
Progress in Computer Science and Applied Logic
26

Perspectives
in Computational
Complexity

Manindra Agrawal
Vikraman Arvind
Editors

The Somenath Biswas
Anniversary Volume

Progress in Computer Science and Applied Logic

Volume 26

Editor-in-Chief

Erich Grädel, Aachen, Germany

Associate Editors

Eric Allender, Piscataway, NJ, USA
Mikołaj Bojańczyk, Warsaw, Poland
Sam Buss, San Diego, CA, USA
John C. Cherniavski, Washington, DC, USA
Javier Esparza, Munich, Germany
Phokion G. Kolaitis, Santa Cruz, CA, USA
Jouko Väänänen, Helsinki, Finland and Amsterdam, The Netherlands

For further volumes:
http://www.springer.com/series/4814

Manindra Agrawal • Vikraman Arvind
Editors

Perspectives in
Computational Complexity

The Somenath Biswas Anniversary Volume

Editors
Manindra Agrawal
Department of Computer Science

and Engineering
Indian Institute of Technology
Kanpur
India

Vikraman Arvind
CIT Campus
Institute of Mathematical Sciences
Chennai
India

ISBN 978-3-319-05445-2 ISBN 978-3-319-05446-9 (eBook)
DOI 10.1007/978-3-319-05446-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942531

Mathematics Subject Classification (2010): 03-XX, 03D15, 68-XX, 68Q15

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.birkhauser-science.com)

Contributors

Eric Allender Department of Computer Science, Rutgers University, New
Brunswick, NJ, USA

Vikraman Arvind Institute of Mathematical Sciences, Chennai, India

S. Ajesh Babu Microsoft Research India, Bangalore, India

Markus Bläser Computer Science, Saarland University, Saarbrücken, Germany

Sumanta Ghosh Department of Computer Science and Engineering, Indian
Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Neeraj Kayal Microsoft Research, Bangalore, India

Piyush P. Kurur Department of Computer Science and Engineering, Indian
Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India

Meena Mahajan The Institute of Mathematical Sciences, Chennai, India

Bruno Poizat Institut Camille Jordan, Université Claude Bernard, Villeurbanne-
cedex, France

Jaikumar Radhakrishnan School of Technology and Computer Science, Tata
Institute of Fundamental Research, Mumbai, India

Ramprasad Saptharishi Microsoft Research, Bangalore, India

Nitin Saxena Department of CSE, IIT Kanpur, Kanpur, India

Jacobo Torán Department of Theoretical Computer Science, University of Ulm,
Ulm, Germany

N. Variyam Vinodchandran Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE, USA

v

Somenath Biswas 2013
With the permission of � Somenath Biswas

Preface

In the summer of 2012, we organized a three day ‘‘Computational Complexity’’
workshop at the Indian Institute of Technology, Kanpur, India, in honor of
Professor Somenath Biswas to celebrate his 60th birthday. It was a fitting event for
the occasion, well-attended by several well-known experts in the field from
different parts of the world.

Professor Biswas is one of the first complexity theorists from India. In his
teaching and research career spanning over 30 years, apart from doing quality
research, he has contributed immensely to the development of the field in India.
We felt that to bring out a festschrift volume of articles in complexity theory,
based partly on the talks at the workshop, would be a lasting tribute. We are deeply
grateful to the eminent researchers who enthusiastically agreed to contribute
articles for this project and also helped, in a cross-refereeing process, with
refereeing each other’s contributed articles. These articles span different aspects of
recent complexity theory research, including the isomorphism conjecture, arith-
metic circuit complexity, space-bounded complexity classes, proof complexity,
applications of entropy, and the complexity of graph isomorphism. As former
students of Somenath Biswas, we feel privileged to edit this volume. It is an
expression, as it were, of our affection and regard for him.

We are grateful to Eric Allender for his valuable advice and support from the
early stages of this book project, and for suggesting the ‘‘Progress in Computer
Science and Applied Logic’’ Springer-Birkhäuser series. We would also like to
thank Erich Grädel, the chief editor of the series for enthusiastically supporting the
project.

