
Tal

Shelve in:
Software Engineering /Software Development

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Agile Software Development with
HP Agile Manager
Agile development practices have been widely adopted in a variety of organizations, yet only a few
tools are available to help make the practical process of managing agile teams less painful and more
successful.

HP Agile Manager is a purpose-built SaaS-based Agile planning tool. HP Agile Manager
provides a simpler, smarter way to manage collaborative development.

Liran Tal provides a practical, concise approach to using Agile Manager in a variety of settings
to better plan, conduct, and manage software releases within development teams. His step-by-step
approach will show you how to plan your product’s features, streamline the agile sprint process, work
with user stories, and track defects throughout the development process.

Agile Manager can work for small startups, mid-sized teams, as well as scale up for bigger
organizations as a cost-effective and flexible tool to apply agile techniques to improve your software
development process.

What You’ll Learn

• How to apply the concepts of agile management in software development teams to better
execute and increase performance and delivery

• How a software release cycle works, how to manage sprints, set timelines, build a products
backlog, and manage day to day team tasks

• How to leverage agile best practices to guide your team through effective release planning
and team collaboration

• Understand and apply agile software delivery concepts such as estimating and streamlining
sprints planning, execution, and retrospective

• How to setup and use HP Agile Manager to effectively manage software lifecycles through agile
methodology, and learn how to leverage Agile Manager’s flexible workflow to meet your team
requirements and processes

• Using Agile Manager’s dashboards for real-time view into the current status of releases,
and sprints to gain insights and pro-actively respond to changes, as well as tracking your
team progress, work-load, and keeping an eye on tasks burn-down, or cumulative flow

9 781484 210352

53499
ISBN 978-1-4842-1035-2

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

Chapter 1: The Agile World ■ �� 1

Chapter 2: Getting Started with Agile Manager ■ ��� 15

Chapter 3: Setting Up Agile Manager for Release ■ ��� 29

Chapter 4: Building the Product Backlog ■ �� 53

Chapter 5: Streamlining Work in the Release Backlog ■ �� 71

Chapter 6: The Engineering Manager’s Dashboard ■ ��� 101

Chapter 7: Helpful Resources and Support ■ �� 117

Index ��� 125

xvii

Introduction

Agile development practices have been widely adopted in a variety of organizations, yet only a few tools
are available to help make the practical process of managing agile teams less painful and more successful.
HP Agile Manager is a purpose-built SaaS-based agile planning tool that provides a simpler, smarter way to
manage collaborative development. Agile Manager can work for small startups and midsize teams and can
scale up for bigger organizations as a cost-effective and flexible tool to apply agile techniques to improve
your software development process.

This book combines agile software development practices with HP’s Agile Manager tool, when used as
a SaaS product or an on-premise solution, and will explain how to master key functionalities of Agile
Manager. It teaches you how to build and plan releases, create a product’s backlog, and manage day-to-day
R&D activity such as addressing user stories and defects and reviewing the team activity with the help of
informative dashboards. While this book is not designed to teach agile software development per se, it starts
out with a chapter that covers agile software development practices and specifically focuses on the Scrum
agile methodology and its related concepts.

Who This Book Is For
This book assumes no previous knowledge of agile tools, or agile in general, so developers, quality engineers,
development team leaders, and other stakeholders in an R&D team will find this book serves them well in
learning and applying agile methodologies in their teams and in successfully building and adopting an agile
development framework in their software projects. This book will also be of great help for teams already
using an agile framework who want to further improve on their delivery with a more flexible agile tool such
as Agile Manager.

Young team leaders and engineering managers will especially benefit from this book by learning and
understanding how to adopt Scrum agile processes for successfully delivering results in their teams.

How This Book Is Structured
This book is designed to walk you through the software development stages ofanagile software methodology.
It begins by laying the foundation for the agile philosophy and continues with signingup for and setting up
HP’s Agile Manager tool to manage a software project. It continues with chapters covering how to create
the product’s backlog, how to create themes and features, how to manage sprints, and how to streamline
the R&D team’s activities with user stories and defects. Finally, the book covers how to use dashboards and
widgets to track and monitor real-time team activity and ends by reviewing online resources for further
learning about Agile Manager’s features, support, and the community around it.

1

Chapter 1

The Agile World

To begin your journey with managing agile teams and using Agile Manager for streamlining an agile
workflow, you’ll dive into the agile world by learning about the concepts, terminology, and the agile software
development methodology.

