
Juneau

Shelve in
Programming Languages /Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

JavaServer Faces: Introduction
by Example
This book is about using JavaServer Faces to create and deploy interactive
applications delivered to end users via a browser interface. JavaServer Faces is the
component-based technology enabling easy development of such applications,
especially applications of the type commonly needed in enterprise environments.

JavaServer Faces: Introduction by Example takes you through building and
deploying servlet-based web pages built around JavaServer Faces, Facelets,
managed Java Beans, and prebuilt user-interface components. You’ll learn to
build user interfaces that run in the browser, to display data drawn from corporate
databases, accept user input, deal with errors and exceptions, and more.

JavaServer Faces is an important user-interface technology for any Java
developer to learn who works in an enterprise environment. JavaServer Faces:
Introduction by Example also introduces servlets, which are the basis for JavaServer
Faces applications. You’ll learn about development and deployment of user interfaces
in the browser. Finally, there is coverage of advanced techniques such as the use
of AJAX. JavaServer Faces Introduction by Example is your no-nonsense guide to
getting started right away in taking advantage of the technology’s component-driven
approach.

9 781484 208397

52999
ISBN 978-1-4842-0839-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��� xvii

Acknowledgments�� xix

Chapter 1: Introduction to Servlets■■ ��1

Chapter 2: JavaServer Pages■■ ���55

Chapter 3: The Basics of JavaServer Faces■■ ���99

Chapter 4: Facelets■■ ���163

Chapter 5: JavaServer Faces Standard Components■■ ���205

Chapter 6: Advanced JavaServer Faces and Ajax■■ ��261

Index��325

1

Chapter 1

Introduction to Servlets

Java servlets were the first technology for producing dynamic Java web applications. Sun Microsystems released the
first Java Servlet specification in 1997. Since then it has undergone tremendous change, making it more powerful
and easing development more with each release. The 3.0 version was released as part of Java EE 6 in December
2009. Although not always used directly by Java web developers, servlets are at the base of all Java EE applications.
Many developers use servlet frameworks such as Java Server Pages (JSP) and Java Server Faces (JSF), both of those
technologies compile pages into Java servlets behind the scenes via the servlet container. That said, a fundamental
knowledge of Java servlet technology is very useful for any Java web developer.

Servlets are Java classes that conform to the Java Servlet API, which allows a Java class to respond to requests.
Although servlets can respond to any type of request, they are most commonly written to respond to HTTP requests.
A servlet must be deployed to a Java servlet container in order to become usable. The Servlet API provides a number
of objects that are used to enable the functionality of a servlet within a web container. Such objects include the
request and response objects, pageContext, and a great deal of others, and when these objects are used properly, they
enable a Java servlet to perform just about any task a web-based application needs to perform.

As mentioned, servlets can produce not only static content but also dynamic content. Since a servlet is written in
Java, any valid Java code can be used within the body of the servlet class. This empowers Java servlets and allows them
to interact with other Java classes, the web container, the underlying file server, and much more.

This chapter will get you started developing and deploying servlets, and provide you with foundational
knowledge to move forward with other servlet-based web frameworks In this chapter, you will learn how to install
Oracle’s GlassFish application server, a robust servlet container, which will enable you to deploy sophisticated Java
enterprise applications. You will be taught the basics of developing servlets, how to use them with client web sessions,
and how to link a servlet to another application. All the while, you will learn to use standards from the latest release of
the Java Servlet API (3.2), which modernizes servlet development and makes it much easier and more productive than
in years past.

Note■■   You can run the examples within this chapter by deploying the JSFByExample.war file (contained in the sources)
to a local Java EE application server container such as GlassFish v4.x. You can also set up the NetBeans 8.x project entitled
JSFByExample that is contained in the sources, build it, and deploy to GlassFish v4.x. Otherwise, you can run the examples
in Chapter 1 stand-alone using the instructions provided in the section “Packaging, Compiling, and Deploying a Servlet”.
If you deploy the JSFByExample.war file to a Java EE application server container, you can visit the following URL to load
the examples for this chapter: http://localhost:8080/JSFByExample/faces/chapter01/index.xhtml.