March 2014 Manindra Agrawal
Vikraman Arvind

vii

Contents

1 Complexity Theory Basics: NP and NL . 1
Vikraman Arvind

2 Investigations Concerning the Structure of Complete Sets 23
Eric Allender

3 Space Complexity of the Directed Reachability Problem
over Surface-Embedded Graphs . 37
N. Variyam Vinodchandran

4 Algebraic Complexity Classes . 51
Meena Mahajan

5 A Selection of Lower Bounds for Arithmetic Circuits 77
Neeraj Kayal and Ramprasad Saptharishi

6 Explicit Tensors . 117
Markus Bläser

7 Progress on Polynomial Identity Testing-II 131
Nitin Saxena

8 Malod and the Pascaline . 147
Bruno Poizat

9 A Tutorial on Time and Space Bounds
in Tree-Like Resolution . 159
Jacobo Torán

ix

10 An Entropy-Based Proof for the Moore Bound
for Irregular Graphs . 173
S. Ajesh Babu and Jaikumar Radhakrishnan

11 Permutation Groups and the Graph Isomorphism Problem 183
Sumanta Ghosh and Piyush P. Kurur

x Contents

Chapter 1
Complexity Theory Basics: NP and NL

Vikraman Arvind

Abstract We introduce basic concepts and results in computational complexity as
background for some of the articles in this volume. Our focus is on the complex-
ity classes nondeterministic polynomial time (NP) and nondeterministic logarithmic
space (NL). The presentation is aimed at computer science students at a senior under-
graduate level, and assumes some familiarity with algorithm design and theory of
computation. The material is covered at a fairly brisk pace. Several results and proof
details are incorporated in exercises which the reader is urged to solve or look up in
textbooks such as [BDG88, Pap94, AB09].

Keywords Nondeterministic polynomial time · NP-completeness · Nondetermin-
istic logarithmic space

Mathematics Subject Classification (2010) Primary 68Q15.

1.1 NP-completeness

The story of modern computational complexity begins with the advent of stored
program computers in the 1940s and the need for efficiently solving optimization
problems by programming the computer. It was soon discovered that a brute-force
enumerative search for the optimal solution yields only algorithms that take expo-
nential time, since the number of candidate solutions for optimization problems
is typically exponential in the input size. Such solutions were not practical even
for inputs of moderate size. Cobham [Cob64] and Edmonds [Edm65], around 1965,
independently suggested polynomial-time boundedness as an appropriate theoretical
criterion for efficient computation. This was an important conceptual contribution.

V. Arvind (B)

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
e-mail: arvind@imsc.res.in

M. Agrawal and V. Arvind (eds.), Perspectives in Computational Complexity, 1
Progress in Computer Science and Applied Logic 26, DOI: 10.1007/978-3-319-05446-9_1,
© Springer International Publishing Switzerland 2014

2 V. Arvind

Although algorithms with linear or quadratic time bounds are desirable in practice,
polynomial time computation is theoretically satisfactory for several reasons. First,
it rules out exhaustive search solutions which are typically exponential time. Also,
since polynomials are closed under composition, it makes polynomial-time bounded
computation closed under procedure calls. Thus, a polynomial-time bounded pro-
gram making calls to a library of polynomial-time subroutines is still polynomial
time. Furthermore, as reasonable models of computation can simulate each other
with at most a polynomial-time slowdown,1 it makes the notion of polynomial-time
solvability independent of the computation model.

The next big step was the pioneering research of Cook [Coo71], Levin [Lev73],
and Karp [Kar72]. The class NP, consisting of decision problems that have non-
deterministic polynomial-time decision procedures, was identified as the class that
captures most natural optimization problems of interest. The notion of polynomial-
time reductionswas used to compare the relative difficulty of problems. Propositional
formula satisfiability was shown to be NP-complete under polynomial-time reduc-
tions [Coo71, Lev73]. Then several decision problems, arising from optimization
problems, were shown NP-complete [Kar72]. NP-complete problems are the hardest
problems in the class NP as opposed to decision problems that are polynomial-time
solvable.

