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Preface of the editor of the German edition

Geometry (from the Greek word for ‘measuring the Earth’, the modern sci-
entific discipline of which is now called geodesy), branch of science which
deals with regular patterns, shapes and solids, was one of the first human
attempts, after counting, to concern themselves with the emerging science
mathematics. This is evident from the spirals on megalithic graves, incisions
in stone and patterns on clay fragments.

In this book, you will learn how geometry has developed over the millennia
from these earliest origins in distant times and much more. Geometry is
an indispensible aid for building and surveying, and became an axiomatic
science of plane and spatial shapes in Ancient Greece. It served as a basis
for astronomical observations and calculations, for Islamic decorative art, and
the building of medieval Christian cathedrals. Furthermore we will look at the
discovery of perspective and its application in Renaissance art, at the disputes
regarding the Euclidean parallel postulate, the discovery of non-Euclidean
geometries in the 19th century, and, finally, the theory of infinite-dimensional
spaces and contemporary computer graphics.

This book is edited by the project group “History of Mathematics” at the
University of Hildesheim as part of the series Vom Zählstein zum Computer
(From Pebbles to Computers). Other titles in this series published by Springer
Publishing Heidelberg are: 4000 Jahre Algebra (4000 Years of Algebra) [Al-
ten et al. 2003], and 6000 Jahre Mathematik (6000 Years of Mathematics)
[Wußing, in two volumes 2008/09]. To the series ‘From Pebbles to Computers’
two video films have been produced (University of Hildesheim): ‘Mathematik
in der Geschichte – Altertum’ (Mathematics in History – Antiquity) [We-
semüller-Kock/Gottwald 1998] and ‘Mathematik in der Geschichte – Mittel-
alter ’ (Mathematics in History – Middle Ages) [Wesemüller-Kock/Gottwald
2004]. Following multiple reprints and the second edition in 2004 we now
present the third edition of 5000 Jahre Geometrie including new research
results on circular ditches in the Stone Age and the Nebra Sky Disk, as well
as many illustrations in colour.

In this book, we will reflect on the development of geometry as part of our
cultural history over the course of five millennia. Both authors have succeeded
in portraying the origins and growth of this branch of mathematics, which is
often thought of as dry and jejune, in a tremendously lively manner. They un-
cover the origins and impulses for the development of geometric notions and
methods, and present how they are related to historical events and personal
fates. Moreover, they describe the applications of geometrical knowledge and
methods in other areas and the interdependencies that resulted from them.
Finally, they emphasize their importance for other disciplines.

At the heart of this book series is portraying the history of mathematics as
an integral part of the history of mankind, particularly as a fundamental part
of our cultural heritage. Both authors have done justice to this task in an
impeccable manner. They have depicted the genesis of geometry and its in-
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terlacing with cultural developments in other areas, such as literature, music,
architecture, visual arts and religion, by a standard far higher than usual in
mathematical-historical presentations. They also describe the implications of
geometrical findings and methods for other areas. As such, the authors also
deal far more extensively than usual with the development of geometry in
other cultures, mainly in the ancient oriental cultures, in Islamic countries,
as well as in India, China, Japan and the old American cultures. Tables at
the beginning of each chapter give an overview of important political and
cultural events of each cultural area and era dealt with. Tables at the end
summarise the main geometrical contents of each chapter in note form.

Moreover, the authors compare views of ancient and medieval mathemati-
cians with modern mathematical findings and link those to contemporary
mathematics and related sciences, for example, references to computer sci-
ences regarding the description of Euclid’s “algorithmic accomplishment”.
Furthermore, they highlight the specifications of geometrical examinations of
different eras and cultural areas and the changes in content, methods and
approaches geometry has faced as a proto-physics within three-dimensional
or even infinite-dimensional spaces. They discuss the relationship of geome-
try with other branches of mathematics, for instance with algebra, analysis,
and stochastics. Refreshing asides with biographical highlights and references
to unexpected relations, as well as text excerpts in the appendix, bring this
book to life.

Chapters 1 through 4, with the exception of sub-chapter 2.3 (Euclid), were
written by Dr. Christoph J. Scriba, professor emeritus for the history of the
natural sciences in the former Institute for History of Natural Sciences, Math-
ematics and Engineering at the University of Hamburg. Euclid’s accomplish-
ments and the development of geometry in modern times from Chapters 5
through 8 were described by Dr. Peter Schreiber, professor for geometry and
the foundations of mathematics at the University of Greifswald.