Chapter 1 ■ Introduction to Servlets

2

Setting Up a Java Enterprise Environment
You’ll need an environment in which to experiment with servlets, and then later with JavaServer Faces. Oracle’s
GlassFish application server is a good choice, as it is the Java EE 7 Reference Impementation. It’s easy to set up, and
the following example will get you started and ready to run all the subsequent examples in the book.

Example
To get started, ownload and install Oracle’s GlassFish application server from the GlassFish web site. The version used
for this book is the open source edition, release 4.1, and it can be downloaded from http://glassfish.java.net/ in
the “Download” section. Select the .zip or .tar.gz download format, and decompress the downloaded files within a
directory on your workstation. I will refer to that directory as /JAVA_DEV/GlassFish. The GlassFish distribution comes
prepackaged with a domain so that developers can get up and running quickly. Once the .zip file has been unpacked,
you can start the domain by opening a command prompt or terminal and starting GlassFish using the following
statement:

/PATH_TO_GLASSFISH /GlassFish/bin/asadmin start-domain domain1

The domain will start, and it will be ready for use. You will see output from the server that looks similar to the
following:
 
Waiting for domain1 to start
Successfully started the domain : domain1
domain Location: /PATH_TO_GLASSFISH/glassfish/domains/domain1
Log File: /PATH_TO_GLASSFISH/glassfish/domains/domain1/logs/server.log
Admin Port: 4848
Command start-domain executed successfully.

Explanation
The development of Java EE applications begins with a Java EE–compliant application server. A Java EE–compliant
server contains all the essential components to provide a robust environment for deploying and hosting enterprise
Java applications. The GlassFish application server is the industry standard for Java EE 7. As of GlassFish 4.0, there is
only an open sourced distribution of the server available, meaning that it is not possible to purchase Oracle support
for GlassFish. However, in a production environment, you may want to consider purchasing GlassFish 4.x support
from a third-party organization so that technical support will be available if needed. An alternative is to utilize a
commercially supported server that is Java EE 7 compliant, such as Oracle WebLogic 12.1.x.

Installing GlassFish is easy. It consists of downloading an archive and uncompressing it on your development
machine. Once you’ve completed this, the application server will make use of your locally installed Java development
kit (JDK) when it is started. JDK 8 is supported for use with GlassFish as of release 4.1. For GlassFish 4.0, please
use JDK 7. Once the server starts, you can open a browser and go to http://localhost:4848 to gain access to the
GlassFish administrative console. Most Java EE developers who deploy on GlassFish use the administrative console
often. The administrative console provides developers with the tools needed to deploy web applications, register
databases with Java Naming and Directory Interface (JNDI), set up security realms for a domain, and do much more.
You should take some time to become familiar with the administrative console because the more you know about it,
the easier it will be to maintain your Java EE environment.

Installing the GlassFish application server is the first step toward developing Java applications for the enterprise.
While other applications servers such as JBoss WildFly, Apache TomEE, and WebLogic are very well adopted,
GlassFish offers developers a solid environment that is suitable for production use and easy to learn. It also has the
bonus of being an open source application server and the reference implementation for Java EE 7.

http://glassfish.java.net/

Chapter 1 ■ Introduction to Servlets

3

Developing Your First Servlet
Web applications are based upon a series of web views or pages. There is often a requirement to develop a view that
has the ability to include content that may change at any given time. For instance, you may be developing a view
that contains stock data, and you may wish to have that data updated often. Servlets provide the ability to produce
dynamic content, allowing server-side computations and processes to update the data in the servlet at will.

Example
Develop a Java servlet class, and compile it to run within a Java servlet container. In this example, a simple servlet
is created that will display some dynamic content to the web page. The The following code is the servlet code that
contains the functionality for the servlet:package org.javaserverfaces.chapter01;
 
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
 
/**
 * Simple Dynamic Servlet
 * @author juneau
 */
public class SimpleServlet extends HttpServlet {
 
 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 /*
 * TODO output your page here. You may use following sample code.
 */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet SimpleServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Servlet SimpleServlet at " + request.getContextPath() + "</h2>");
 out.println("
Welcome to JavaServer Faces: Introduction By Example!");