In this chapter, you’ll learn the basics of the agile philosophy and working principles to set the mood for
the rest of your agile journey. We’ll cover the following topics:

Introducing the basic concepts and traits of the agile philosophy•	

Reviewing agile terminology, including roles in software development•	

Reviewing agile software models•	

Introducing Agile Software Development
The prominent software development methodology in the 20th century was the Waterfall process model,
which employs a sequential design and development process that originated in the manufacturing and
construction industry. While the Waterfall process is still used throughout the industry today in some
software projects, the agile philosophy, introduced in 2001, challenges the norm of developing software
projects by providing a less rigid, more flexible framework for developing software, where a shippable and
deliverable product is achieved quicker through progressing research and development (R&D) iterations.

Origins of Waterfall Model
The basics of Waterfall model workflows are about setting up a pipeline process chain, which begins with a
requirements phase and early planning step that may account for up to 30 percent of the time invested in the
project. The rationale behind investing so much time in ironing out the requirements lies in the claim, per
Rapid Development: Taming Wild Software Schedules (Microsoft Press, 1996), that a bug found in the early
stages of requirements analysis is cheaper in terms of cost and R&D effort than the same bug discovered
later in the process.

Note ■ The Waterfall model is one of many software project models available for anyone to adopt, and
modifications on the original Waterfall model include the Spiral model, the more current V-model, and the
Modified Waterfall.

ChapTer 1 ■ The agile World

2

Software projects then continue with the rest of the phases of software modeling, building, and
testing, and finally continue with the last phase of delivering the final product and maintenance, as
shown in Figure 1-1.

Requirements
and Planning

System Design

Implementation

Testing

Deployment

Maintenance

Figure 1-1. Agile software development: Waterfall model

Software projects developed with the Waterfall model provide a simpler approach to software
development life cycles and provide solid requirements and general documentation assets throughout their
initial phases, which enables new team members to easily join a project.

However, the following are the disadvantages of the Waterfall model:

•	 Inflexible: The Waterfall is unresponsive to changes. Once the specification
requirements phase has locked in all the planned features, the project continues
until completion.

•	 Prone to bottlenecks and delays: If an issue is detected at a late phase, such as in
development or testing, this affects the entire process line because the phases are
quite sequential, and it may introduce a significant delay time.

•	 Late product delivery: Only the completion of the final phases of the software project
provide a working, deliverable product.

Note ■ Today, you may still witness the Waterfall software development model employed for large projects or
for corporations that haven’t chosen to adopt a more agile workflow. other reasons for organizations to employ
a Waterfall process model is when technology, requirements, and product specification and definition are all
stable, known, and considered constant. in other occasions, the Waterfall method may simply be a requirement
of some governments and industries.

ChapTer 1 ■ The agile World

3

The Agile World of Software Development
Entering into the 21st century, in 2001 the first concepts of agile software development were introduced in
the form of the Agile Manifesto (http://agilemanifesto.org). Some of the key values to the philosophy
behind agile development processes are as follows:

•	 Individuals and interactions over processes and tools

•	 Working software over comprehensive documentation

•	 Customer collaboration over contract negotiation

•	 Responding to change over following a plan

These values mitigate and address concerns in previous, more rigid software development
methodologies such as the original Waterfall model. It does not mean that processes, tools, documentation,
or following a plan has no value but simply that the agile philosophy values these less when compared with
other key values.

R&D individuals and interactions, collaboration, and continuous frontal team updates help to flush
out any obstacles team members have and give room for ideas exchange and immediate feedback from
teammates. It should be noted that agile methodologies don’t reject tools or processes altogether but rather
hint that fostering team members’ interaction, as shown in Figure 1-2, is of higher value, and interactions
shouldn’t be replaced entirely by any tool or process.

Figure 1-2. Individuals and interactions over processes and tools

Having working software, even if it provides minimal value to the customer, is preferred over
developing and documenting an entire software project whose life span can be relatively long and may turn
out to be partially irrelevant when delivery is made. In other words, documenting every single part of the
system by writing a top-notch requirements specification for every aspect in the product that will cover every
feature to be developed is time-consuming and may often turn out to be a throwaway task because user
requirements change; in addition, it’s crucial to get users to interact with your software as soon as possible to
be able to collect feedback and valuable input.

http://agilemanifesto.org/

ChapTer 1 ■ The agile World

4

Documentation should not be disregarded or overlooked, though. It should exist, but it shouldn’t be
comprehensive in a way that stalls development or stalls the shipping of a minimal product to the customer
to gain feedback. As shown in Figure 1-3, a product can be minimally functional and deliver customer value.

