negative curvature. The discussion
of these parts is carried out keeping in mind what is required for their application
to problems of contemporary mathematical physics.

1.1 Introduction to axiomatics

Constructing the foundations of geometry amounts to establishing a complete and,
at the same time, sufficiently simple and consistent system of axioms (statements,
the truth of which is accepted without proof), and the derivation from them, as
logical consequences, of the key theorems of geometry. The principal requirements
for the system of axioms are completeness, minimality of the collection of assertions
involved, and their consistency. In this section we present, following the universally
recognized work of D. Hilbert [17], the axiomatics adopted in modern geometry.

Hilbert’s axiomatics starts by introducing three different systems of “things”,
primary geometric objects. The things of the first system are called points, those
of the second (straight) lines, and those of the third, planes. The points are the el-
ements of linear geometry; the points and lines are the elements of plane geometry;
and the points, lines, and planes are the elements of space geometry. It is assumed
that the points, lines, and planes are in certain relations, which are referred to by
the words “lies”, “between”, “congruent” (equal), “parallel”, continuous”, and so
on. The precise meaning of the terms that express relationships is specified by the
content of the corresponding (groups of) axioms of geometry.

Let us list the axioms of geometry, dividing them into five groups.

A. Popov, Lobachevsky Geometry and Modern Nonlinear Problems, 15
DOI 10.1007/978-3-319-05669-2_2, © Springer International Publishing Switzerland 2014
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Axioms of belonging (or of incidence) (8 axioms).
Axioms of order (4 axioms).

Axioms of congruence (equality) (5 axioms).
Axioms of continuity (2 axioms).

Axiom of parallels.

The axioms of groups I-IV (19 axioms) are shared by Euclidean geometry as well
as by Lobachevsky geometry, and constitute the axiomatics of Absolute Geometry.
Adding to them the Axiom of Parallels results in the complete system of axioms
of either Euclidean geometry, or of Lobachevsky geometry. Let us now formulate
the axioms, remarking that usage in axioms of the plural for geometric objects
presumes that these objects are distinct (e.g., “two points” means “two distinct
points”).

Axioms

I. Axioms of belonging (incidence)

1.

For any two points A and B there exists a straight line a that passes through
each of the points A and B (Figure 1.1.1).

A B

Figure 1.1.1

. For any two points A and B there exists no more than one straight line that

passes through both A and B (Figure 1.1.1).

. On each straight line there exist at least two points. There exist at least three

points that do not lie on the same straight line.

. For any three points A, B, C that do not lie on the same straight line there

exists a plane « that contains each of the points A, B, C. For every plane
there always exists a point which it contains.

. For any three points A, B, C that do not lie on one and the same straight

line there exists no more than one plane that passes through each of these
three points.

. 1If two points A, B of a straight line a lie in a plane a, then every point of a

lies in the plane a.

(In this case one says: “the straight line a lies in the plane o, or “the plane
« passes through the straight line a”.)

If two planes o and 8 have a point A in common, then they have at least one
more point B in common.
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8. There exist at least four points that do not lie in one plane.

Following Hilbert [17] and the later classical works of V. F. Kagan [38] and
N. V. Efimov [25] on the foundations of geometry, in the formulation of axioms
we, while taking care to preserve the correct statement of the axioms, used for the
terms expressing the relations between “things” the corresponding notions that
are more customary in modern mathematics. Incidentally, these mathematical
“synonyms” were given already by Hilbert himself. Thus, for example in Axioms
I.1, 1.2 we used: “the line a passes through the points A and B” instead of the
equivalent “in meaning” as well as admissible formulation “the straight line a is
incident to each of the points A and B”. Furthermore, for example, instead of the
possible statement “the point A lies on the straight line a” one used “the point
A is incident to the straight line a”. Also, expressions “the straight lines a and b
intersect in the point A” and “the straight lines a and b have a common point”
are equivalent, and so on.

Commenting upon the eight axioms of group I, which Hilbert referred to as
axioms of incidence, let us point out that their “diversity of meaning” is deep and
is aimed at optimizing the approach by which one derives their consequences. As
an example, consider the first two axioms 1.1 and 12, which in the standard modern
courses on mathematics are replaced by a single (more “content-loaded”) axiom:
“through any two distinct points there always passes a unique straight line”. This
last formulation is undoubtedly correct, but to derive further geometric conse-
quences, one in fact does not employ its full “meaning capacity”; rather, it is only
applied partially, in accordance with the content of axioms I.1 and I.2.