Letχ denote a fixed finite alphabet |χ| ≥ 2. Input instances of decision problems
are encoded as finite strings over χ. Thus, χ∗ comprises of all input instances for a
decision problem and the “yes” instancesA ⊆ χ∗ form a language. Therefore,we can
identify decision problems with languages and we use the terms interchangeably. As
is customary in computation theory, we will use the standard Turing machine model
as the model of computation (see e.g. [HU79]).

Definition 1.1 Let A, B ⊆ χ∗ be languages.
1. Then A is said to be polynomial-time many-one reducible to B, denoted A ≤p

m B,
if there is a polynomial-time computable function f such that for all x ∈ χ∗

x ∈ A if and only if f (x) ∈ B.

2. More generally, A is said to be polynomial-time Turing reducible to B if there is
a polynomial-time bounded oracle Turing machine M such that MB accepts the
language A.

A language L ⊆ χ∗ is in the complexity class P if there is a polynomial-time
bounded deterministic Turing machine (equivalently, a polynomial-time algorithm)
for checking membership in L.

A language L ⊆ χ∗ is in the complexity class NP if there is a language A ∈ P
and a polynomial p such that for all x ∈ χ∗

x ∈ L if and only if ∃y ∈ χ≤p(|x|) : 〈x, y〉 ∈ A,

1 This is a polynomial-time version of the Church-Turing thesis known as the feasibility thesis
[vEB90].

1 Complexity Theory Basics: NP and NL 3

where χ≤p(|x|) denotes strings of length at most p(|x|) over χ. In other words, the
complexity class NP consists of languages L such x ∈ L has a polynomial-size
certificate y of membership in L, and the certificate is polynomial-time verifiable by
checking if 〈x, y〉 ∈ A.

Exercise Show that the following decision problems are in the class NP:

1. Given an undirected graph G and a number k as input, decide if G has a clique of
size at least k (known as the CLIQUE problem). The graph G is given by either
its adjacency list or adjacency matrix.

2. Given a positive integer m (encoded in binary) decide if it is composite.
3. Given a system of linear equations Ax = b over rationals, where the rational

entries of the matrix A and column vector b are encoded in binary, decide if it has
a solution.

We now formally define NP-completeness. A language L ⊆ χ∗ is said to be
NP-complete if L is in NP and each L′ ∈ NP is polynomial-time many-one reducible
to L.

Since polynomial-time reducibility between languages is a transitive relation,
once a language L′ is shown NP-complete, it suffices to show that L′ is polynomial-
time many-one reducible to L in order to prove that the language L in NP is also
NP-complete. A problem that can be directly shown NP-complete is the following:

K = {〈M, x, 1t〉 | M accepts x in at most t steps},

where M in the above definition denotes the Turing machine code (as a list of quin-
tuples) of a nondeterministic Turing machine.

Exercise Show that K is NP-complete. (Hint: In order to show K is in NP you will
need to use a suitable universal Turing machine).

But the first problem shown NP-complete by Cook and Levin was a natural prob-
lem, known as the satisfiability problem for propositional formulas, which opened
the floodgate to NP-complete problems and the subject of computational complexity.

Theorem 1.2 (Cook-Levin theorem) [Coo71, Lev73] The satisfiability problem for
propositional formulas is NP-complete.

A propositional formula F is in conjunctive normal form (CNF in short) if F =
C1∧C2∧· · ·∧Cm where each Ci is an OR of variables or their negations. The proof
of the Cook-Levin theorem actually shows the stronger result that the satisfiability
problem for propositional CNF formulas is NP-complete.

Clearly, NP-complete problems are the hardest problems in NP and all NP-
complete problems are polynomial-time equivalent. That is to say, if a polynomial-
time algorithm is discovered for any NP-complete problem then we have a
polynomial-time algorithm for any problem in NP. Whether P equals NP or not
is the central open problem in computational complexity.

4 V. Arvind

Exercise

1. Show that the CLIQUE problem (defined in Exercise 2) isNP-complete by giving
a reduction to it from propositional CNF formula satisfiability.