Figure 1-3. Working software over comprehensive documentation

Figure 1-4. Customer collaboration over contract negotiation

Where contract negotiation limits the evolution of a software project because it ties down the
agreed-upon features and developed content, agile promotes collaboration with customers to understand
ongoing needs, reprioritization of features, and product vision for market alignment. Traditional software
development models would lock in the customer to a feature set, and only then the project could continue
with further design, development, and delivery. This meant that customers could evaluate the product only
after everything had been developed and delivered and at a very late phase find out that the developers
made bad decisions or that they were totally off with the market alignment and feature set. As shown in
Figure 1-4, a customer’s voice should be highly regarded and carefully examined, which can impact a
product’s feature set and vision altogether.

ChapTer 1 ■ The agile World

5

All of these values are about being able to respond to change as software develops. Change should be
embraced and prepared for with risk planning and modular, flexible software design. It is key to understand
and accept that software evolves as users interact with it, and planned features may get thrown away or
reprioritized. Agile software development acknowledges this ever-changing climate in software projects and
offers solutions through processes to streamline these changes successfully.

Agile Flavors
The agile software development philosophy sets the mood for implementing the processes through the key
values and principles. To support these values and build on the original agile principles, an emergence of
agile methodologies and frameworks came to life to offer guidelines and lightweight processes to achieve
agile development. These methodologies are also referred to as flavors of agile software development.

While there are many agile flavors, such as the more popular Scrum, Kanban, Extreme Programming
(XP), and Feature-Driven Development (FDD), we won’t cover all of them. Rather, we’ll focus on Scrum,
which is considered a common practice and which Agile Manager provides the toolbox for. Here are short
reviews of selected agile methodologies:

•	 Scrum: In Scrum, products (or projects) are divided into iterative and time-boxed
work units, referred to as sprints, which are typically two weeks long. A repetitive
cycle composed of feature planning, user stories estimation, R&D work of developers
and QA, and demos and retrospectives forms an iteration in which a potentially
shippable product value can be met and delivered to the customer in minimal time.

•	 Kanban: Similar to Scrum, Kanban is an iterative process methodology that
facilitates the delivery of product value through emphasis on optimizing the process
flow. To make sure the process flow is adhered to, Kanban promotes the use of
visualization of the flow’s pipeline, often referred to as the task board, organized
from left to right in flow of completion order, such as items that are in-progress
development, done, in-testing items, done, and deployment. Items are put on the
board and are moved in sequence from one column to another as they progress
through the pipeline flow until completion.

•	 Scrumban: Merging both Scrum and Kanban, the Scrumban methodology desires
to adopt the best elements from both and aims to integrate the task board workflow
with Scrum concepts and foster the visualization of items. To that end, Scrumban
promotes daily updates, review, and retrospective processes and combines them
with Kanban work-in-progress (WIP) capacity limits and clear stages of execution.

Note ■ agile Manager also provides tools and workflows to effectively practice Kanban in your team, and
even a Scrumban variation is quite common and well supported in the tool.

Practicing Scrum Agile Development
Scrum is a lightweight agile framework that is focused on making small teams work efficiently together to
deliver a working product by employing methodologies and processes to streamline the work of the Scrum
team for a successful software project.

The Scrum approach to software projects is through an iterative and incremental process, where team
members continually work together to create a working product and continuously introspect the process for
self-improvements. Figure 1-5 shows an example of such a process.

ChapTer 1 ■ The agile World

6

Note ■ While Scrum is well adopted and quite common in the technology industry, its processes can be
customized and employed in other industries.

So you further understand the concepts of Scrum, we will lay the foundations of basic definitions in the
world of an agile, and specifically Scrum, methodology.

Scrum Artifacts
The Scrum methodology identifies a few tangible deliverables that are the representations of specification
requirements for the product or project.

The Product Backlog
The product backlog, as shown in Figure 1-6, is often referred to as the general backlog and is a prioritized
list of requirements, or changes, that represent the desired feature set for the product. It is characterized as
dynamic because requirements often change or are added.

Figure 1-5. Example of agile Scrum development life cycle

ChapTer 1 ■ The agile World

7

The content of the product backlog forms the basic idea pool for breaking the product backlog further
into an organized set of deliverable value such as sprints and releases.