Chapter 1 ■ Introduction to Servlets

4

 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
 
 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the
left to edit the code.">
 /**
 * Handles the HTTP
 * <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 
 /**
 * Handles the HTTP
 * <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 
 /**
 * Returns a short description of the servlet.
 *
 * @return a String containing servlet description
 */
 @Override
 public String getServletInfo() {
 return "Short description";
 }// </editor-fold>
}
 

Chapter 1 ■ Introduction to Servlets

5

The following code is the web deployment descriptor. This file is required for application deployment to a servlet
container. It contains the servlet configuration and mapping that maps the servlet to a URL. Later in this chapter,
will learn how to omit the servlet configuration and mapping from the web.xml file to make servlet development,
deployment, and maintenance easier.
 
<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 
 <servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>org.javaeeexamples.chapter1.example01_02.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file> /SimpleServlet </welcome-file>
 </welcome-file-list>
</web-app> 

Note■■   Many web applications use a page named index.html or index.xhtml as their welcome file. There is nothing
wrong with doing that, and as a matter of fact, it is the correct thing to do. The use of /SimpleServlet as the welcome
file in this example is to make it easier to follow for demonstration purposes.

To compile the Java servlet, use the javac command-line utility. The following line was excerpted from the
command line, and it compiles the SimpleServlet.java file into a class file. First, traverse into the directory
containing the SimpleServlet.java file; then, execute the following:
 
javac -cp /JAVA_DEV/GlassFish/glassfish/modules/javax.servlet-api.jar SimpleServlet.java
 

Once the servlet code has been compiled into a Java class file, it is ready to package for deployment.

Note■■   You may want to consider installing a Java integrated development environment (IDE) to increase your develop-
ment productivity. There are several very good IDEs available to developers, so be sure to choose one that contains the
features you find most important and useful for development. As the author of this book on Java EE 7, I recommend
installing NetBeans 8.x or newer for development. NetBeans is an open source IDE that is maintained by Oracle, and it
includes support for all the cutting-edge features that the Java industry has to offer, including EJB development with Java
EE 7, JavaFX 8 support, and more.

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd

Chapter 1 ■ Introduction to Servlets

6

Explanation
Java servlets provide developers with the flexibility to design applications using a request-response programming
model. Servlets play a key role in the development of service-oriented and web application development on the
Java platform. Different types of servlets can be created, and each of them is geared toward providing different
functionality. The first type is the GenericServlet, which provides services and functionality. The second type,
HttpServlet, is a subclass of GenericServlet, and servlets of this type provide functionality and a response that uses
HTTP. The solution to this example demonstrates the latter type of servlet because it displays a result for the user to
see within a web browser.

Servlets conform to a life cycle for processing requests and posting results. First, the Java servlet container calls
the servlet’s constructor. The constructor of every servlet must take no arguments. Next, the container calls the servlet
init method, which is responsible for initializing the servlet. Once the servlet has been initialized, it is ready for use.
At that point, the servlet can begin processing. Each servlet contains a service method, which handles the requests
being made and dispatches them to the appropriate methods for request handling. Implementing the service
method is optional. Finally, the container calls the servlet’s destroy method, which takes care of finalizing the servlet
and taking it out of service.

Every servlet class must implement the javax.servlet.Servlet interface or extend another class that does.
In the solution to this example, the servlet named SimpleServlet extends the HttpServlet class, which provides
methods for handling HTTP processes. In this scenario, a browser client request is sent from the container to the
servlet; then the servlet service method dispatches the HttpServletRequest object to the appropriate method
provided by HttpServlet. Namely, the HttpServlet class provides the doGet, doPut, doPost, and doDelete
methods for working with an HTTP request. The HttpServlet class is abstract, so it must be subclassed, and then an
implementation can be provided for its methods. In the solution to this example, the doGet method is implemented,
and the responsibility of processing is passed to the processRequest method, which writes a response to the browser
using the PrintWriter. Table 1-1 describes each of the methods available to an HttpServlet.