2. A vertex cover for an undirected graph G is a subset S of vertices such that for
each edge (u, v) of G we have {u, v} ∩ S
= ∅. Given an undirected graph G
and a number k as input the VC problem is to decide if G has a vertex cover of
size at most k. Show that VC is NP-complete. The graph G is given by either its
adjacency list or adjacency matrix.

1.2 Inside NP

Thus, within the class NP we have polynomial-time solvable problems on the one
hand, which is the subclass P. At the other extreme, we have NP-complete problems,
of which there are abundantly many [GJ79], because most natural optimization prob-
lems that arise in practice andwewish to solve efficiently turn out to beNP-complete.
A natural question that arises is whether NP contains other problems. The answer to
this question is given by Ladner’s theorem which states that if P
= NP then there are
problems in NP that are neither in P nor NP-complete. We discuss a proof attributed
to Russell Impagliazzo [DF03].

Theorem 2.1 (Ladner’s theorem)[Lad75] If P
= NP there is a problem A ∈ NP that
is neither in P nor NP-complete.

Proof By assumption the NP-complete problem SAT is not in P. Following standard
notation [BDG88, Pap94], let DTIME[g(n)] denote the class of languages accepted
by deterministic Turing machines that halt in time bounded by g(n) on inputs of
length n. Now, if we knew that SAT
∈ DTIME[g(n)] for some fixed superpolynomial
function g(n), for example g(n) = nlog n, then we can easily find a language A ∈ NP
that is neither in P nor NP-complete. Indeed, let

A := {x01|x|log log |x| | x ∈ SAT}.

Clearly, A ∈ NP because given a string of the form x01k we can guess and verify a
satisfying assignment for the SAT instance x and check in polynomial time that the
pad 1k is of length |x|log log |x|. Suppose A is NP-complete. Then SAT ≤p

m A via some
polynomial-time computable reduction f . Notice that

x ∈ SAT ⇐⇒ f (x) = x′01|x′|log log |x
′| ∈ A ⇐⇒ x′ ∈ SAT.

Since f is polynomial-time computable, |f (x)| ≤ |x|c for some constant c and hence
|x′| < |x| for all but finitely many instances x ∈ SAT. Thus, it suffices to check if the
smaller instance x′ ∈ SAT. Repeatedly applying this argument gives a polynomial-
time procedure for SAT contradicting P
= NP. Hence A cannot be NP-complete.

1 Complexity Theory Basics: NP and NL 5

On the other hand, we claim that A
∈ P. For, if A were in P that would give a
|x|O(log log |x|) time algorithm to decide if x ∈ SAT, contradicting the assumption that
SAT is not in DTIME[nlog n].

Unfortunately, we can only assume that SAT is not in P and cannot make the
stronger assumption that SAT is not in DTIME[nlog n]. So we need to define the
padded language A more carefully to make the above argument work. Let

A := {x01k | x ∈ SAT, k = f (|x|)},

where the padding function f (n)will be computable in time polynomial in n and con-
structed by diagonalization. Let {Mi}i>0 be a recursive enumeration of polynomial-
time clocked, deterministic Turing machines; more precisely, let Mi be clocked to
run for ni + i steps on length n inputs. The function f is defined as follows:

1. i := 1.
2. For n := 1 to∞ do
3. Let f (n) = ni.
4. If there is an input x of length at most log n such that Mi(x) accepts and x
∈ A or

Mi(x) rejects and x ∈ A then i := i + 1.
5. endfor

Notice that at the nth iteration of the for-loop, in which f (n) gets defined, the
function f (m) is already defined for m < n and hence checking x ∈ A for log n
length inputs is well defined. Moreover, checking membership of x ∈ A can be done
in polynomial in n time since |x| ≤ log n. Hence, f is defined by the above procedure
for all n and is computable in time polynomial in n. This defines the set A.

Suppose A ∈ P. Then A = L(Mi) for some machine Mi. By construction, there
are constants n0 and k > i such that f (n) = nk for all n > n0. That means, for
all but finitely many input lengths, SAT is polynomial-time reducible to A by the
map x ≈→ x01|x|k which contradicts the assumption P
= NP. It follows that for each
constant i we have f (n) > ni for all but finitely many n.