Based on just the axioms I.1-1.8 of the first group, one can now, for example,
prove the following theorems [17,25]:

Theorem 1. Two straight lines that lie in one and the same plane have no more
than one common point. Two planes either have no point in common, or they have
a common straight line, on which all the common points of the two planes lie. A
plane and a straight line that does not lie on it either have no common point, or
have only one common point.

Theorem 2. Through a straight line and a point that does not lie on that straight
line, as well as through two distinct straight lines with a common point, there
always passes one and only one plane.

II. Axioms of order

1. If the point B lies between the point A and the point C, then A, B and C
are distinct points of one straight line, and the point B also lies between the
point C and the point A (Figure 1.1.2).

2. For any two points A and C, on the straight line AC there exists at least
one point B such that the point C' lies between the point A and the point B
(Figure 1.1.3).

3. Of any three points on a straight line there exists no more than one that lies
between the other two.
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A B C A C B

Figure 1.1.2 Figure 1.1.3

Definition. On a straight line a consider two points A and B; the system of two
points A and B is called a segment and is denoted by AB or BA. The points
lying between A and B are called points of the segment AB (or interior points
of the segment); the points A and B themselves are called the endpoints of the
segment AB. All the remaining points of the line a are called the external points
of the segment AB.

4. Pasch’s Axiom. Let A, B, and C be three points that do not lie on a straight
line, and let a be a straight line in the plane ABC' that does not pass through
any of the points A, B,C. If the straight line a passes through one of the
points of the segment AB, then it necessarily passes also either through a
point of the segment AC, or through a point of the segment BC. (Figure
1.1.4)..
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By their essence, the Axiom of group II define the notion of bewteen.

Based on this one can introduce an order for points on a straight line, in
plane, or in space. The axioms of order were study in detail by the German math-
ematician M. Pasch [181].

The addition of the axioms of Group II to the axioms that we already con-
sidered allows one to obtain many important consequences [17, 25], among which
we mention here the following examples:

Theorem 1. Among any three points A, B, C lying on the same straight line there
is one that lies between the two other.

Theorem 2. Between any two point of a straight line there exists infinitely many
other points of the straight line.

Theorem 3. If the points C and D lie between the points A and B, then all the
points of the segment C'D belong to the segment AB.

ITI. Axioms of congruence (equality)

The axioms of Group III will be formulated and commented upon simultaneously.
This approach will allow the reader from the very beginning to follow the logic
of the development of the content of the axiomatic statements of this group. The
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axioms in Group IIT define the notion of congruence (equality), and accordingly
allow one to introduce the notion of motion.

To designate certain mutual relations that can hold between segments we
use the term “congruent” (or “equal”). This kind of relation between segments is
described by the axioms of Group III.

1. If A and B are two points on the straight line a and Ay is a point on another
straight line o', then it is always possible to find a point By on a given side
of the straight line a’ such that the segments AB and A1Bi1 are congruent
(equal) (Figure 1.1.5).

In particular, for the straight line a’ one can also take the straight line a itself.

Figure 1.1.5

The congruence (equality) of the segments AB and A; By will be denoted by
AB = A1 B;.

Axiom III.1 allows one to superpose equal segments.

We note that, according to the definition given above, a segment is given
as a system of two points A and B, with nothing being said about the order in
which they are positioned. Consequently, the following relations are equivalent in
meaning:

AB=AB,, AB=DBiA;, BA=AB), BA=DBA.

2. If both the segment A1 By and the segment As By are congruent to the segment
AB, then the segments A1 By and As By are also congruent to each other.

In other words, if two segments are congruent to a third segment, then they are
congruent to one another.

3. Let AB and BC be two segments on a straight line a that have no common
interior points, and let A1 By and B1C be two segments on a straight line a’
that also have no common interior points. If

AB =A:B,, BC=B(C,

then
AC = ACY.
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Axiom II1.3 allows one to add segments.
To formulate the next two axioms of Group II we need to introduce the notion
of an angle.

