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This book is dedicated to everyone who always wanted to learn how to program on the
Macintosh. You can learn anything you want just as long as you’re willing to take the time
and believe in yourself.

“Promise me you’ll always remember: You’'re braver than you believe,
and stronger than you seem, and smarter than you think.”

— Christopher Robin to Winnie the Pooh
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Introduction

Whether you’re a complete novice looking to get started in programming, someone familiar
with programming but curious about learning more, or a seasoned programmer comfortable
with other programming languages but unfamiliar with Macintosh programming, this book
is for you. Whatever your skill level, this book will help everyone understand how to use
Apple’s latest programming language, Swift, to create OS X programs for the Macintosh.

Now you may be wondering why learn Swift and why program for the Macintosh? The
answer is simple.

First, Swift is Apple’s newest programming language designed to make creating OS X
and iOS programs faster, easier, and more reliable than before. Previously, you had to use
Objective-C to create OS X and iOS apps. While powerful, Objective-C is much harder to
learn; more complicated to read and write; and because of its complexity, more prone to
introducing errors or bugs in a program.

On the other hand, Swift is just as powerful as Objective-C (actually more powerful

as you’ll soon see), far easier to learn, and much simpler to read and write while also
minimizing common programming errors at the same time. Swift gives you all the benefits
of Objective-C with none of the drawbacks. Plus Swift gives you features that Objective-C
doesn’t offer, which makes Swift a far better programming language to learn and use today
and tomorrow. Since Swift is Apple’s official programming language, you can be certain
learning Swift will lead to greater opportunities now and long into the future.

Second, you may wonder why learn to create Macintosh programs? After all, the hot trend is
learning to create iOS apps for the iPhone, iPad, and Apple Watch. If you plan on developing
software, you definitely want to use Swift to create iOS apps.
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However, learning Swift means understanding the following:
¢ The principles of programming and object-oriented programming in particular
e The syntax of the Swift programming language
e Xcode’s features

¢ Apple’s software development framework (called Cocoa) that forms the foundation
of every OS X and iOS program

e The principles of user interface design

Does this sound like a lot to learn? Don’t worry. We’ll go through each process step by step
so you won't feel lost. The point is that to create OS X programs and iOS apps, you need to
learn multiple topics, but creating iOS apps poses an additional challenge.

For example, an iOS app needs to respond to touch gestures with one finger, two fingers,
swipes, shakes, and motion in addition to adapting to changes when the user flips an iPhone
or iPad left, right, upside down, or right side up.

In comparison, a Macintosh program only needs to respond to keyboard and mouse input.
That means OS X programs are much simpler to create and understand, which also means
that learning Swift to create OS X programs is far easier than learning Swift to create iOS

apps.

Best of all, the principles are exactly the same. What you learn creating OS X programs
are the exact same skills you need to create iOS apps. The difference is that creating OS X
programs is far easier, less confusing, and much less intimidating than creating iOS apps.

Trying to create iOS apps right from the start can be like trying to swim across the English
Channel before you even know how to hold your breath underwater.

You don’t want to frustrate yourself unnecessarily. That’s why it’s much easier to learn the
principles of iOS app programming by first learning OS X programming. Once you’re familiar
with OS X programming, you’ll find it’s trivial to transfer your programming skills to creating
iOS apps. By learning to create OS X programs in Swift, you’ll learn everything you need to
know to eventually create iOS apps in Swift, plus you’ll know how to create OS X programs
S0 you can tap into the growing Macintosh market as well.

Following Lucrative Programming Trends

The introduction of a new computer platform has always ushered in a lucrative period for
programmers. In the early 80s, the hottest platform was the Apple Il computer. If you wanted
to make money writing programs, you wrote programs to sell to Apple Il computer owners,
such as Dan Bricklin did, an MBA graduate student at the time, when he wrote the first
spreadsheet program, VisiCalc.
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Then the next big computing platform shift occurred in the mid-80s with the IBM PC and
MS-DOS. People made fortunes off the IBM PC including Bill Gates and Microsoft, which
went from a small, startup company to the most dominant computer company in the world.
The IBM PC made millionaires out of hundreds of people including Scott Cook, a former
marketing director at Proctor & Gamble, who developed the popular money manager
program, Quicken.

Microsoft helped usher in the next computer platform when they shifted from MS-DOS to
Windows and put a friendly graphical user interface on IBM PCs. Once again, programming
Windows became the number one way that programmers and non-programmers alike made
fortunes by writing and selling their own Windows programs. Microsoft took advantage of
the shift to Windows by releasing several Windows-only programs that have become fixtures
of the business world such as Outlook, Access, and Excel.