Suppose A is NP-complete and g is a polynomial-time reduction from SAT to
A. We will give a polynomial-time algorithm for SAT contradicting the assumption.
Since g is polynomial-time computable, we have |g(x)| ≤ |x|c for some constant
c > 0 and all but finitely many inputs x. If g(x) is not of the form y01f (|y|) we can
reject x. Also, if g(SAT) is finite then SAT is trivially in P by table look-up. Suppose
g(SAT) is infinite. Then for all but finitely many x ∈ SAT we have g(x) = y01f (|y|)
where f (|y|) > |y|c. The finitely many exceptions we can keep in a table. Thus, given
a SAT instance x we first compute g(x) = y01f (|y|). If x is not in the look-up table,
since f (|y|) < |g(x)| ≤ |x|c , it follows that |y| < |x| and x ∈ SAT if and only if
y ∈ SAT.We can now recurse on the instance y. Overall this gives a polynomial-time
SAT algorithm contradicting the assumption. This concludes the proof. �

Exercise Suitably adapt the above proof to show for any language A
∈ P that there
is a language B
∈ P such that B ≤p

m A but A
≤p
m B.

6 V. Arvind

1.2.1 The Class NP ∩ coNP

The class coNP consists of languages L such that χ∗ \ L is in NP.
Indeed, for any class of languages C we can define coC:

coC = {L ⊆ χ∗ | χ∗ \ L ∈ C}.

Remark 2.2 The class coNP consists of all languages whose complements are in NP.
For example SAT is in coNP and, by virtue of SAT being NP-complete, SAT is coNP-
complete under polynomial-time many-one reductions. The set TAUT consisting of
all propositional tautologies is also coNP-complete (exercise: verify this). Whether
NP equals coNP is a major open problem.We can view the NP versus coNP question
from the logical perspective of propositional proof systems. For any language L ∈
NP, by definition for each x ∈ L there is a polynomial-length proof of membership
that can be checked in polynomial time. This can be thought of as a “sound and
complete proof system” for L. Thus, the question whether NP = coNP amounts to
asking if there is a proof system for propositional tautologies in which all tautologies
have polynomial length proofs. This leads to a study of propositional proof systems
of different strengths with the aim of proving lower bounds for proof lengths in the
proof systems. The article by Jacobo Torán in this volume presents aspects of this
fascinating topic with pointers to current research and open problems.

We will now discuss decision problems that are in NP ∩ coNP. For any L ∈
NP ∩ coNP there are languages A and B in P and a polynomial p such that for each
x ∈ χ∗

x ∈ L ↔ ∃y ∈ χp(|x|)〈x, y〉 ∈ A

↔ ∀z ∈ χp(|x|)〈x, y〉 ∈ B

These are the so-called well-characterized problems. They are well characterized
in the sense that membership of x in L can be characterized using an existentially
quantified predicate, and can also be characterized using a universally quantified
predicate. It is a remarkable phenomenon in complexity theory that the discovery of
such characterization often precedes (even anticipates) the discovery of a polynomial-
time algorithm for the problem. We discuss a few well-known examples.

The language PM = {G | G has a perfect matching} has a polynomial-time
algorithm as shown in the already mentioned famous paper of Edmonds [Edm65].
However, in the 1940s Tutte, in his well-known theorem stated below, had anticipated
this by “well-characterizing” the PM problem.

Theorem 2.3 (Tutte’s 1-factor theorem) [Tut47] An undirected graph G has a per-
fect matching if and only if for every subset S of the vertex set the number of odd-size
components in the graph G \ S is bounded by |S|.

1 Complexity Theory Basics: NP and NL 7

Similarly, Farkas’ lemma [Sch98, Sect. 7.3] stated below “well-characterizes”
linear programming which was shown to be in polynomial time many decades later
by Kachiyan [Sch98, Chap.13].

Theorem 2.4 (Farkas’ Lemma) The system of linear inequalities Ax ≤ b has a
solution if and only if for all yT ≥ 0 if yT A = 0 then yT b ≥ 0.