Definition A pair of half-lines (a system of two rays) ¢ and k that originate at one
and the same point O and do not belong to one straight line is called an angle,
and is denoted by Z(¢, k) (Figure 1.1.6).

Z(0,k)
9 7

Figure 1.1.6

By half-line (or ray) with the origin at the point O one means the set of all
points on a straight line that lie on the same side with respect to the point O. The
rays ¢ and k are called the sides of the angle Z(¢, k).

Angles can find themselves in a certain relation, termed “congruence” or
equality, which is “governed” by Axioms III.4 and III.5.

4. Suppose that on the plane a there is given an angle Z(¢, k) and there is given
a straight line o' in the same plane or some other plane o, and also that a
side of the plane o/ with respect to the straight line o' is chosen. Let ¢’ be a
ray of the straight line a' starting from a point O'. Then in the plane o there
exists one and only one ray k' such that the angle Z(¢' k') is congruent to the
angle Z(¢, k), and at the same time all interior points of the angle Z(¢', k")
lie on the chosen side with respect to the straight line a'.

The congruence (equality) of angles is denoted by
L0 k) =20 K.
Each angle is congruent to itself:
L, k) = Z(k,0).

Axiom I11.4 alows one to lay out angles: each angle can be placed, in a unique
way, in a given plane, on a given side with respect to a given ray.

Before we formulate Axiom II1.5 (the final axiom of Group III), let us clarify
the notion of a triangle. By a triangle A ABC we mean a system of three segments,
AB, BC, CA, which are called the sides of the triangle; the points A, B, C are
called the vertices of the triangle.

5. If for two triangles, NABC and ANA1B1C1, it holds that
AB = AlBl, AC = AlC’l, /BAC = ABlAlCl,
then there also holds the equality (congruence)

LABC = £A1 B Ch.
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Remark. ZABC denotes the angle with vertex B, on one side of which lies the
point A, and on the other, the point C.

The first three axioms III.1-1I1.3 are linear axioms, because they concern
only congruence of segments. Axiom III.4 defines the congruence of angles. Axiom
ITI.5 connects congruence of segments as well as of angles. The last two axioms
of Group IIT may be referred to as plane axioms, since they are assertions on
geometric “objects” in the plane.

Using the axioms of Group III one introduces in geometry the notion of
motion, as follows.

Consider two sets, ¥ and ¥/, between the points of which there is a one-to-one
correspondence. (By set we mean a finite or infinite collection of points.) Any two
points A, B € ¥ define a segment AB, and the points A’, B’ € ¥’ corresponding to
them give a segment A’ B’; we will say that the segments AB and A’ B’ correspond
to one another. If under the given one-to-one correspondence between ¥ and X’
any two corresponding segments are equal (congruent), then the sets ¥ and ¥’ and
also said to be equal (congruent) In this case one say that the set ¥’ is obtained
by a motion of the set ¥, and conversely, ¥ is obtained by a motion of ¥'.

The completion of the axiomatic system discussed by the axioms of con-
gruence (Group IIT) makes it possible to obtain new wide classes of geometric
consequences, which are considered in detail in, e.g., [25, 38].

IV. Axioms of continuity

1. Archimedes’ Axiom. Let AB and CD be two arbitrary segments; then on the
straight line AB there exist a finite number of successively arranged points
Ay, Ao, As, ..., Ay such that the segments AA1, A1 As, AsAs, ..., An_1A, are
congruent to the segment C'D and the point B lies between the points A and
Ay (Figure 1.1.7).
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Axiom IV.1 is also called the azxiom of measure. According to its meaning, the
segment C'D is a standard-of-length segment, a measurement unit, and the axiom
asserts that it is possible “reach” any given point on a straight line and calculate
the length of any segment.

2. Cantor’s Axiom. Suppose that on some straight line a there is an infinite
system of segments A1 By, AsBa, ..., Ay By, . .., in which each successive seg-
ment is contained inside the preceding segment (Figure 1.1.8). Suppose that
there is mo segment that is contained inside all the segments of the given in-
finite system of segments. Then on the line a there exists a unique point M
that lies inside all the segments A1 By, AsBa, ..., Ay By, ... of the considered
system.