The following are backlog items that are referenced in the product backlog:

•	 Themes: Themes are general descriptive items for a focus area. For example, for
a web application product, themes can be user management and messaging and
notifications. Themes allow you to group similar interest area features.

•	 Features: Often referred to as epics, features describe a requirement in large and not
so detailed specifics. Features can be thought of as a large set of tasks and items to
develop (or large user stories) and are usually too large to complete in a single sprint.
Features are broken down to smaller units called user stories, which are handled in
the sprint backlog.

Note ■ Backlog grooming is a common term for the practice of reorganizing the backlog items on the
product backlog, such as reprioritizing them, removing them, creating new items, or correcting estimates.
This activity is often referred to as the backlog refinement meeting.

The Sprint Backlog
Sprints are time-boxed, iterative periods in which the team works together to deliver a set of product value items.

Similar to the general backlog, the sprint backlog is a set of defined requirements that is much more
detailed and descriptive that the team has identified, discussed, and planned for completion in a given
sprint. These items should be developed, tested, documented, and then integrated to provide a shippable
and deliverable product.

High-Priority items

Medium-Priority items

Low-Priority items

Product Backlog Items

Figure 1-6. The product backlog

ChapTer 1 ■ The agile World

8

The following are backlog items that are referenced in the sprint backlog:

•	 User stories: User stories are customer-focused descriptions for functionality that
needs to be achieved in order to answer a set of product requirements. Figure 1-7
shows an example of a user story.

Figure 1-7. A typical user story

•	 Defects: Defects and bugs are common backlog items that are tracked and logged by
the QA team through sprint periods and are often used to indicate the quality of the
product or developed functionality in a sprint.

Note ■ although it is common to use the term bug for describing problems in a feature or product, a bug
and a defect aren’t the same thing. a bug is the result of wrong or bad programming code, and a defect is a
deviation from the requirements, a requirement that was not met, or a requirement that did not exist.

The following are general guidelines for user stories:

•	 Simplicity: User stories should be simple, short, concise, and often treated as small
units of information that can fit on an A4 notecard.

•	 Capture essential information: User stories describe the who, what, and why of a
requirement.

•	 Estimated and prioritized: User stories should be estimated using a measure like
story points, which is a relative estimated effort, or using timed tasks. User stories
should be small enough to complete within a single sprint; otherwise, they should be
broken down into smaller user stories.

ChapTer 1 ■ The agile World

9

The Product Increment
A product increment is the set of product backlog items that have been completed in one or more sprints
that provide value to the customer (see Figure 1-8). It is easy to understand product increments as releases,
where each release, referred to as the product increment contributes to the final, more complete vision of the
product and where real product value is provided in each release.

Product

Product Increment

The Product Backlog

Figure 1-8. The product increment

Figure 1-9. The burndown chart

Burndown Chart
The purpose of this chart is to represent the current state of the sprint in terms of the remaining work to be
done. It is called a burndown chart because it should have a declining graph as the team walks toward the
end of the sprint and work is decreasing toward completion (see Figure 1-9).

Burndown charts show the remaining work on the y-axis and the sprint time length on the x-axis. On
top of the actual remaining work items, the chart usually includes trend lines indicating the expected and
actual remaining work and can be translated into the velocity of the team. That is, this is the speed in which
backlog items are achieved throughout sprints.

ChapTer 1 ■ The agile World

10

Figure 1-10. Sprint iterative concept

Scrum Roles
The Scrum methodology defines a Scrum team that is composed of Scrum’s own set of Scrum roles. These
roles are not common titles like product manager or team leader.

•	 Product owner: The product owner manages the product backlog and ensures the
backlog items are prioritized according to the product vision and are aligned with
customer value and priority.

•	 Scrum master: The Scrum master is responsible for streamlining the Scrum team
processes, activities, and practices to ensure that the Scrum methodology is
followed.

•	 The team: The team includes the R&D team, developers, and QA team members
working together to incrementally deliver shippable value products.

Scrum Sprints
In the Scrum methodology, software projects are facilitated through a predefined time window, usually
several weeks long, of iterations that are referred to as sprints. Within these sprints, the team work together
to achieve and complete parts of the project, through swift planning, R&D work, a closing retrospective, and
demo sessions.

Figure 1-10 shows a simple and typical sprint iterative process; although the figure is incomplete, we’ll
fill in the details as we step you through the complete Scrum picture.

Note ■ demo sessions at the end of each sprint are important and allow the product owner to assess the
fulfilment of the sprint backlog.