We are also grateful to the authors for numerous illustrations and the texts
for the appendixes. The figures that have been added to support geometrical
theorems that are not referenced were drawn by the authors themselves.
They also thought of the summarising problems for every sub-chapter at
the end of each chapter (cf. Introduction). They often differ from ordinary
tasks in regard to type and size and also vary in level of difficulty. Thus,
solving them requires very different background knowledge, as well as the
use of secondary literature at times. Hence, to solve some of the problems
of Chapters 1 through 4, you will mainly need knowledge gained in junior
high school, while other problems will require highschool knowledge, whereas
some problems to Chapters 5 through 8 demand insight into notions and
methods taught at university. This is due to the nature of the subject, since
mathematics has grown more and more complex and difficult over the course
of the centuries and understanding modern mathematics usually assumes
knowledge of the mathematics of past eras. Therefore, you will occasionally
find hints to solutions within the text and also the literature. However, the
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solutions themselves have not been included in the appendix to avoid the
following: first, we do not want you to look up the solutions too quickly;
second, the solutions most often are not the result of calculations, but require
the description of approaches for solving the problem at hand or retracing
more or less extensive considerations.

All this has been done intentionally in order to attract as large a readership
as possible. Cursory readers or those that are in a hurry should not simply
skip the problems, since they include many interesting historical remarks and
additions to the text, which is why reading the problems carefully will benefit
everyone. The extensive bibliography and index of names invite the reader
to study further.

I thank both authors sincerely for the multifaceted and intensive work in
particular their dedication to setting new accents with this book integrating
geometry in cultural history and composing many interesting problems.

I further express my gratitude to my colleagues Dauben, Flachsmeyer, Fol-
kerts, Grattan-Guinness, Kahle, Lüneburg, Nádeńık und Wußing for their
scholarly advice and critical reviewing and thank H. Mainzer for advice on
historical details and Lars-Detlef Hedde (University of Greifswald), Thomas
Speck and Sylvia Voß (University of Hildesheim) for converting the manu-
scripts, illustrations and figures into printable electronic formats.

Moreover, I wish to thank media educator Anne Gottwald, who helped us
clear the licensing for printing the illustrations, and each publisher for au-
thorising the printing rights.

I also remain grateful to the director of the Centre for Distance Learning and
Extension Studies (ZFW), Prof. Dr. Erwin Wagner, the present and former
directors of the Institute for Mathematics and Applied Computer Science,
Prof. Dr. Förster and Prof. Dr. Kreutzkamp, the deans Prof. Dr. Schwarzer
and Prof. Dr. Ambrosi and the administration of the University of Hildesheim.

Last but not least, I wish to thank the members of the project group “History
of Mathematics” of ZFW: the historian of mathematics Dr. Alireza Djafari
Naini and the media expert and sociologist Heiko Wesemüller-Kock, for the
great and intensive teamwork while planning and preparing this book. I ex-
press my gratitude to Springer Publishing Heidelberg for taking my requests
into account and the excellent design of this book.

I hope that this volume will inspire many readers to study the history of
mathematics more intensively, and to learn about the background of the ori-
gins and incredibly exciting development of geometrical notions and methods.
Hopefully, this will result in the reader viewing geometry not just as a math-
ematical discipline or as an indispensible aid for architects, robot engineers
and scientists, but also as a valuable part of our culture that we encounter
everywhere and that makes the world in which we live so much richer.

On behalf of the project group

Hildesheim, August 2009 Heinz-Wilhelm Alten.
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Preface of the editor of the English edition

This is the first volume of our series ‘From Pebbles to Computers’ that ap-
pears in English. It is a translation of the 3rd edition (2010) of 5000 Jahre
Geometrie, again updated, supplemented and enriched with many illustra-
tions by the author P. Schreiber and the editors H.-W. Alten, K.-H. Schlote,
and H. Wesemüller-Kock.

Meanwhile the book 4000 Jahre Algebra appeared 2014 in its 2nd edition, in
2011 3000 Jahre Analysis was published by Springer Berlin Heidelberg, and
we are now preparing its translation 3000 Years of Analysis to be published
by Springer Basel. Some other volumes of this series will also be published
in English. Besides the film ‘Mathematik in der Geschichte – Mittelalter’ has
now been produced in English as History of Mathematics – Middle Ages.