Exercise Use the characterizations in Theorems 2.3 and 2.4 to show that the perfect
matching problem and feasibility of linear inequalities problem are in NP ∩ coNP.

Exercise Show that NP = coNP if and only if some problem in NP ∩ coNP is
NP-complete.

The above discussion might lead one to believe that perhaps NP ∩ coNP equals P.
However, there are problems inNP∩ coNP that have defied all attempted polynomial-
time solutions. The decision version of the Integer factoring problem is a noteworthy
example. Each positive integer n can be uniquely factorized as n = pe1

1 pe2
2 , . . . , pek

k
where p1 < p2 < · · · < pk are distinct primes. Let enc(n) denote an encoding in
binary of this factorization. Consider the language

FACT = {〈n, i, b〉 | the ith bit of enc(n) is b}.

Exercise

1. Assuming primality testing is in P show that FACT is in NP ∩ coNP.
2. Show that the integer factoring problem can be solved in polynomial time with

calls to a decision procedure for FACT.

1.3 The Berman-Hartmanis Conjecture

Polynomial-time reductions define a natural order ≤p
m on NP languages that raises

some fundamental questions about the structure of NP languages.

Exercise Show that the order≤p
m onNP languages is a binary relation that is reflexive

and transitive but not symmetric.

In order to obtain a partial order from ≤p
m we define the equivalence relation

A ≡p
m B if and only if A ≤p

m B and B ≤p
m A.

Exercise

1. Show that ≡p
m is an equivalence relation on NP.

2. For A ∈ NP let [A] denote the equivalence class containing A for the equivalence
relation ≡p

m. Show that ≤p
m, suitably defined on the equivalences classes [A] for

A ∈ NP, yields a partial order.

8 V. Arvind

This partial order has its top element as [SAT], the equivalence class of all NP-
complete languages. Its bottom element is P. Notice that class P contains, among
all polynomial-time solvable decision problems, all finite languages. In contrast,
assuming P
= NP, all sets in [SAT], being NP-complete, are infinite.

Definition 3.1 [BH77] Let A, B ⊆ χ∗. A polynomial-time many-one reduction f
from A to B is a polynomial-time isomorphism if f : χ∗ → χ∗ is a bijection and
f−1 is also polynomial-time computable.

Berman and Hartmanis [BH77], in 1977 conjectured that all NP-complete sets
are polynomial-time isomorphic to each other. Since they could show [BH77] many
natural NP-complete problems to be isomorphic, empirically this appears plausi-
ble. Although the conjecture is not currently believed to be true, it gave impetus
and direction to a lot of interesting complexity theory research. The article by Eric
Allender in this volume surveys the interesting complexity theory research related
to the Berman-Hartmanis conjecture over the last two decades. Our aim here is to
provide some useful background.

A polynomial-time computable function f : χ∗ → χ∗ is 1-invertible if f is
injective and f−1 is also polynomial-time computable. More precisely, there is a
polynomial-time algorithm that on input y ∈ χ∗ computes f−1(y) if y is in the range
of f and outputs ⊥ otherwise.

Now, suppose A and B are NP-complete languages such that A is reducible to B
via a 1-invertible function f and B is reducible to A via a 1-invertible function g, can
we then conclude that A and B are polynomial-time isomorphic. The motivation for
this approach is its analogy to the setting of the Schröder-Bernstein theorem in set
theory which we recall with a quick proof in order to generalize it to the isomorphism
setting.

Theorem 3.2 (Schröder-Bernstein theorem) Let A and B be sets and f : A → B and
g : B → A be injective functions. Then there is a bijection between A and B.