Now the world is shifting toward the new computer platform of Apple products running

OS X and iOS. Thousands of people, just like you, are eager to start writing programs to take
advantage of the Macintosh’s rising market share along with the dominant position of the
iPhone and the iPad in the smart phone and tablet categories, and the Apple Watch in the
wearable computer market.

Besides experienced developers, amateurs, hobbyists, and professionals in other fields are
also interested in writing their own games, utilities, and business software specific to their
particular niche.

Many programmers have gone from knowing nothing about programming to earning
thousands of dollars a day by creating iPhone/iPad apps or Macintosh programs. As the
Macintosh, iPhone, iPad, and now the Apple Watch continue gaining market share all over
the world, more people will use one or more of these products, increasing the potential
market for you.

All this means is that it’s a perfect time for you to start learning how to program your
Macintosh right now because the sooner you understand the basics of Macintosh
programming, the sooner you can start creating your own Macintosh programs along with
iPhone/iPad/Apple Watch apps.

What to Expect From This Book

Whether you’re a complete novice or a seasoned programmer coming from another
programming environment, this book will minimize technical jargon and focus on helping you
understand what to do and why.

If you just want to get started and learn the basics of programming in Swift, this book is
for you. If you’re already an experienced Windows programmer and want to get started
programming the Macintosh, this book can be especially helpful in teaching you the basics
in a hurry.
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If you’ve never programmed before in your life, or if you’re already familiar with programming
but not with Macintosh programming, then this book is for you. Even if you’re experienced
with Macintosh programming, you may still find this book handy as a reference to help you
achieve certain results without having to wade through several books to find an answer.

You won’t learn everything you need to create your own super-sophisticated programs, but
you’ll learn just enough to get started, feel comfortable using Xcode, and be able to tackle
other programming books with more confidence and understanding. Fair enough? If so, then
turn the page and let’s get started.

Note All code in this book was tested using Swift 2 in Xcode 7. If you're using Xcode 6, some
features in this book won't work.



Chapter

Understanding Programming

Programming is nothing more than writing step-by-step instructions for a computer to follow.
If you’ve ever written down the steps for a recipe or scribbled directions for taking care of
your pets while you’re on vacation, you’ve already gone through the basic steps of writing a
program. The key is simply knowing what you want to accomplish and then making sure you
write the correct instructions that will tell someone how to achieve that goal.

Although programming is theoretically simple, it’s the details that can trip you up. First, you
need to know exactly what you want. If you wanted a recipe for cooking chicken chow mein,
following a recipe for cooking baked salmon won’t do you any good.

Second, you need to write down every instruction necessary to get you from your starting
point to your desired result. If you skip a step or write steps out of order, you won’t get the
same result. Try driving to a restaurant where your list of driving instructions omits telling you
when to turn on a specific road. It doesn’t matter if 99 percent of the instructions are right; if
just one instruction is wrong, you won’t get to your desired goal.

The simpler your goal, the easier it will be to achieve it. Writing a program that displays a
calculator on the screen is far simpler than writing a program to monitor the safety systems
of a nuclear power plant. The more complex your program, the more instructions you’ll need
to write, and the more instructions you need to write, the greater the chance you’ll forget an
instruction, write an instruction incorrectly, or write instructions in the wrong order.

Programming is nothing more than a way to control a computer to solve a problem, whether
that computer is a laptop, smart phone, tablet, or wearable watch. Before you can start
writing your own programs, you need to understand the basic principles of programming in
the first place.

Note Don’t get confused between learning programming and learning a particular programming
language. You can actually learn the principles of programming without touching a computer

at all. Once you understand the principles of programming, you can easily learn any particular
programming language such as Swift.
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Programming Principles

To write a program, you have to write instructions that the computer can follow. No matter
what a program does or how big it may be, every program in the world consists of nothing
more than step-by-step instructions for the computer to follow, one at a time. The simplest
program can consist of a single line such as:

print ("Hello, world"!)

Obviously, a program that consists of a single line won’t be able to do much, so most
programs consist of multiples lines of instructions (or code) such as:

print ("Hello, world!")
print ("Now the program is done.")

This two-line program starts with the first line, follows the instructions on the second line,
and then stops. Of course, you can keep adding more instructions to a program until you
have a million instructions that the computer can follow sequentially, one at a time.

Listing instructions sequentially is the basis for programming. Unfortunately, it’s also limiting.
For example, if you wanted to print the same message five times, you could use the following:

print ("Hello, world!")
print ("Hello, world!")
print ("Hello, world!")
print ("Hello, world!")
print ("Hello, world!")