Table 1-1.  HttpServlet Methods

Method Name Description

doGet Used to process HTTP GET requests. Input sent to the servlet must be included in the URL
address. For example: ?myName=Josh&myBook=JSF.

doPost Used to process HTTP POST requests. Input can be sent to the servlet within HTML form
fields.

doPut Used to process HTTP PUT requests.

doDelete Used to process HTTP DELETE requests.

doHead Used to process HTTP HEAD requests.

doOptions Called by the container to allow OPTIONS request handling.

doTrace Called by the container to handle TRACE requests.

getLastModified Returns the time that the HttpServletRequest object was last modified.

init Initializes the servlet.

destroy Finalizes the servlet.

getServletInfo Provides information regarding the servlet.

Chapter 1 ■ Introduction to Servlets

7

A servlet generally performs some processing within the implementation of its methods and then returns
a response to the client. The HttpServletRequest object can be used to process arguments that are sent via the
request. For instance, if an HTML form contains some input fields that are sent to the server, those fields would be
contained within the HttpServletRequest object. The HttpServletResponse object is used to send responses to
the client browser. Both the doGet and doPost methods within a servlet accept the same arguments, namely, the
HttpServletRequest and HttpServletResponse objects.

Note■■  T he doGet method is used to intercept HTTP GET requests, and doPost is used to intercept HTTP POST
requests. Generally, the doGet method is used to prepare a request before displaying for a client, and the doPost
method is used to process a request and gather information from an HTML form.

In the solution to this example, both the doGet and doPost methods pass the HttpServletRequest and
HttpServletResponse objects to the processRequest method for further processing. The HttpServletResponse
object is used to set the content type of the response and to obtain a handle on the PrintWriter object in the
processRequest method. The following lines of code show how this is done, assuming that the identifier referencing
the HttpServletResponse object is response:
 
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
 

A GenericServlet can be used for providing services to web applications. This type of servlet is oftentimes
used for logging events because it implements the log method. A GenericServlet implements both the Servlet and
ServletConfig interfaces, and to write a generic servlet, only the service method must be overridden.

How to Package, Compile, and Deploy a Servlet
Once a servlet has been developed (and compiled), it needs to be deployed to a servlet container before it can be
used. After deployment to the server, the servlet needs to be mapped to a URL for invocation.

Example
Compile the sources, set up a deployable application, and copy the contents into the GlassFish deployment directory.
From the command line, use the javac command to compile the sources.
 
javac -cp /PATH_TO_GLASSFISH/GlassFish/glassfish/modules/javax.servlet-api.jar SimpleServlet.java
 

After the class has been compiled, deploy it along with the web.xml deployment descriptor, conforming to the
appropriate directory structure. In web.xml, declare the servlet, and map it to a URL using the following format:
 
<servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>org.javaserverfaces.chapter01.SimpleServlet</servlet-class>
</servlet>
</servlet-mapping>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
</servlet-mapping>

Chapter 1 ■ Introduction to Servlets

8

QUICK START FOR DEPLOYING WITHOUT AN IDE

To quickly get started with packaging, compiling, and deploying the example application for the servlet examples
in this chapter on GlassFish or other servlet containers such as Apache Tomcat without an IDE, follow these steps:

1.	 Create a single application named SimpleServlet by making a directory named
SimpleServlet.

2.	 Create a directory at the root of the application, and name it WEB-INF. Create an XML file in
the new WEB-INF directory, and name it web.xml. In the web.xml, add the following markup:
 
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/
xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
 <servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>org.javaserverfaces.chapter01.SimpleServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
</web-app>
 

3.	 Create “classes”, and “lib” drectories inside the directory that was created in step 2. Drag
the Chapter 1 sources into the WEB-INF/classes directory.

4.	 Set your CLASSSPATH to include any necessary JAR files. For this chapter, the JavaMail
API JAR (mail.jar) is required. Place it into the WEB-INF/lib directory and set your
CLASSPATH accordingly.

5.	A t the command prompt, change directories so that you are within the “classes” directory
that was created in Step 3. Compile each class within the org.javaserverfaces.
chapter01 directory with the following command:

 
 javac org\javaserverfaces\chapter01*.java
 

6.	 Copy your SimpleServlet application into the /JAVA_DEV/GlassFish/glassfish/domains/
domain1/autodeploy directory for GlassFish, or the /Tomcat/webapps directory for Tomcat.