All of us have been affected by the death of our author Prof. Dr. C. J. Scriba
in 2013. We are grateful for his support over many years and glad to be able
to present Chapters 1 through 4 of this book with the supplements he wrote
before his death as part of his scientific legacy. We shall miss his advice in
future.

The translation of this book was done by Jana Schreiber, the daughter of the
author P. Schreiber. We are very grateful to her because she has done this
with great efficiency and commitment in a short time.

After the corrections and supplements of the editor, language copy editing
by the publisher, and proof reading by the author and editor we now present
this volume.

I thank the members of the project group for their intensive teamwork: A.
K. Gottwald for clearing the licenses (now world-wide) for printing the illus-
trations, H. Wesemüller-Kock for his involvement inserting new illustrations
with his comments and the index of illustrations, proof reading and preparing
the graphic design and layout for the whole book, the historian of mathemat-
ics Dr. K.-H. Schlote for many comments and for transferring the index of
names and the subject index, Prof. Dr. K.-J. Förster and Prof. Dr. E. Wagner
for providing financial support.

We are grateful for the help of our secretaries B. David and R. Falso, the
students J. Schönborn and N. Westphal for preparing the text, illustrations
and indexes ready for printing.

Last, but not least we thank Springer Publishing Basel AG and its editor
Dr.A. Mätzener for her kindly support and the excellent layouting of this
book.

I hope that this book will please, inspire and benefit many readers all over
the world.

On behalf of the project group

Hildesheim, August 2014 Heinz-Wilhelm Alten.
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Introduction

It is certainly not easy to define the content and nature of mathematics
briefly. Formal explanations, which are possible nowadays due to the general
notion of structure and other logical notions, neglect not only the historical
development, but also the instinct and experience of a mathematician, who
knows what is “substantial” and “interesting” and what is not. However,
within the given understanding of mathematics, it is even more complicated
to explain what geometry is and what, in turn, is part of its history. The
dominant views on the subject of geometry, as well as its position and mean-
ing within mathematics, have not only changed repeatedly over the course
of time. As mathematics became increasingly sophisticated, mathematicians
also took opposing positions while trying to find answers to these questions.
We will look at all these aspects in this book.

Even though geometry was mainly considered as one application of a primar-
ily arithmeticaly oriented mathematics amongst many others in the earliest
cultures (such as in ancient Egypt, Mesopotamia, India, China, etc.), it be-
came the core and main interest of mathematics in Ancient Greece. It was
there and then that vague notions and procedures justified only by trial and
error were transformed into a theory with definitions, axioms, theorems and
proofs. The heritage stemming from this period was so powerful for over
two thousand years that mathematicians were usually called geometricians.
Furthermore, the axiomatic-deductive method of cognition assurance, which
was based on the Greeks’ methods of dealing with geometric matters, was
referred to as “mos geometricus”, and the implementation in other sciences,
including other realms of mathematics, “more geometrico”, in other words
‘in geometrical fashion’, became a rarely achieved scientific and theoretical
program. This agenda influenced, for example, Newton in the 17th century, as
he re-founded mechanics, Galois at the beginning of the 19th century, when
criticising the contemporary situation of algebra, and Hilbert, while encour-
aging the scientific community to axiomatise further branches of physics in
his famous speech in 1900.

As a result of the European Renaissance, geometry was flooded by an extraor-
dinary wave of inspiration and applications in the fields of astronomy, geodesy,
cartography, mechanics, optics, architecture, visual arts and, hence, leading
to a wealth of new challenges. The efforts made to solve these new challenges
essentially led to the development of the four pillars of the “modern” math-
ematics in the 17th century. These pillars are: the concept of function, co-
ordinate-systems, differential calculus and integral calculus. Geometry gave
birth to these pillars, and then was superseded and lost its leading position to
them in a very subtle manner. Formulae and calculus took over increasingly
in the 18th century and pushed visualisation and logical argumentation aside.

The 19th century led to an enormous growth in the size and meaning of ge-
ometry. Projective, descriptive and n-dimensional geometry, vector calculus,
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non-Euclidean geometry, intrinsic differential geometry, topology, and also
numerous “buds” in other areas that would only come to blossom in the 20th

century, such as geometrical probability and measure theory, graph theory
and general polyhedral theory, began developing at first without any recognis-
able relationship to one another. This “explosion” of geometrical disciplines,
which led to the century being named the “geometrical century” according
to mathematicians, was accompanied by the disintegration of the then domi-
nant understanding of geometry as a science of “true physical space”. We will
look at how the different approaches for dealing intellectually with the new
situation in geometry crucially coined the whole view of mathematics that
was dominant until the invention of the computer and its rising popularity.
However, we must also examine how geometry lost its central position within
mathematics over the course of the first half of the 20th century. This has
been a development that still negatively influences the organisation of math-
ematics in secondary and further education nowadays, despite the fact that
geometry has achieved a higher than ever level in regards to its theoretical
width and depth as well as its practical significance.

At the end of the 20th century, geometry was, on the one hand, a huge pool
of facts on the “ordinary two and three dimensional Euclidean space” and
an even bigger pool of unanswered questions on those. On the other hand,
geometry was not really thought of as being part of mathematics in the ordi-
nary sense nowadays, but rather considered a way of thinking, which is more
or less useful and necessarily found in almost every realm of mathematics,
depending on the scientist’s personal approach. Thus, there is a geometrical
theory of numbers, a geometrical theory of functions, algebraic geometry and
geometrical stochastics. There are geometrical methods within variational
calculus, discrete and combinatorial geometry, as well as computer geome-
try. The latter is not to be confused with computational geometry, which
basically refers to a “theory of complexity of geometrical algorithms”.

The dichotomy of geometry suggested here has established itself very well
in the meantime. The three dimensional Euclidean space remains the ap-
propriate model for all “ordinary” problems, even though it is only a very
rough approximation of reality according to the findings of physics. Within
the Euclidean plane we create “pictures” of everything we want to “look at”
and understand. Their meanings are associated with the dominance of seeing
amongst the human senses. Inside the n-dimensional Euclidean space, math-
ematics embeds functions, relations and, almost all other examined objects
by using coordinates, for example. Furthermore, geometry predominates in
all those areas where a number of possibly very abstract objects are viewed
as a “space” by using in broader sense terms taken from geometry, such as
topology, metrics, dimension and linearity, with the intention of inspiring our
imagination and to use analogies. To what extent one may want to practise
this is – as already pointed out – a matter of style. It is an intellectual tech-
nique, without which modern mathematics in the form described here could
not have developed.
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To what degree the latter can really be considered geometry and to what ex-
tent the applied branches of geometry belong to mathematics or are already
part of engineering is debatable. In the following, we will also defend the con-
cept that there is an “unconscious” unprofessional mathematics that coexists
with professional, deductive mathematics. The former manifests itself in the
intuitive use of notions, shapes, methods, knowledge and know-how, which
is difficult to put into words, but exists as a material product of engineering,
handcrafts and the arts. Hence, this book will also serve as a reflection on
the historical development of geometry, which will include many, often un-
usual aspects. We intend to contribute to the clarification of the position and
meaning of geometry within mathematics and to raise interest in it.

The critical reader, that we would like to have, may pose the question how a
history of geometry fits in a series called ‘From Pebbles to Computers’. What
computers have to do with geometry is investigated in detail in Chapter 8.5.
With regards to ‘pebbles’ (accounting tokens) we refer to the Pythagoreans,
who got some simple pre-numbertheoretical results from patterns of geomet-
rically ordered stones. Thus they could realize why ab is forever equal to ba
and why the distance between two square numbers n2 and (n+1)2 is always
2n+ 1.

This book features problems added chapter by chapter, most of which are
not historical problems strictly speaking, but problems that result from the
history presented here. For instance, questions without answers when they
first occurred; questions that just simply did not come to mind, but were
possible; old problems that nowadays are much easier to solve given modern
methods; and suggestions that result from old problems. Most of the problems
are reduced to special cases, contain hints or are asked in a manner that will
require only a highschool or slightly more advanced mathematical background
to be solved. However, a few questions are more difficult and “open-ended”.
Here, the reader is invited to probe and explore.

We have avoided the use of first names and the inclusion of the dates births
and deaths within the main text apart from a few, well-reasoned exceptions.
As far as we could determine those data, they are available in the index of
names at the end of the book.

The pictures of the people at the beginning of each chapter are of different
styles. We cannot rely on authentic portraits from antiquity or the non-
European Middle Ages. (One reason being that people in Islamic countries
were often not portrayed due to religious reasons.) However, we must ac-
knowledge that later eras felt the necessity to make pictures of their most
important personalities. In this book, a “picture” can be an imagined por-
trait or a symbolic graphic representation. In this respect, stamps can also
serve as a cultural document of the history of science. Multiple books have
been devoted to this exact subject [Gjone 1996, Schaaf 1978, Schreiber, P.
1987, Wußing/Remane 1989]. For example, a picture of Euclid (not shown
here) was taken from a manuscript of Roman field surveyors (agrimensores).
Here, two things are striking. First, these agrimensores thought of Euclid, the
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master of the logical-axiomatic approach, as their forefather, and, second, the
picture has an almost oriental ambience. Considering the mix of peoples and
cultures in Alexandria at 300BC, this may appear more realistic than some
neo-classically influenced pseudo-antique art.

From the European Middle Ages onwards, portraits began to appear inten-
tionally more similar to the individual persons, as artists started relying on
themselves as models. For example, the portrait of Piero della Francesca is an
alleged self-portrait. It comes from his Fresco “Resurrection” (around 1465)
located in his hometown of Borgo Sansepolcro.

The picture of René Descartes presented here was painted by Frans Hals
shortly before the philosopher departed for Sweden. It is not only one of the
very few cases in which a genuinely famous painter portrayed a genuinely fa-
mous mathematician (a second example is the portrait of Felix Klein painted
by Max Liebermann), but multiple copies of this painting were subsequently
made in the 17th century reflecting varying facial expressions, which since
then partially even flipped horizontal have haunted encyclopaedias and the
science-historical literature as images of Descartes.

Peter Schreiber

Advice for the reader
Round brackets (...) contain additional insertions, translation of original titles
or information on illustrations or problems.

Square brackets [...] contain information on literature within the text, expla-
nations or references below illustrations.

Illustrations have been numbered according to sub-chapters, e.g. illustration
7.4.3 is the third illustration of Part 4 of Chapter 7.

In order for the reader to find related texts more easily, problems have been
summarised at the end of each chapter and been numbered according to
sub-chapters, e.g. problem 7.3.6 is the sixth problem of Part 3 of Chapter 7.

The problems are of different sizes and vary in level of difficulty. Problems or
partial problems, which the publisher believes to be especially challenging,
have been marked with an*. However, we would like to point out that such
a judgement is clearly subjective and depends on the reader’s individual
knowledge and skills.

The kind of quotations and the references follow the style of the author P.
Schreiber.
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6 1 The beginnings of geometrical representations and calculations

1.1 Primal Society

Long before writing was developed, mankind may have realised and system-
atically used geometrical structures. Nature offers the eye multiple curved
lines, and a blade of grass or a tree trunk can symbolise the thought of a
straight line as well as the idea of a circle (as a cross-section). When weav-
ing or braiding we generate simple two-dimensional patterns, which then are
purposely modified or also replicated as decoration on clay pots. There is evi-
dence that such purposely geometrically shaped ornaments existed already in
40 000BC. They can be so characteristic for such cultural societies that pre-
historians can reconstruct their migrations by digging up and analyzing clay
fragments. For instance, we can find in the Cretan culture patterns of folded
strips on Neolithic clay pots, or six congruent circles, aligned around a central
circle of the same size and touching each on two neighbouring circles. The
equilateral triangle, the square (with four right-angled corners) or also the
regular hexagon must have been noticed very early as special cases of plane
shapes, awakening playful interest as well as first theoretical considerations
(cf. e.g. [Kadeřávek 1992]).

Illus. 1.1.1 Geometrical ornaments on prehistoric ceramic

[Drawing by Hubert J. Pepper from “The Dawn of Civilization” edited by Stuart
Piggott, Thames and Hudson Ltd., London]



1.1 Primal Society 7

Needs and activities of everyday life provided further inspiration: when con-
structing ditches, dams or houses, and land surveyingelementary geometrical
ratios were required. Men probably did not realise this at first until their
first logical considerations set in. Without three-dimensional solids (cuboids,
cubes, pyramids, columns) building was impossible. Observing the course of
the stars suggested a transition from the plane triangle to the spherical trian-
gle. It seemed to be obvious that the diagonal bisects the square or rectangle
as does the diameter the circle. All pre-Greek cultures have been aware of
such immediately insightful relations and applied them in practise. Only the
Greeks started probing and asking for reasons. They finally arrived at an
axiomatic construction of a geometric theory that has been passed down to
us by Euclid’s ‘Elements’. If we want to focus primarily on Egyptian and
Babylonian geometry in the following, we must emphasize that there is no
culture that does not reflect the versatile use of geometrical elements. Design-
ing jewellery is often heavily influenced by religious ideas: Pots devoted to
the gods would feature more abundant decorations, the altars would feature
special shapes and rituals (including dances) which would be conducted in a
special manner. We also must not neglect play as a source of engaging with
geometrical properties. This goes beyond just board games, which are almost
always sources for symmetrical patterns.

Illus. 1.1.2 Single course line concerning the cosmogonic myth of Jokwe in Angola:
The course of the sun (left), moon (right) and man (below) to god (above)

[Africa counts: Number and Pattern in African Culture, c©1973 by Claudia Za-
slavsky. Publ. by Lawrence Hill Books, an imprint of Chicago Review Press Inc.]
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Illus. 1.1.3 Goseck circle (near Halle, Germany), Nebra sky disk

(State Museum of Prehistory, Halle/Saale) [Photo: H. Wesemüller-Kock]

Ethnomathematics, which recently has turned towards the implicit mathe-
matical ideas of primitive people, yields some astonishing research results.
For example, there is an African tribe in Angola, whose people draw a shape
freehandedly from a single curve, which interlaces elaborately, when telling
their cosmogonic myth. This indicates thorough geometrical considerations,
if the desired outcome with its symmetrical properties is to be achieved (Il-
lus. 1.1.2). Since we have been aware of its changes, the starry sky has pro-
vided men with further inspiration to make basic geometrical observations.
The movements of the shadow of a tree trunk or towering stone, taken over
the course of a day or a year, form the basis for a simple sundial. Drawing
the course of the shadow lace systematically on the ground, the result is a
projection of the course of the sun on the sky in plane curves, which encour-
age us to think about it. In the 1990s, in Goseck (near Halle, Germany) a
set of concentric circular ditches, dating back to approx. 4800BC, was dis-
covered, archaeologically researched and reconstructed. It is the earliest sun
observatory currently known worldwide (Illus. 1.1.3). Circular ditches were
constructed in Central Europe close to settlements around 4800 to 4500BC.
Goseck’s circle features a dual ring of palisades with three gates, one each
facing north, southeast (sunrise on 21 December) and southwest (sunset on
21 December). The distance between the palisades grows wider around 21
June. This configuration allowed farmers of 7000 years ago to determine, by
means of position of the sun, the most propitious times to sow and harvest
over the course of the year. However, as findings indicate, circular ditches
were also used for cultural purposes. Only about 2000 years later the most
famous construction of the megalithic culture (3rd and 2nd millenniumBC),
Stonehenge near Salisbury in the south of England, was erected, which has
been interpreted as a sun observatory and a cult site [Gericke 1984], (Illus.
1.1.4).

Research of the last decades has shown that Stonehenge not only reflects use
of astronomical knowledge but also basic geometrical ratios, e.g. Pythagoras’s
theorem. However, we can only assume that the Pythagorean triangle with
side lengths 3, 4, 5 (for instance, it is possible to mark them with knots on a
rope of length 12) was used that early to generate right angles. Researchers
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Illus. 1.1.4 Stonehenge (South England): The biggest preserved stone monument
in Europe from the 3rd/2nd millennium (diameter of outer ring approx. 100m)

[Photo: H.-W. Alten]

argue that they can prove that the wood construction of Woodhenge (approx.
1800BC) was built by applying the Pythagorean triangle 12, 35, 37 (Illus.
1.1.5, 1.1.6).

For Stonehenge see [North 1996]; for a critique on the hypothesis of the right
angle view [Knorr 1985]. The bronze Nebra sky disk, found just recently
near Halle (Germany), comes from approx. the same time as Woodhenge.
Its constellation of the stars with the Pleiades is taken to be the first sky
representation [Schlosser 2004]. This disk has been the source of lively debates
in regards to theories of interpretation and meaning, whose final outcomes
are expected in the near future.

Illus. 1.1.5 Reconstruction of Woodhenge

[Ashbee, P.: The Bronze Age Round Barrow in Britain, Phoenix House Ltd, London
1960]
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Illus. 1.1.6 Ground plan of Woodhenge

[Thom, A.: Megalithic Sites in Britain, Oxford, Clarendon Press 1967, Fig. 6.16
p. 74, by permission of Oxford University Press]
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1.2 Old river valley civilisations

3000-2000 Town civilisations at the Indus
valley: Harappa and Mohenjo Daro

Script not yet deciphered

3000-2700 Union of kingdoms at Nile Hieroglyphs invented

3000-2700 Sumerian city states Cuneiform on clay tablets
developed

2700-2170 Old kingdom in Egypt Pyramids built

2700-2100 Akkadian invasion and reign Nomographs

2170-2040 First intermediate period of Egypt

2040-1794 Middle kingdom in Egypt Mathematical papyri

2100-1900 Several kingdoms in Mesopotamia

1900-1600 Old Babylonian kingdom

1728-1668 King Hammurabi in Babylon Tablets of law

1794-1550 Second intermediate period of
Egypt

1550-1070 New kingdom in Egypt Temple of Hatschepsut

1290-1224 Pharaoh Ramses II Amun temple in Karnak

1285 Battle of Kadesh Graves in Valley of the
Kings

1600-625 Hittites, Kassites, Assyrians rule
in Mesopotamia

Mathematical scripts in
cuneiform

1070-525 Late period in Egypt: Libyans,
Ethiopians, Assyrians rule at Nile

625-539 New Babylonian kingdom Astrology and astronomy
prosper

539 Cyrus the Great conquers Babylon

525 Persians conquer Egypt

332 Alexander the Great conquers
Egypt

323-30 Egypt reigned by Ptolemy Dynasty Egypt trade and cultural
centre of the world

Eratosthenes of Cyrene
director of Library, Euclid
and Apollonius in

47BC Library of Alexandria on fire Alexandria

30BC Egypt becomes Roman province Hero of Alexandria

391AD Library of Alexandria is destroyed Pappus and Proclus work
in Alexandria
Mathematician Hypatia
murdered by pagan
persecution

395 Egypt becomes part of the Eastern
Roman Empire (Byzantium) when
the Roman Empire is divided
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Illus. 1.2.1 Mohenjo-Daro. Exvacated ruins of one of the largest Settlements of
the ancient Indus Valley Civilisations [Photo: Saqib Qayyum, 2014]; stone statue
of a ‘Priest-King’, found in 1927AD in Mohenjo-Daro (National Museum, Karachi,

Pakistan) [Photo: Mamoon Mangal]

1.2.1 Indus civilisations

One of the oldest advanced civilisations of mankind is the settlement Mohenjo-
Daro at the Indus. The town belonging to the Harappa culture with approx.
40 000 inhabitants experienced its heyday around 2500BC. It was almost as
old as the Egyptian kingdom located along the Nile and Mesopotamia situ-
ated between the river valleys of Euphrates and Tigris. In all archaeological
sites of this culture, bricks feature the same side lengths with a ratio of 1:2:4,
streets follow the outline of a chessboard and weights were standardised.
Since excavations and interpretations of the findings of Mohenjo-Daro (lo-
cated in todays Pakistan) are still continuing, we are not able to reach final
conclusions on the role of geometry in this cultural area.

1.2.2 Egyptian mathematics

We have gained better insights into the geometrical knowledge of old Egypt
and Mesopotamia (also called Babylonia), since both civilisations have their
origins in the Neolithic age, and have left written sources behind, which have
been studied in great depth since the middle of the 19th century.

Hieroglyphs had been developed since approx. 2900BC in the strictly orga-
nized and centrally administrated Egypt. Next to the impressive construc-
tions of the pyramids, two mathematical papyri from the time of the middle
kingdom (11th to 13th dynasty) have served particularly well as sources for
our knowledge of Egyptian geometry. Their content reflects the level of knowl-
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Illus. 1.2.2 Egypt and Mesopotamia in ancient times

[Map: H. Wesemüller-Kock]

edge for approx. or shortly after 2000BC. The two most important ones are
the Rhind Mathematical Papyrus and the Moscow Mathematical Papyrus.
They constitute collections of problems with relevant approaches to solving
them. They seem to be texts, which have been written by teachers (writers)
at schools for officials to serve as teaching handbooks. The Rhind Mathemat-
ical Papyrus was originally 5.34m long, but only 33 cm wide. The Moscow
Mathematical Papyrus was 5.44m long, but only 8 cm wide. The latter con-
tains 25, the former 84 problems ordered according to factual aspects, which
sometimes feature visualising drawings. Thereby, geometrical solids are rep-
resented by their top or side views, since perspective drawing was unheard-of
in Egypt of that time. Sometimes the same drawing even demonstrates the
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most important aspect in a top view and individual parts in front views, e.g.
the representation of a rectangular pond with trees on the edge, the trees are
folded over to the left side (Illus. 1.2.3).

Relief designs and other wall pictures provide evidence that surveying the
ground of a temple was a holy act accompanied by many ceremonies, which
only the pharaoh or the highest priests were allowed to carry out. The holy
and mysterious aspects of the art of surveying and constructing were reflected
by conserved amulets, which have the shape of simple geometric instruments.
However, it does not seem likely that they drew the construction and trans-
ferred them to the building true to scale. Top and front views of columns and
ledges in original size have been found on suitable plane surfaces of stone.
Realisations of these can be found in surrounding buildings [Kadeřávek 1992].

Illus. 1.2.3 “Pond in a Garden” Change of perspective in the same picture, fresco
from the Tomb of Nebamun, Thebes, c. 1400BC

[British Museum London, MDID Collection]
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One of the simplest geometric problems is the calculation of area A of rect-
angles, trapeziums and triangles. The approximation formula for any quadri-
lateral with sides a, b, c, d is

A =
(a+ c)

2
· (b+ d)

2
. (1.2.1)

Hence, it entails dual averaging of the opposite sides. Interestingly, this rule
has also been applied to a triangle by zeroising the fourth side (better: omitted
because not existing, since the Egyptians did not know the concept of the
number zero). A peculiar instruction is applied when calculating area A of a
circle by means of a given diameter d: deduct 1/9 of its length and multiply
the result with itself and the outcome is

A = (
8

9
d)2. (1.2.2)

As usual, there is no reason for the astonishingly accurate method. However,
problem 48 of the Rhind Mathematical Papyrus contains a drawing showing
a square of side length 9, which is turned into an octagon by cutting off the
edges. This can be interpreted as a circle approximation. This shape inspired
Kurt Vogel in 1928 to interpret the Egyptian instruction (see Problem 1.2.1).

Apart from plane shapes, in Egyptian texts also volumes are calculated, when
structurally engineered problems or calculation of the holding capacity of
pots and basins are concerned. Hereby, the mention of a layer measure for
volumes is remarkable. Similarly, there is a stripe measure for calculating
areas. It suggests more of a calculation of the volume of a brick by multiply
inserting a layer, which equals its base and whose height constitutes the
unit measure, on top of one another (like when making plywood boards),
rather than calculating the volume of a brick by means of filling it with unit
cubes (since we use the latter method nowadays to multiply length, width
and height). All problems are calculated like recipes and only with concrete
numerical values. In these early times, men had neither a method to express
formulae nor abstract quantities.

When calculating volumes, they mainly dealt with cuboid-shaped or cylin-
drical containers, whereby the mentioned formula for circular areas was used.
The great pyramids suggest that the old Egyptians must have also known the
capacity formula for pyramids. However, there is no proof of this. (As proven
by Max Dehn in 1900, a strict derivation of this formula for any pyramid is
impossible without a limit process. See also Problem 1.2.2 for special cases.).

In contrast, Problem 14 of the Moscow Mathematical Papyrus contains the
correct instructions to calculate the volume of a square truncated pyramid
according to the correct formula

V =
h

3
· (a2 + ab+ b2) (1.2.3)
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Illus. 1.2.4 Regarding the calculation of the volume of a truncated square pyramid

[Design: H. Wesemüller-Kock]

(V = Volume, a = length of basis edge, b = length of top edge, h = height).
You can arrive at this formula, if the one for the volume of a pyramid is
known (see Problem 1.2.3). As pointed out, there is no evidence prominent
in the sparsely preserved Egyptian texts that this formula was used.

Sometimes the Egyptians approximated the square truncated pyramid by
calculating an average, i.e. they treated it like a cuboid, whose basis B was
chosen to be the arithmetic means of the basis area and top surface area:

B =
1

2
(a2 + b2). (1.2.4)

leads to

V =
h

2
(a2 + b2). (1.2.5)

Historian of mathematics Kurt Vogel pointed out that the Egyptians may
have realised their mistake and, as a result, have inserted a median area unit
a · b:

B =
(a2 + ab+ b2)

3
. (1.2.6)

This way, they discovered the correct calculation instruction from an incorrect
formula by means of unproven generalisation. (Beyond: If we view a pyramid
as a truncated pyramid with the top surface area b2 = 0, the formula for the
capacity of the truncated pyramid delivers the correct formula for the volume
of the pyramid.)
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Illus. 1.2.5 Cheops Pyramid of Giza, the tallest of all pyramids

[Photo: H.-W. Alten]

Illus. 1.2.6 Cheops Pyramid and Sphinx 1858AD.

The Sphinx deeply covered by sand [Photo: Francis Frith 1858]