Proof Theproof idea involves examining the alternating preimage sequenceof points
x, g−1(x), f−(g−1(x)), . . . for each x ∈ A. Since both f and g are injective, notice
that for any x ∈ A and y ∈ B the preimages g−1(x) and f−1(y), if they exist, are
unique. We can partition A into three parts A1, A2, and A3. The part A1 consists of
x ∈ A such that the preimage sequence is finite and ends in A. The part A2 consists
of x ∈ A such that it has a finite preimage sequence ending in B, and A3 consist of
the elements x ∈ A whose preimage sequence is infinite. Likewise, B is partitioned
into three parts B1, B2, and B3 of elements y ∈ B whose pre-image sequence either
ends in A or in B or is infinite, respectively. Define a function h : A → B as follows:

∀ x ∈ A1 h(x) = f (x),

∀ x ∈ A2 h(x) = g−1(x),
∀ x ∈ A1 h(x) = f (x).

It is easy to see that h is a bijection. �

1 Complexity Theory Basics: NP and NL 9

Exercise Verify that h defined in the proof is indeed a bijection from A to B.

A function f : χ∗ → χ∗ is called length increasing if |f (x)| > |x| for all x ∈ χ∗.
In order to adapt the Schröder-Bernstein proof strategy for showing polynomial-
time isomorphisms between NP-complete sets, it turns out that length-increasing
1-invertible reductions is a suitable notion.

Theorem 3.3 [BH77] Let A, B ⊆ χ∗ be two languages such that there are length-
increasing 1-invertible reductions from A to B and from B to A. Then A and B are
polynomial-time isomorphic.

The proof of this theorem is in the following exercise.

Exercise

1. Suppose f and g are length-increasing 1-invertible reductions fromA toB and from
B to A respectively. Show that the partition corresponding to infinite preimage
sequences is empty for both f and g.

2. Verify that the bijection h : χ∗ → χ∗ defined in the proof of Theorem 3.2 is a
polynomial-time isomorphism between A and B.

The question is how do we get hold of length increasing 1-invertible reductions?
Berman and Hartmanis [BH77] discovered another natural property that several NP-
complete languages are endowed with. A language A ⊆ χ∗ is said to be paddable if
there is a 1-invertible reduction pad from A×χ∗ to A. It turns out that many natural
NP-complete problems are paddable.

Exercise Show that SAT, 3-SAT, CLIQUE, VC are all paddable languages.

Now, it turns out that paddableNP-complete languages are all isomorphic [BH77].
Since many NP-complete problems are paddable, it lead Berman and Hartmanis to
make their conjecture.

Exercise

1. If A ≤p
m B and B is paddable then show that A is polynomial-time reducible to B

via a 1-invertible length increasing function.
2. Conclude that if A and B are paddable NP-complete languages then they are

polynomial-time isomorphic.

1.4 Are There Sparse NP-Complete Sets?

Let A ⊆ χ∗ be any language. The density of A at length n is defined to be the number
|A=n| of length n strings in A. The language A is exponentially dense if |A=n| is at
least 2nσ

for some constant σ > 0. Natural NP-complete problems have exponential
density.

10 V. Arvind

Exercise Show that SAT, CLIQUE, VC have exponential density.

A consequence of the Berman-Hartmanis conjecture is that all NP-complete lan-
guages have exponential density. Can we show that languages with subexponential
density cannot be NP-hard?

A language A ⊆ χ∗ is said to be sparse if there is a polynomial p(n) such that
|A=n| ≤ p(n) for all n.

Theorem 4.1 (Mahaney) [Mah82] No sparse language is NP-hard unless P = NP.

Proof We present a more recent proof [Agr11]. Suppose SAT ≤p
m A for some arbi-

trary sparse language A via a polynomial-time reduction f . For some polynomial
p(n) we have |f (x)| ≤ p(|x|).

We give a polynomial-time algorithm for SAT. Given a formula F of size
s in boolean variables x1, x2, . . . , xn as input, the algorithm proceeds in stages
0 ≤ i ≤ n. At stage i, the algorithm maintains a list of formulas {Fa | a ∈ I}
such that each Fa, a ∈ I is obtained from F by the truth assignment a to the first i
variables x1, x2, . . . , xi with the property that

F ∈ SAT if and only if Fa ∈ SAT for some a ∈ I. (1.1)

If |I| > q(s) + 1, for a suitable polynomial q(s) which will be defined in the
course of the proof, then the algorithm applies a pruning operation to discard some
a from the list I such that Property (1.1) holds for I \ {a} as well. We now describe
the pruning operation:

Consider all pairs of disjunctions Fab = Fa ∨ Fb for a, b ∈ I . If s is the size
of formula F then clearly 2s bounds the size of Fab for all a, b ∈ I . Fix an a ∈ I
and consider f (Fab) for all b ∈ I \ {a}. If Fa ∈ SAT then clearly Fab ∈ SAT for all
b ∈ I \ {a}. Hence, Fa ∈ SAT implies f (Fab) ∈ A≤p(2s). Since A is sparse we know
that |A≤p(2s)| ≤ q(s) for some polynomial q. The algorithm computes f (Fab) for all
b ∈ I \ {a} and does the following:

1. If f (Fab) are all distinct for b ∈ A \ {a} then Fa cannot be in SAT and a can be
discarded from I .

2. Otherwise, for some b
= c ∈ I \ {a} we have f (Fab) = f (Fac). The algorithm
can discard either b or c from I .

After pruning the list to get {Fa | a ∈ I} such that |I| ≤ q(s) + 1 the algorithm
proceeds to the next stage where it first doubles the list of formulas by setting xi+1
to 0 and 1 to get {Fb | b ∈ J} where J consists of all extensions of assignments in I
obtained by setting xi+1 to 0 and 1.

Continuing thus, at the nth stage the algorithm accepts SAT if the set I at that
stage includes a satisfying assignment. �

Let A ∈ NP. By definition there are a polynomial-time computable language
B ⊆ χ∗ ×χ∗ and a polynomial bound p(n) such that x ∈ A if and only if

∃y ∈ χp(|x|)〈x, y〉 ∈ B.

1 Complexity Theory Basics: NP and NL 11

Define the language pre(A) = {〈x, w〉 | ∃u ∈ χp(|x|)−|w| : 〈x, wu〉 ∈ B}.
Exercise Show that pre(A) is in NP and A ≤p

m pre(A).

A tally language is a subset of 0∗. The next exercise is about tally languages and
is analogous to Theorem 4.1.

Exercise For a language A ∈ NP if pre(A) is polynomial-time reducible to a tally
language then show that pre(A), and hence A, is in P.

1.4.1 Subexponentially Dense Languages

A subset S ⊆ χ∗ is of subexponential density if for every σ > 0 there is an
n0 ∈ N such that for all n > n0 we have |S=n| ≤ 2nσ

. A natural question is whether
Mahaney’s theorem can be generalized to sets of subexponential density.

The class of languages SUBEXP = ∩σ>0DTIME[2nσ] consists of languages that
have subexponential time decision procedures.

In the proof of Theorem 4.1 we gave a polynomial-time algorithm for SAT assum-
ing that it is reducible to some sparse language. Modify the proof to show the
following.

Exercise If SAT is polynomial-time many-one reducible to a language of subexpo-
nential density then show that NP ⊆ SUBEXP.

The inclusion NP ⊆ SUBEXP is believed unlikely. For instance, it would imply a
2o(n) time algorithm for the satisfiability of 3CNF formulas, where n is the number of
boolean variables in the input formula. This would, in turn, imply similar subexpo-
nential algorithms for certain otherNP-complete problems [IPZ01]. For a complexity
theory tailored to the problem of designing faster exponential-time algorithms for
NP-complete problems see [IPZ01] and related papers.

For the rest of this sectionwe briefly discuss another unlikely complexity-theoretic
consequence, assuming SAT is reducible to a set of subexponential density. In the
process we will introduce some more basic complexity theory.

We start with the definition of the polynomial-time hierarchy. A language L is in
the class χ

p
k if there are a polynomial p(n) and language A ∈ P such that

L = {x | ∃y1∀y2 · · · Qyk : |yi| ≤ p(|x|) for all i

and 〈x, y1, y2, . . . , yk〉 ∈ A},

where the quantifier “Q” is “∃” if k is odd and “∀” if k is even. The classβ
p
k consists of

all languages L such that χ∗ \L is in χ
p
k . The following observations are immediate

from the definition:

