
Nelli

Shelve in
Web Development/JavaScript

User level:
Beginning

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Create Web Charts with D3
Create Web Charts with D3 shows how to convert your data into eye-catching,
innovative, animated, and highly interactive browser-based charts. If you want
power and control and need to create data visualization beyond traditional charts,
then D3 is the JavaScript library for you.

Full of step-by-step examples, Create Web Charts with D3 introduces you
gradually to all aspects of chart development, from the data source to the choice
of which solution to apply. By the end of the book, you will know all the elements
needed to manage data from every possible source: from high-end scientific
instruments to Arduino boards, from PHP SQL databases queries to simple HTML
tables, and from Matlab calculations to reports in Excel. You will be able to provide
cutting-edge charts exploiting the growing power of modern browsers.

This book contains content previously published in Beginning JavaScript Charts.

• Master the tools that can be the starting point for any project requiring
graphical representations of data, using commercial libraries or your own

• Explore D3 basics
• Discover the world of JavaScript graphic libraries
• See which charts can best represent your data
• Switch from a vision of a chart sent from a server as a static image to a

highly dynamic one
• Perform input data manipulation to increase chart readability

Create Web Charts with D3 is for developers at all levels interested in data visuali-
zation, and ready to embrace modern web standards and animate and display their
data with powerful, cutting-edge technologies.

RELATED

9 781484 208663

53499
ISBN 978-1-4842-0866-3

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ���xiii

About the Technical Reviewer �� xv

Acknowledgments �� xvii

Introduction ��� xix

Chapter 1: Charting Technology Overview ■ ���1

Chapter 2: Working with D3 ■ ��19

Chapter 3: Line Charts with D3 ■ ��47

Chapter 4: Bar Charts with D3 ■ ���97

Chapter 5: Pie Charts with D3 ■ ���129

Chapter 6: Candlestick Charts with D3 ■ ��151

Chapter 7: Scatterplot and Bubble Charts with D3 ■ ��161

Chapter 8: Radar Charts with D3 ■ ���191

Chapter 9: Handling Live Data with D3 ■ ��203

Chapter 10: Adding Controls to Charts ■ ��219

Chapter 11: Embedding D3 Charts in jQuery Widgets ■ ���241

Chapter 12: JSON and Layouts—Handling Structured Data ■ ��265

Appendix A: Guidelines for the Examples in the Book ■ ���281

Index ���289

xix

Introduction

Welcome to the world of charts. If you are holding this book in your hands, you are undoubtedly interested in data
visualization, perhaps with the hope of developing web pages filled with interactive charts. Or, maybe your purpose is
to improve your knowledge of the D3 library. Whatever your objective, I hope this book enables you to achieve it.

In addition to the various types of charts, this book covers a range of topics: the DOM elements and selections,
HTML5 and the canvas, jQuery UI widgets and controls, graphic manipulation with scalable vector graphics (SVG)
technology, and mathematical concepts (scales and domains, curve fitting and trend lines, clustering analysis, and
much more).

I have enriched this wide range of topics with many examples, each tightly focused on a particular one and
presented to you in an ordered sequence, with step-by-step instructions.

Chart development can be easy once you know the process and have the right tools at the ready. Therefore,
in presenting this material, I have included helpful, reusable code snippets as well as explanations of underlying
concepts. After reading this book, you will be equipped to create any type of data visualization, either traditional or
newer, with confidence.

1

Chapter 1

Charting Technology Overview

When we need to represent data or qualitative structures graphically in order to show a relationship—to make
a comparison or highlight a trend—we make use of charts. A chart is a graphic structure consisting of symbols,
such as lines, in a line chart; bars, in a bar chart; or slices, in a pie chart. Charts serve as valid tools that can help us
discern and understand the relationships underlying large quantities of data. It is easier for humans to read graphic
representations, such as a chart, than raw numeric data. Nowadays, use of charts has become common practice in
a wide variety of professional fields as well as in many other aspects of daily life. For this reason, charts have come to
take on many forms, depending on the stucture of the data and the phenomenon that is being highlighted.
For example, if you have data separated into different groups and want to represent the percentage of each, with
respect to the total, you usually display these groups of data in a pie chart or a bar chart. In contrast, if you want to
show the trend of a variable over time, a line chart is typically the best choice.

In this book, you will learn how to create, draw, and adapt charts to your needs, using various technologies based
on JavaScript. Before you start using JavaScript to develop charts, however, it is important that you understand the
basic concepts that will be covered in the chapters of this book. In this chapter, I will provide a brief overview of these
concepts.

First, I will show you how to recognize the most common elements that make up a chart. Knowledge of these
elements will prove helpful, because you will find them in the form of components, variables, and objects defined
within the specialized JavaScript libraries created for the realization of charts.

Next, I will present a list of the most common types of charts. The greater your knowledge of charts and their
features, the easier it will be to choose the right representation for your data. Making the right choice is essential if you
are to underline the relationships you want to represent, and just reading the data will not be sufficent. Only when you
have become familiar with the most common types of charts will you be able to choose which is the most suitable for
your purposes.

Once you have become familiar with these concepts, you will need to learn how it is possible to realize them via
the Web and what the current technologies are that can help you achieve this aim. Thus, in the second part of the
chapter, I will discuss these technical aspects, presenting one by one the technologies involved in the development of
the examples provided in this book.

Finally, given that all our work will focus on the development of code in JavaScript, I thought it would be helpful
to provide a brief description of certain types of data. Those who are not familiar with JavaScript can benefit from this
quick reference source on the forms that the data will take within the code. However, I strongly recommend that the
reader research in greater depth the concepts and technologies discussed in this chapter.

Elements in a Chart
As you will soon see, charts can assume a variety of forms. In a chart the data take on graphic structure through the
use of symbols specific to the type of chart; there are, however, some features that are common to all charts.

Generally, every chart has a title, appearing at the top, that provides a short description of the data. Less
frequently, subtitles or footnotes are used to supply additional descriptions (mostly data-related information, such as
references, places, dates, and notes).

Chapter 1 ■ Charting teChnology overview

2

Charts often have axes—two perpendicular lines that allow the user to refer to the values of the coordinates (x, y)
for each data point P(x, y), as shown in Figure 1-1. The horizontal line usually represents the x axis, and the vertical
line, the y axis.

Figure 1-1. A two-dimensional chart

Figure 1-2. Four axes with different scales

Figure 1-3. An axis label

A scale is defined on each axis. The scale can be either numerical or categorical. Each axis is divided into
segments corresponding to the particular range of values represented by the scale. The boundaries between one
segment and the next are called ticks. Each tick reports the value of the scale associated with that axis. Generally, call
these tick labels.

Figure 1-2 shows four axes with different scales. Axes a and b have numerical scales, with a being a linear scale,
and b, a logarithmic scale. Axes c and d have categorical scales, with c being ordinal and therefore following an
ascending order, whereas d is only a sequence of categories without any particular order.

Along with each axis, it is good practice to display a label briefly describing the dimension represented; these are
called axis labels. If the scale is numerical, the label should show the units of measure in brackets. For instance, if you
had an x axis reporting the timing for a set of data, you might write “time” as an axis label, with the second unit (in this
case, seconds) in square brackets as [s] (see Figure 1-3).

In the drawing area displaying the chart, a line grid may be included to aid in the visual alignment of data.
Figure 1-4 shows a grid for a chart with a linear time scale on the x axis and a logarithmic scale on the y axis.

Chapter 1 ■ Charting teChnology overview

3

You have seen how data can be represented symbolically. However, text labels can also be used to highlight
specific data points. Point labels provide values in a chart right at the corresponding points in a chart, whereas tool
tips are small frames that appear dynamically, when you pass the mouse over a given point. These two types of labels
are shown in Figure 1-5.

Figure 1-4. A chart with two different scales

Figure 1-5. The point label and the tooltip of a data point

Chapter 1 ■ Charting teChnology overview

4

Data are often grouped in several series, and in order to represent these in the same chart, they must be
distinguishable. The most common approach is to assign a different color to each series. In other cases, for example,
with line charts, the line stroke (dashed, dotted, and so on) can also be used to distinguish different series. Once you
have established a sequence of colors (or strokes), it is necessary to add a table demonstrating the correspondence
between colors and groups. This table is called the legend and is shown in Figure 1-6.

Although it may seem trivial to discuss the concepts covered in this section, it is important to define the
terminology of the elements that I will be referring to throughout the book. They form the building blocks with
which you will be building your charts. You will also see how JavaScript libraries specializing in the representation of
charts use these terms, associating them with editing and setting components (see the section “Inserting Options” in
Chapter 8).

Most Common Charts
This section contains a brief overview of the most common types of charts. These charts will each be described more
thoroughly in the following chapters of the book.

Histogram: Adjacent rectangles erected on the x axis, split into discrete intervals (bins) and
with an area proportional to the frequency of the observation for that bin (see Figure 1-7).

Bar chart: Similar in shape to a histogram, but different in essence, this is a chart with
rectangular bars of a length proportional to the values they represent. Each bar identifies a
group of data (see Figure 1-7).

Figure 1-6. A legend

Figure 1-7. A histogram and a bar chart

Chapter 1 ■ Charting teChnology overview

5

Line chart: A sequence of ordered data points connected by a line. Data points P(x, y) are
reported in the chart, representing the scales of two axes, x and y (see Figure 1-8).

Pie chart: A circle (pie) divided into segments (slices). Each slice represents a group of
data, and its size is proportional to the percentage value (see Figure 1-8).

Figure 1-8. A line chart and a pie chart

Bubble chart: A two-dimensional scatterplot in which a third variable is represented by the
size of the data points (see Figure 1-9).

Radar chart: A chart in which a series of data is represented on many axes, starting radially
from a point of origin at the center of the chart. This chart often takes on the appearance
of a spiderweb (see Figure 1-9).

Figure 1-9. A bubble chart and a radar chart

Chapter 1 ■ Charting teChnology overview

6

Note ■ open-high-low-close (ohlC) are four numeric values typically used to illustrate movement in the price of a
financial instrument over time.

How to Realize Charts on the Web
Now that I have described the most common types of charts and the elements that compose them, the next step is to
take a quick look at the technologies available today that will allow you to realize your chart.

Nowadays, web technologies are in constant flux: each day, new solutions are proposed, solving problems that
only a short time ago would have proven to be quite complex. These innovations will afford you the possibility to
realize highly interactive charts, with eye-catching graphics, all by writing only a few lines of JavaScript code. The
whole thing can be done fast and easily, as most of the work is done for you, by the JavaScript libraries, which are
highly specialized in chart representation. These libraries are now to be found all over the network.

In this book, you will work with the D3 library, which is currently the most widely used library and which can
provide general solutions to practically any problem that may arise in the process of chart realization.

But, before stepping through theis library (which you will do in later chapters), you must first survey all the
technologies that constitute the basis for chart development in JavaScript, as these will accompany you throughout
the rest of the book.

HTML5
Recently, there has been a lot of talk about HTML5, which is practically revolutionizing the way in which web
applications are developed. Before its advent, if you wanted to introduce interactive graphical content, the use
of applications such as Adobe Flash was pretty much the obligatory path. But, dealing with Flash or similar
applications for developing charts or other graphic representations on the Web involves an obvious limitation:
dependency on a plug-in, to be installed on the end user’s machine. In addition, these kinds of applications are
not supported on smartphones. Thanks to HTML5, developers can now create advanced graphics and animation
without relying on Flash.

Figure 1-10. A candlestick chart

Candlestick chart: A type of chart specifically used to describe price trends over time. Each
data point consists of four values, generally known as open-high-low-close (OHLC) values,
and assumes a shape resembling a candlestick (see Figure 1-10).

Chapter 1 ■ Charting teChnology overview

7

As you read through this book, you will see how HTML5 has also led to the birth of many other technologies,
some new, others old but renewed, such as JavaScript. In fact, as a language, JavaScript is experiencing a rebirth, as
a result of the new libraries developed precicely to take advantage of the innovations introduced by HTML5. HTML5
has many new syntactical features, including the <canvas> elements and the integration of scalar vector graphics
(SVG) content. Owing to these elements, it will be very easy to integrate multimedia and graphical content on the Web
without using Flash.

In Flash’s place, you will be using the D3 library. Currently, this is the most widespread and complete library
available for the realization tasks such as the graphic visualization of data. The world of web technologies is constantly
evolving, however; on the Internet, you can always find new libraries, with characteristics similar to the D3 library.

Charting with SVG and CANVAS
Among all the possible graphic applications that can be implemented with the new technologies introduced by
HTML5, I will focus on the representation and visualization of data through charts. Using JavaScript as a programming
language, we can now take advantage of the powerful rendering engines embedded in new browsers. As the basis
of the new capabilities of this language, I will refer to the HTML5 canvas and SVG. Instead of drawing static images
on the server and then downloading them into the browser, SVG and canvas allow you to develop fully interactive
charts and thus to enrich your graphic representations with built-in animation, transitions, and tool tips. This is
because SVG and canvas content is drawn in the browser, and so the graphic elements that make up the chart can be
transformed without refreshing the page. This feature is essential for visualizing real-time data, which require that the
chart be continually updated, as the data change. Operating in this way will ensure a true client-side charting. In fact,
by making use of these technologies, charts are actually drawn on the client and only require that the data be passed
from the server. This aspect affords a considerable number of advantages, the foremost being elimination of the need
for large graphics files to be downloaded from the server.

Canvas vs SVG
Both HTML5 canvas and SVG are web technologies that allow you to create rich graphics in the browser, but they are
fundamentally different. Throughout this text, you will see mainly how D3 makes use of the SVG technology. Other
libraries similar to D3 (i.e. jqPlot and Highcharts), instead, make use of the HTML5 <canvas> element to draw its
charts. In contrast, D3 does not make use of canvas; it relies on SVG technology for graphic representations.

SVG is an XML-based vector graphic format. SVG content can be static, dynamic, interactive, or animated,
which makes it very flexible. You can also style the SVG elements with Cascading Style Sheets (CSS) and add dynamic
behavior to them, using the application programming interface (API) methods provided by the SVG document
object model (DOM). In choosing this format, you can, therefore, obtain much more than simple vector graphics and
animation: you can develop highly interactive web applications, with scripting, advanced animation, events, filters,
and almost anything else your imagination might suggest.

The HTML5 canvas specification is a versatile JavaScript API, allowing you to code programmatic drawing
operations. Canvas, by itself, lets you define a canvas context object, shown as a <canvas> element on your HTML
page. This element can then be drawn inside, using either a two-dimensional or three-dimensional drawing context,
with Web Graphics Library (WebGL).

The advantages of canvas, compared with SVG, are high drawing performance and faster graphics and image
editing. Whenever it is necessary to work at the pixel level, canvas is preferable. However, with canvas, not having
DOM nodes on which to work can be a disadvantage, especially if you do not use a JavaScript framework. Another
disadvantage is poor text-rendering capabilities.

The advantages of SVG, compared with canvas, are resolution independence, good support for animation, and
the ability to animate elements, using a declarative syntax.Most important, though, is having full control over each
element, using the SVG DOM API in JavaScript. Yet, when complexity increases, slow rendering can be a problem, but
browser providers are working hard to make browsers faster (see Tables 1-1 and 1-2).

Chapter 1 ■ Charting teChnology overview

8

Table 1-2. Web Technology Support: Comparison of Web Browsers

Browser
Technology Internet Explorer 10 Chrome 29 Firefox 23 Safari 6

SVG (v.1.1)

Filters Yes (from 10) Yes Yes Yes (from 6)

Synchronized Multimedia Integration
Language (SMIL) animation

No Yes Yes Partial

Fonts No Yes No Yes

Fragment identifiers Yes No Yes No

HTML effects Partial Partial Yes Partial

CSS backgrounds Yes Yes Partial Yes

CSS Yes Yes Yes Yes

HTML5

Canvas Yes(from 9) Yes Yes Yes

New elements Yes Yes Yes Yes

Video elements Yes(from 9) Yes Yes Yes

JavaScript API

JavaScript Object Notation (JSON) parsing Yes Yes Yes Yes

WebGL No Yes Partial Partial

Table 1-1. Web Browsers and Engines

Browser Current Engine Developer License

Google Chrome 29 Blink Google, Opera, Samsung,
Intel, others

GNU Lesser General Public License
(LGPL), Berkeley Software Distribution
(BSD) style

Mozilla Firefox 23 Gecko Netscape/Mozilla Foundation Mozilla Public License (MPL)

Internet Explorer 10 Trident Microsoft Proprietary

Apple Safari 6 WebKit Apple, KDE, Nokia,
Blackberry, Palm, others

GNU LGPL, BSD style

The DOM
Working with libraries that act at the level of the structural elements of an HTML page, we cannot avoid talking about
the DOM. I will be referring to this concept often, as it is the basic structure underlying every web page. The World
Wide Web Consortium (W3C) felt the need, and rightly so, to create an official standard for the representation of
structured documents, so as to develop guidelines for all programming languages and platforms.The tree structure of

Chapter 1 ■ Charting teChnology overview

9

HTML documents, as well as those of XML, follows the guidelines developed by this standard perfectly. Following is
an example of an HTML document:

<HTML>
 <HEAD>
 <TITLE>A title</TITLE>
 </HEAD>
 <BODY>
 Hello

 </BODY>
</HTML>

The DOM tree of this document can be represented as shown in Figure 1-11.

Figure 1-11. An example of tree structure of the DOM

But, the DOM standard is not limited to developing guidelines on how the DOM should be structured in a
document; the standard also defines a number of features designed to act on the elements that compose a document.
Thus, any action pertaining to a document (creating, inserting, deleting) should follow the DOM standard. As a result,
regardless of the programming language that you are using or the platform on which you are working, you will always
find the same functionality expressed by this standard. Often, the term DOM also applies to the API, which manages
all the elements of a web page.

All this is important, because anyone choosing to read this book is interested in developing charts that not only
use the DOM, but that are also part of it and whose every aspect can be inspected and manipulated in JavaScript.
Throughout the book, you will learn how to make the best use of the D3 library. Thanks to this JavaScript library, you
can access every chart element, such as changing the color and position of objects.

Developing in JavaScript
Although it is likely that most people who have chosen to read this book already have a good knowledge of JavaScript,
this may not in fact be the case. For this reason, I have structured the book in a practical way, giving step-by-step
examples and providing all the code that must be written in the examples. As such, this book offers newcomers an
opportunity to study the language and those who have not used it for some time a chance to refresh their memories.

Chapter 1 ■ Charting teChnology overview

10

To start working with the JavaScript libraries that you will be using to develop your charts, it is necessary to
prepare a development environment. It is true that to develop JavaScript code, you could simply use a text editor, such
as Notepad (or, even better, Notepad++), but developers generally prefer to use specialized applications, usually called
integrated development enviroments (IDEs), to develop code. As well as providing a text editor with differentiated
colors corresponding to the keywords used in the code, such applications also contain a set of tools designed to
facilitate the work. These applications can check if there are any errors in the code, supply debugging tools, make it
easy to manage files, and assist in deployment on the server, among many other operations.

Nowadays, there are many JavaScript IDEs on the network, but some of the most prominent are Aptana Studio
(see Figure 1-12); Eclipse Web Developer, with the JavaScript test driver (JSTD) plug-in installed; and NetBeans.
These editors also allow you to develop Hypertext Preprocessor (PHP), CSS, and HTML (for information on how to
use the Aptana Studio IDE to set up a workspace in which to implement the code for this book, see Appendix A, or use
the source code accompanying the book directly; you can find the code samples in the Source Code/Download area
of the Apress web site [www.apress.com]).

Figure 1-12. The Aptana Studio 3 IDE

For those who prefer not to install too many applications on their computer, there are online JavaScript IDEs.
These allow users to edit JavaScript code in a web page working as an IDE and to check their result directly from the
same web page. Unfortunately, many of these IDEs charge a fee. However, jsFiddle (http://jsfiddle.net) is an
online IDE that requires no payment and that, in addition to editing, provides code sharing and the option of adding
libraries, such as jQuery and D3.(see Figure 1-13).

http://www.apress.com/
http://jsfiddle.net/

Chapter 1 ■ Charting teChnology overview

11

jsFiddle can prove very useful. As well as letting the user include many JavaScript libraries (see Figure 1-14),
it offers the respective different versions released, thus allowing him or her to test any incompatibilities in real time.

Figure 1-13. The online IDE jsFiddle

Figure 1-14. jsFiddle offers a set of the most popular JavaScript libraries

Chapter 1 ■ Charting teChnology overview

12

Running and Debugging JavaScript
JavaScript, if we want to define it in a client–server framework, is a completely client-side programming language. It is
not subject to compilation, and parts of the code, apart from HTML documents, can be found in many other types of
files that are specific to other languages, such as .JSP or .PHP.

These code fragments pass unaffected through the application servers without ever being processed. Only the
browser is responsible for running the JavaScript code. Therefore, JavaScript code is run only when a web page is
downloaded or afterward, in response to an event. If the JavaScript code is of a considerable size or might be useful
subsequently, it can be defined externally in a .JS file; here, you will find all the JavaScript libraries and frameworks
that will be mentioned throughout this text. Regardless of its form, however, JavaScript runs directly from the browser.

So, even if you do not use a real IDE for the development and debugging of JavaScript code, you can simply insert
the code in an empty HTML file and then load this file directly in a browser (Chrome, Internet Explorer, and Firefox
are the most common). To distinguish it from the rest of the text on the page, you must separate the code by putting it
inside the <script></scripts> tags:

<script type="text/javascript">
// JavaScript code
</script>

If the JavaScript code resides in an external file, then it will be necessary to include it in the HTML page, writing

<script type="text/javascript" src="library.js"></script>

Therefore, as long as the execution of JavaScript is not required for the purpose of installing something, you have
everything you need. Who does not have a web browser on his or her operating system?

Data Types in JavaScript
As mentioned earlier, this book will neither explain the rules and syntax for the programming of good JavaScript code
nor will it linger too long on programming details. Nevertheless, the code that we are going to develop is centered
on charts, or rather the processing of data and how to display them. Let us start with the simplest case. The smallest
building block of all data structures is the variable (when it contains a single value). In handling the types of data,
JavaScript is very different from other programming languages. , You do not have to specify the type of value
(int, string, float, boolean, and so on) when you want to store JavaScript in a variable; you need only define it with the
var keyword.

In Java or C a variable containing an integer value is declared differently from one containing a text:

int value = 3;
String text = "This is a string value";

In JavaScript the type of stored value does not matter. Everything is declared with var, so the same declarations are

var value = 3;
var text = "This is a string value";

Thus, in JavaScript we can think of variables as containers for storing any type of value.
For the sake of simplicity, here the variables are seen as containers of a single value, thus representing the

simplest data structure. Actually, however, variables may also contain types of data that are more complex: arrays
and objects.

Chapter 1 ■ Charting teChnology overview

13

Note ■ the use of variables in JavaScript is actually a bit more complicated. you can also use a variable without ever
declaring it with the var keyword. the var keyword will declare the variable within the current scope. if var is missing,
JavaScript will search for a variable with the same name declared at an upper level of scope. if JavaScript does not find
this variable, a new one is declared; otherwise, JavaScript will use the values in the variable found. as a result, an
incorrect use of variables can sometimes lead to errors that are difficult to detect.

Arrays
An array is a sequence of values separated by a comma and enclosed in square brackets []:

var array = [1, 6, 3, 8, 2, 4];

Arrays are the simplest and most widely used data structure in JavaScript, so you should become very familiar
with them. It is possible to access any value in an array by specifying its index (position in the array) in the brackets,
immediately following the name of the array. In JavaScript the indexes start from 0:

array[3] //returns 8

Arrays can contain any type of data, not just integers:

var fruits = ["banana", "apple", "peach"];

There are a many functions that can help us handle this kind of object. Because of its usefulness, I will be using
this object frequently throughout the book, and it therefore seems proper to give it a quick look.

It is possible to know the number of the values in an array by writing

fruits.length //returns 3

Or, if you know the values, you can get the corresponding index with

fruits.indexOf("apple") //returns 1

Moreover, there is a set of functions that allow us to add and remove items in an array. push() and pop()
functions add and remove the last element in an array, whereas shift() and unshift() functions add and remove the
first element in an array:

fruits.push("strawberry");
// Now the array is ["banana", "apple", "peach", "strawberry"];
fruits.pop(); //returns "strawberry"
// Now the array is ["banana", "apple", "peach"];
fruits.unshift("orange", "pear");
// Now the array is ["orange", "pear", "banana", "apple", "peach"];
fruits.shift(); //returns "orange"
// Now the array is ["pear", "banana", "apple", "peach"];

Sometimes, it is necessary to make a loop through every value in an array in order to perform some action with
it. An approach that is widely used in other programming languages is the use of the function for(). For example, to
calculate the sum of the values in an array, you would write

Chapter 1 ■ Charting teChnology overview

14

var sum = 0;
for (var i = 0; i < array.length; i++) {
 sum += array[i];
}

But, in JavaScript it is more common to use the forEach() function, where d assumes the values in the array,
one by one, following the sequence:

var sum = 0;
array.forEach(function(d) {
 sum += d;
});

Objects
Arrays are useful for simple lists of values, but if you want structured data, you need to define an object. An object is
a custom data structure whose properties and values you define. You can define an object by enclosing its properties
between two curly brackets { }; every property is defined by a name followed by a colon (:) and the assigned value, and
commas separate each property/value pair:

var animal = {
 species: "lion",
 class: "mammalia",
 order: "carnivora",
 extinct: false,
 number: 123456
};

In JavaScript code, dot notation refers to each value, specifying the name of the property:

animal.species //Returns "lion"

Now that you have learned about both objects and arrays, you can see how it is possible to combine them in
order to get more complex data structures in JavaScript. You can create arrays of objects or objects of arrays, or even
objects of objects. Square brackets are used to indicate an array, curly brackets, an object. For example, let us define
an array of objects in this way:

var animals = [
 {
 species: "lion",
 class: "mammalia",
 order: "carnivora",
 extinct: false,
 number: 123456
 },
 {
 species: "gorilla",
 class: "mammalia",
 order: "primates",
 extinct: false,
 number: 555234
 },

Chapter 1 ■ Charting teChnology overview

15

 {
 species: "octopus",
 class: "cephalopoda",
 order: "octopoda",
 extinct: false,
 number: 333421
 }
];

To get the values of these data structures, you need to use both the square brackets with the index and the name
of the property:

animals[0].extinct //return false
animals[2].species //return "octopus"

Firebug and DevTools
To debug, if you are using an IDE, you can easily make use of the various debugging tools that are included with
it. If you do not have access to an IDE, however, you can still avail yourself of external tools. Think of the browser
as a development environment, where debugging tools can be integrated through plug-ins that are downloadable
from Internet. There are many tools currently available on the Internet, but the one I want to propose is Firebug, a
web development tool for those who prefer to use the browser Mozilla Firefox. Firebug is an add-in that integrates
seamlessly into the Firefox browser, as demonstrated in Figure 1-15.

Figure 1-15. Firebug is an extention of Mozilla Firefox and is fully integrated into the browser

Chapter 1 ■ Charting teChnology overview

16

Firebug will prove a very useful tool throughout, especially when using use the jQuery and D3 libraries, which
require that the structure of the DOM always be kept under control. This tool will allow you to monitor the structure
of the DOM directly.

For those who prefer to use Google Chrome, however, there is DevTools, which is already integrated into the
browser (see Figure 1-16). To access this tool, simply click the button at the top-right corner of the browser.

Figure 1-16. With DevTools it is possible to monitor a lot of information about your web page

Next, select Tools ➤ Developer Tools, or simply right-click any page element, and then select Inspect element in
the context menu.

With these two tools, you can easily inspect not only each element of the DOM—its attributes and their values—
but also the CSS styles applied to them. You can also input changes to these values to observe the effects in real time
without having to modify the code on file and save it every time. Firebug and DevTools also include various tools for
monitoring the performance of the page, for both rendering and networking.

With DevTools, particular attention should be paid to the use of the console as well. Through it, you can access
diagnostic information, using methods such as console.log(). This method is frequently used to display the values of
many variables through the console, passing the name of the variable as an argument, with the addition of text as an
indication:

var x = 3;
console.log("The value of x is " + x); // The value of x is 3

It is also possible to enter commands and perform interactions with the document, using methods such as $() or
profile(). For further information on these methods, see the documentation regarding the Console API
(https://developers.google.com/chrome-developer-tools/docs/console-api) and the Command Line API
(https://developers.google.com/chrome-developer-tools/docs/commandline-api).

https://developers.google.com/chrome-developer-tools/docs/console-api
https://developers.google.com/chrome-developer-tools/docs/commandline-api

Chapter 1 ■ Charting teChnology overview

17

JSON
JSON is a specific syntax for organizing data as JavaScript objects. This format is generally used in browser-based
code, especially in JavaScript. JSON represents a valid alternative to XML for organizing data. Both are independent
from the programming language, but JSON is faster and easier to parse with JavaScript than XML, which is a
full-markup language. Moreover, D3 works well with JSON. Its structure follows perfectly the rules that we have seen
for objects and arrays defined in JavaScript:

var company = {
 "name": "Elusive Dinamics",
 "location": "France",
 "sites": 2,
 "employees": 234,
 "updated": true
};

Summary
This first chapter has introduced you to many of the fundamental concepts that will accompany you throughout the
book. First, you examined the most common types of charts and the elements that compose them. You also took a
quick look at many of the technical aspects you need to know when setting about developing a chart on the Web.
Finally, you briefly explored the types of data used in the JavaScript examples in this book.

I mentioned that the majority of your work will be done by a specialized JavaScript library. The next chapter will
cover the highlights of the D3 library. Through a series of examples, you will see how to manipulate DOM elements
by changing their attributes, and by creating new ones when needed. In the second part of the chapter, you will learn
what the main object of manipulations with the D3 library is: SVG elements.

19

Chapter 2

Working with D3

In the various sections of this chapter, and as you delve deeper into the aspects of the library in the next chapters,
you’ll be able to appreciate that D3 has a unique and innovative structure. First of all, it does not use jQuery, but it
reproduces all the features necessary for data visualization. Whereas in the jqPlot and Highcharts libraries, chart
components are already created, requiring the users only to adjust their properties via the options object, D3 has
virtually the opposite approach.

The D3 library allows you to build any representation, starting with the most basic graphical elements such as
circles, lines, squares, and so on. Certainly, such an approach greatly complicates the implementation of a chart, but
at the same time, it allows you to develop completely new graphical representations, free from having to follow the
preset patterns that the other graphic libraries provide.

Thus, in the course of this chapter, you’ll become acquainted with the basic concepts that underlie this library.
You’ll also find out how to manipulate the various Document Object Model (DOM) elements, especially the creation
of Scalable Vector Graphics (SVG) elements, which are the essential building blocks of the graphical representations.

The chapter closes with a brief introduction to the transformations and transitions of SVG elements.
You’ll start with an introduction to this wonderful library.

FIreBUG: DeBUGGING D3 CODe

Before beginning with some practical examples, I would like to remind you to use FireBug for debugging. At the
least, be sure to get a good debugging tool in JavaScript that allows you to view the DOM tree of the web page
upon which you’ll be working (see the “FireBug and DevTool” section in Chapter 1).

Using a debugging tool with the D3 library is essential, given that unlike the other libraries you have seen, it
is not structured with premodeled objects. With D3, it is necessary to start from scratch, implementing all the
chart elements one by one. Therefore, those who are familiar with development will realize that choosing a good
debugging tool is essential to solving any problems that arise.

With FireBug it is possible to edit, debug, and monitor CSS, SVG, and HTML. You can change their values in real
time and see the effects. It also provides a console where you can read out the log, which is suitably placed
within the JavaScript code to monitor the content of the variables used. This can be achieved by calling the log()
function of the console object and passing the variable interested as argument:

console.log (variable);
It is possible to add some text for reference, as well:
console.log ("this is the value:");

You will see that, when working with D3, FireBug is crucial for inspecting the dynamic structures of SVG elements
that JavaScript generates in the DOM.

CHApTer 2 ■ WOrkInG WITH D3

20

Introducing D3
D3 is a JavaScript library that allows direct inspection and manipulation of the DOM, but is intended solely for data
visualization. It really does its job excellently. In fact, the name D3 is derived from data-driven documents. D3 was
developed by Mike Bostock, the creator of the Protovis library, which D3 is designed to replace.

This library is proving to be very versatile and powerful, thanks to the technologies upon which it is based:
JavaScript, SVG, and CSS. D3 combines powerful visualization components with a data-driven approach to DOM
manipulation. In so doing, D3 takes full advantage of the capabilities of the modern browser.

D3 allows you to bind arbitrary data to the DOM. Its strength is its capability to affect several transformations
of the document. For example, a set of data could be converted into an interactive SVG graphical structure such as a
chart.

If you are familiar with other JavaScript frameworks specialized in web chart representation (i.e. jqPlot), you
know that their strength is that they provide structured solutions, which you manipulate through the settings of
options. Instead, the strength of D3 is precisely the opposite. It provides the building blocks and tools to assemble
structures based on SVG. The result of this approach is the continuous development of new structures, which are
graphically rich and open to all sorts of interactions and animations. D3 is the perfect tool for those who want to
develop new graphics solutions for aspects not covered by existing frameworks.

Differently from the other JavaScript graphic libraries, D3 does not use the jQuery library to handle the DOM
elements, but it has many similar concepts in it, including the method-chaining paradigm and the selections. It
provides a jQuery-like interface to the DOM, which means you don’t need to know all the features of SVG in much
detail. In order to handle the D3 code, you need to be able to use objects and functions and to understand the basics
of SVG and CSS, which are used extensively. The sacrifices that go into mastering all of this knowledge are rewarded
with the amazing visualizations you can create.

SVG provides the building blocks for the artwork; it allows you to draw all the basic shape primitives such as
lines, rectangles, and circles, as well as text. It allows you to build complex shapes with paths.

Starting with a Blank HTML Page
It’s time to practice the concepts just outlined. First, start with a blank page, shown in Listing 2-1. This will be the
starting point for all of the D3 examples.

Listing 2-1. Ch2_01a.html

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="http://d3js.org/d3.v3.js"></script>
<style>

 // CSS Style here

</style>
</head>
<body>

 <!-- HTML elements here -->

CHApTer 2 ■ WOrkInG WITH D3

21

<script type="text/javascript">

 // D3 code here

</script>
</body>
</html>

Although, at first glance, you see only a simple HTML blank page, there are some small measures you must take
when you work with D3. The most simple and clear measure is to include the library D3:

<script src="../src/d3.v3.js"></script>

Or if you prefer to use a content delivery network (CDN) service:

<script src="http://d3js.org/d3.v3.js"></script>

When entering the URL of the remote D3 library, make sure that the website always includes the latest version.
Another measure, which is less obvious, is to add the <head> of the page:

<meta charset="utf-8">

If you do not specify this row, you will soon find out that the D3 code you added does not run. Last, but not least,
where you add the various parts of the code is very important. It is advisable to include all the JavaScript code of D3 at
the end of the <body> section, after all the HTML elements.

Using Selections and Operators
To start working with D3, it is necessary to become familiar with the concept of selections. Having to deal with
selections involves the use of three basic objects:

•	 Selections

•	 Selectors

•	 Operators

A selection is an array of node elements extracted from the current document. In order to extract a specific set
of elements (selection), you need to use selectors. These are patterns that match elements in the tree structure of the
document. Once you get a selection, you might wish to perform some operations on it and so you use operators. As a
result of their operation, you get a new selection, and so it is possible to apply another operator, and so on.

Selectors and operators are defined by the W3C (World Wide Web Consortium) APIs and are supported by
all modern browsers. Generally, you’ll operate on HTML documents, and so you’ll work on the selection of HTML
elements.

Selections and Selectors
To extract a selection from a document, D3 provides two methods:

•	 select

•	 selectAll

CHApTer 2 ■ WOrkInG WITH D3

22

d3.select("selector") selects the first element that matches the selector, returning a selection with only one
element.

d3.selectAll("selector") instead selects all elements that match the selector, returning a selection with all
these elements.

There is no better way to understand these concepts than to do so gradually, with some simple examples. Starting
from the HTML page just described, add two paragraphs containing some text and then make a selection with D3
(see Listing 2-2).

Listing 2-2. Ch2_01a.html

<body>
<p>First paragraph</p>
<p>Second paragraph</p>
<script type="text/javascript">
 var selection = d3.select("p");
 console.log(selection);
</script>
</body>

d3.select is the top-level operator; "p" is the selector; and the selection is the returned value of the operator
you assign to a variable. With this D3 command, you want to select the first element <p> in the web page. Using the
log function, you can see the selection with FireBug in Figure 2-1.

Figure 2-1. The FireBug console enables you to see the content of the selection

Since you used the select() method, you have a selection with only one element, although in the web page there
are two. If you want to select both, you use selectAll(), as in Listing 2-3.

Listing 2-3. Ch2_01b.html

<script type="text/javascript">
 var selection = d3.selectAll("p");
 console.log(selection);
</script>

CHApTer 2 ■ WOrkInG WITH D3

23

Now you have a selection with two elements. The great innovation that jQuery and D3 introduce with the concept
of selection is that for loops are no long necessary. Instead of coding recursive functions to modify elements, you can
operate on entire selections at once.

Operators
Once you have learned to make selections, it is time to apply operators to them.

An operator is a method that’s applied to a selection, or generally to a set of elements, and it specifically
“operates” a manipulation. For example, it can get or set a property of the elements in the selection, or can act in some
way on their content. For example, you may want to replace existing text with new text. For this purpose, you use the
text() operator, shown in Listing 2-4.

Listing 2-4. Ch2_02.html

<body>
<p>First paragraph</p>
<p>Second paragraph</p>
<script type="text/javascript">
 var selection = d3.selectAll("p");
 selection.text("we add this new text");
</script>
</body>

Figure 2-2. FireBug shows the selection of all the <p> elements in the web page

Figure 2-2 shows both elements.

CHApTer 2 ■ WOrkInG WITH D3

24

There are operators for every kind of object upon which you’d want operate. These operators can set the content of:

•	 Attributes

•	 Styles

•	 Properties

•	 HTML

•	 Text

Figure 2-4. The FireBug console shows the text contained in the selection

Figure 2-3. The text contained in the two <p> elements has been replaced in the browser on the left and is shown in
FireBug on the right

The page now reports twice for the same text, where before there were two paragraphs (see Figure 2-3).

You defined the variable selection and then applied the operator to this variable. But there is another way to write
all this; you can use the methods of chain functionality, especially when you apply multiple operators to the same
selection.

d3.selectAll("p").text("we add this new text");

You have seen that by passing a parameter to the text() operator, you are going to replace the existing text. So it
is as if the function were setText("new text"). But you do not always want that. If you do not pass any arguments,
the function will have a different behavior. It will return the value of the text already present. This can be very useful
for further processing, or for assigning this string value to a variable or an array. Therefore, without parameters, it is as
if it were getText().

var text = d3.select("p").text();
console.log(text);

The text variable contains the "First paragraph" string (see Figure 2-4).

CHApTer 2 ■ WOrkInG WITH D3

25

You just saw the text() operator in action. Next, you’ll see some of the other operators.

Note ■ If you want to learn more about operators, I suggest you visit the ApI reference for the D3 library at this link:
https://github.com/mbostock/d3/wiki/API-Reference.

For example, it is helpful to be able to change a CSS style and you can do so with the style() operator. Listing 2-5
replaces the existing text using text() and then modifies its style to be written in red, adding the style() operator to
the methods chain.

Listing 2-5. Ch2_03.html

<body>
<p>Existing black text</p>
<script type="text/javascript">
 d3.selectAll("p").style('color','red').text("New red text");
</script>
</body>

Figure 2-5 shows the original text on the left and the newly styled text on the right.

Figure 2-5. The original text is replaced by the new red text, applying the chain method upon the selection

Another operator, attr(), acts at the level of attributes of elements. This operator will be used when you create
new SVG elements; in fact, it allows you to define the attributes while you are creating the tags, before inserting
them in the web page. Here you can see how it can modify an existing attribute. In Listing 2-6, you’re changing the
alignment of a title to be displayed in the middle of the page (see Figure 2-6).

Listing 2-6. ch2_04.html

<body>
<h1>Title</h1>
<script type="text/javascript">
 d3.select('h1').attr('align','center');
</script>
</body>

https://github.com/mbostock/d3/wiki/API-Reference

CHApTer 2 ■ WOrkInG WITH D3

26

Creating New Elements
Now that you have seen how to act at the level of elements and how to modify both attributes and content, it is time
to see how to create new items. To do this, D3 provides a number of operators (https://github.com/mbostock/d3/
wiki/API-Reference), among which the most commonly used are:

•	 html()

•	 append()

•	 insert()

The html() Method
This section shows how the html() method operates. You always start from a selection and then apply this operator to
add an element inside. For example, you select a particular tag as a container, and then write a string that is passed
as an argument. The string then becomes the content of the tag (see Listing 2-7).

Listing 2-7. Ch2_05.html

<body>
<p>A paragraph</p>
<script type="text/javascript">
 d3.select('p').html("<h1>New Paragraph</h1>");
</script>
</body>

Here, you first select the <p> tag with select() and then with html() you replace its contents with a new element,
<h1>. Figure 2-7 shows the original text on the left and the newly formatted version on the right.

Figure 2-7. The text in a paragraph element <p> is replaced with a heading element <h>

Figure 2-6. With the D3 library it is possible to dynamically add a title to a web page

https://github.com/mbostock/d3/wiki/API-Reference
https://github.com/mbostock/d3/wiki/API-Reference

CHApTer 2 ■ WOrkInG WITH D3

27

Practically, the html() function replaces the contents of the selection with the HTML code passed as an
argument. Exactly as its name suggests, this function allows you to dynamically write HTML code within the elements
of the selection.

The append() Method
Another popular method for adding elements is append().

Recall that when you’re using the html() operator, the content of the selected tag, if any, is replaced with the new
one passed as an argument. The append() operator instead adds a new element, passed as its argument, to the end
of all the existing elements contained in the selected tag. The content of the newly created element must be added to
the chain of methods, using text() if it is only a string, or append(), html() or insert() if it is a further element.

In order to understand this last point, add an unordered list with some items containing fruit names to the
page (see Figure 2-9).

Figure 2-8. FireBug clearly shows the insertion of the head element (on the right) to replace the content of the
paragraph element (on the left)

Figure 2-9. An unordered list of three fruits

You can see this change better, using FireBug (see Figure 2-8)

Say that you now want to add Oranges to this list. In order to do this, you must select the unordered list tag
and then use append() to add a list item tag . But append() creates only the tag, so in order to insert the string
"Oranges" inside it, you need to add the text() operator to the chain of methods (see Listing 2-8).