Writing the same five instructions is tedious and redundant, but it works. What happens if
you want to print this same message a thousand times? Then you’d have to write the same
instruction a thousand times.

Writing the same instruction multiple times is clumsy. To make programming easier, the goal
is to write the least number of instructions to get the most work done. One way to avoid
writing the same instruction multiple times is to organize your instructions using a second
basic principle of programming, which is called a loop.

The idea behind a loop is to repeat one or more instructions multiple times, but only by
writing those instructions down once. A typical loop might look like this:

for i in 1...5 {
print ("Hello, world!")

}

The first line tells the computer to repeat the loop five times. The second line tells the
computer to print the message “Hello, world” on the screen. The third line just defines the
end of the loop.
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Now if you wanted to make the computer print a message one thousand times, you don’t
need to write the same instruction a thousand times. Instead, you just need to modify how
many times the loop repeats such as:

for i in 1...1000 {
print ("Hello, world!")

Although loops are slightly more confusing to read and understand than a sequential
series of instructions, loops make it easier to repeat instructions without writing the same
instructions multiple times.

Most programs don’t exclusively list instructions sequentially or in loops, but use a
combination of both such as:

print ("Hello, world!")
print ("Now the program is starting.")
for i in 1...1000 {

print ("Hello, world!")

}

In this example, the computer follows the first two lines sequentially and then follows the last
three lines repetitively in a loop. Generally, listing instructions sequentially is fine when you
only need the computer to follow those instructions once. When you need the computer to
run instructions multiple times, that’s when you need to use a loop.

What makes computers powerful isn’t just the ability to follow instructions sequentially or in
a loop, but in making decisions. Decisions mean that the computer needs to evaluate some
condition and then, based on that condition, decide what to do next.

For example, you might write a program that locks someone out of a computer until that
person types in the correct password. If the person types the correct password, then

the program needs to give that person access. However, if the person types an incorrect
password, then the program needs to block access to the computer. An example of this type
of decision making might look like this:

if password == "secret” {
print ("Access granted!")
} else {

print ("Login denied!")

In this example, the computer asks for a password and when the user types in a password,
the computer checks to see if it matches the word “secret.” If so, then the computer grants
that person access to the computer. If the user did not type “secret,” then the computer
denies access.

Making decisions is what makes programming flexible. If you write a sequential series of
instructions, the computer will follow those lists of instructions exactly the same, every time.
However, if you include decision-making instructions, also known as branching instructions,
then the computer can respond according to what the user does.
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Consider a video game. No video game could be written entirely with instructions organized
sequentially because then the game would play exactly the same way every time. Instead, a
video game needs to adapt to the player’s actions at all times. If the player moves an object
to the left, the video game needs to respond differently than if the player moves an object
to the right or gets killed. Using branching instructions gives computers the ability to react
differently so the program never runs exactly the same.

To write a computer program, you need to organize instructions in one of the following three
ways as graphically show in Figure 1-1:

Sequentially — the computer follows instructions one after another
Loop - the computer repetitively follows one or more instructions

Branching — the computer chooses to follow one or more group of
instructions based on outside data

Sequence Loop Branching

Figure 1-1. The three basic building blocks of programming

While simple programs may only organize instructions sequentially, every large program
organizes instructions sequentially, in loops, and in branches. What makes programming
more of an art and less of a science is that there is no single best way to write a program.
In fact, it’s perfectly possible to write two different programs that behave exactly the same.

Because there is no single “right” way to write a program, there are only guidelines to help
you write programs easily. Ultimately what only matters is that you write a program
that works.

When writing any program, there are two, often mutually exclusive goals. First, programmers
strive to write programs that are easy to read, understand, and modify. This often means
writing multiple instructions that clearly define the steps needed to solve a particular
problem.

Second, programmers try to write programs that perform tasks efficiently, making the
program run as fast as possible. This often means condensing multiple instructions as much
as possible, using tricks or exploiting little-known features that are difficult to understand
and confusing even to most other programmers.
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In the beginning, strive toward making your programs as clear, logical, and understandable
as possible, even if you have to write more instructions or type longer instructions to do it.
Later as you gain more experience in programming, you can work on creating the smallest,
fastest, most efficient programs possible, but remember that your ultimate goal is to write
programs that just work.

Structured Programming

Small programs have fewer instructions so they are much easier to read, understand, and
modify. Unfortunately, small programs can only solve small problems. To solve complicated
problems, you need to write bigger programs with more instructions. The more instructions
you type, the greater the chance you’ll make a mistake (called a “bug”). Even worse is that
the larger a program gets, the harder it can be to understand how it works so that you can
modify it later.

To avoid writing a single, massive program, programmers simply divide a large program into
smaller parts called subprograms or functions. The idea is that each subprogram solves a
single task. This makes it easy to write and ensure that it works correctly.

Once all of your separate functions work, then you can connect them all together to create a
single large program as shown in Figure 1-2. This is like building a house out of bricks rather
than trying to carve an entire house out of one massive rock.

Instructions for printing Instructions for printing
Instructions for saving files Instructions for saving files
Instructions for displaying graphics Instructions for displaying graphics
Instructions for opening files Instructions for opening files

Figure 1-2. Dividing a large program into multiple subprograms or functions helps make programming more reliable

Dividing a large program into smaller programs provides several benefits. First, writing
smaller subprograms is fast and easy, and small subprograms make it easy to read,
understand, and modify the instructions.

Second, subprograms act like building blocks that work together, so multiple programmers
can work on different subprograms, then combine their separate subprograms together to
create a large program.

Third, if you want to modify a large program, you just need to yank out, rewrite, and replace
one or more subprograms. Without subprograms, modifying a large program means wading
through all the instructions stored in a large program and trying to find which instructions
you heed to change.
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A fourth benefit of subprograms is that if you write a useful subprogram, you can plug that
subprogram into other programs. By creating a library of tested, useful subprograms, you
can create other programs quickly and easily by reusing existing code, thereby reducing the
need to write everything from scratch.

When you divide a large program into multiple subprograms, you have a choice. You can
store all your programs in a single file, or you can store each subprogram in a separate file
as shown in Figure 1-3. By storing subprograms in separate files, multiple programmers can
work on different files without affecting anyone else.

Instructions for printing | . .
Instructions for Instructions for

Instructions for saving files | printing saving files
Instructions for displaying graphics |

Instructions for opening files
Storing subprograms in a single file Instructions for Instructions for

displaying opening files
graphics

Storing subprograms in separate files

Figure 1-3. You can store subprograms in a single file or in multiple files

Storing all your subprograms in a single file makes it easy to find and modify any part of your
program. However, the larger your program, the more instructions you’ll need to write, which
can make searching through a single large file as clumsy as flipping through the pages of a
dictionary.

Storing all of your subprograms in separate files means that you need to keep track of
which files contain which subprogram. However, the benefit is that modifying a subprogram
is much easier because once you open the correct file, you only see the instructions for a
single subprogram, not for a dozen or more other subprograms.

Because today’s programs can get so large, it’'s common to divide its various subprograms
in separate files.
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Event-Driven Programming

In the early days of computers, most programs worked by starting with the first instruction
and then following each instruction line by line until it reached the end. Such programs
tightly controlled how the computer behaved at any given time.

All of this changed when computers started displaying graphical user interfaces with
windows and pull-down menus so users could choose what to do at any given time.
Suddenly every program had to wait for the user to do something such as selecting a menu
command or clicking a button. Now programs had to wait for the user to do something
before reacting.

Every time the user did something, that was considered an event. If the user clicked the left
mouse button, that was a completely different event than if the user clicked the right mouse
button. Instead of dictating what the user could do at any given time, programs now had to
respond to different events that the user did. Making programs responsive to different events
is called event-driven programming.

Event-driven programs divide a large program into multiple subprograms where each
subprogram responds to a different event. If the user clicked a menu command, a
subprogram would run its instructions. If the user clicked a button, a different subprogram
would run another set of instructions.

Event-driven programming always waits to respond to the user’s action.

Object-Oriented Programming

Dividing a large program into multiple subprograms made it easy to create and modify a
program. However, trying to understand how such a large program worked often proved
confusing since there was no simple way to determine which subprograms worked together
or what data they might need from other subprograms.

Even worse, subprograms often modified data that other subprograms used. This meant
sometimes a subprogram would modify data before another subprogram could use it. Using
the wrong data would cause the other subprogram to fail, causing the whole program to fail.
Not only does this situation create less reliable software, but it also makes it much harder to
determine how and where to fix the problem.

To solve this problem, computer scientists created object-oriented programming. The goal
is to divide a large program into smaller subprograms, but organized related subprograms
together into groups known as objects. To make object-oriented programs easier to
understand, objects also model physical items in the real world.

Suppose you wrote a program to control a robot. Dividing this problem by tasks, you might
create one subprogram to move the robot, a second subprogram to tell the robot how to see
nearby obstacles, and a third subprogram to calculate the best path to follow. If there was