Test the application by launching a browser and going to http://localhost:8080/SimpleServlet/servlet_
name, where servlet_name corresponds to the servlet name in each example. If using Tomcat, you may need to
restart the server in order for the application to deploy.

http://xmlns.jcp.org/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd

Chapter 1 ■ Introduction to Servlets

9

Explanation
To compile the sources, you can use your favorite Java IDE such as NetBeans or Eclipse, or you can use the command
line. For the purposes of this example, I will use the command line. Note that in many of the remaining examples
for this book, the NetBeans IDE is used. If you’re using the command line, you must ensure you are using the javac
command that is associated with the same Java release that you will be using to run your servlet container. In this
example we will assume that GlassFish 4.1 is being used with JDK 7, and therefore assume that the location of the Java
SE 7 installation is at the following path:
 
/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home
 

This path may differ in your environment if you are using a different operating system and/or installation
location. To ensure you are using the Java runtime that is located at this path, set the JAVA_HOME environment variable
equal to this path. On OS X and *nix operating systems, you can set the environment variable by opening the terminal
and typing the following:
 
export JAVA_HOME=/Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home
 

If you are using Windows, use the SET command within the command line to set up the JAVA_HOME environment
variable.
 
set JAVA_HOME=C:\your-java-se-path\
 

Next, compile your Java servlet sources, and be sure to include the javax.servlet-api.jar file that is packaged
with your servlet container (use servlet-api.jar for Tomcat) in your CLASSPATH. You can set the CLASSPATH by using
the –cp flag of the javac command. The following command should be executed at the command line from within the
same directory that contains the sources. In this case, the source file is named SimpleServlet.java.
 
javac -cp /path_to_jar/javax.servlet-api.jar SimpleServlet.java
 

Next, package your application by creating a directory and naming it after your application. In this case, create a
directory and name it SimpleServlet. Within that directory, create another directory named WEB-INF. Traverse into the
WEB-INF directory, and create another directory named classes. Lastly, create directories within the classes directory
in order to replicate your Java servlet package structure. For this example, the SimpleServlet.java class resides within
the Java package org.javaserverfaces.chapter01, so create a directory for each of those packages within the classes
directory. Create another directory within WEB-INF and name it lib; any JAR files containing external libraries should
be placed within the lib directory. In the end, your directory structure should resemble the following:
 
SimpleServlet
|_WEB-INF
 |_classes
 |_org
 |_javaserverfaces
 |_chapter01
  
 |_lib
 

Place your web.xml deployment descriptor within the WEB-INF directory, and place the compiled
SimpleServlet.class file within the chapter01 directory. The entire contents of the SimpleServlet directory can
now be copied within the deployment directory for your application server container to deploy the application.
Restart the application server if using Tomcat, and visit the URL http://localhost:8080/SimpleServlet/
SimpleServlet to see the servlet in action.

Chapter 1 ■ Introduction to Servlets

10

Registering Servlets Without WEB-XML
Registering servlets in the web.xml file is cumbersome. With the later releases of the Servlet specification, it is possible
to deploy servlets without the requirement for a web.xml file. In this section, we will take a look at how to register
servlets without the web.xml requirement.

Example
Use the @WebServlet annotation to register the servlet, and omit the web.xml registration. This will alleviate the
need to modify the web.xml file each time a servlet is added to your application. The following adaptation of the
SimpleServlet class that was used in the previous example includes the @WebServlet annotation and demonstrates
its use:
 
package org.javaserverfaces.chapter01;
 
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
 
/**
 * Registering Servlets without WEB-XML
 * @author juneau
 */
@WebServlet(name = "SimpleServletNoDescriptor", urlPatterns = {"/SimpleServletNoDescriptor"})
public class SimpleServletNoDescriptor extends HttpServlet {
 
 /**
 * Processes requests for both HTTP
 * <code>GET</code> and
 * <code>POST</code> methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 /*
 * TODO output your page here. You may use following sample code.
 */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet SimpleServlet</title>");

Chapter 1 ■ Introduction to Servlets

11

 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Servlet SimpleServlet at " + request.getContextPath() + "</h2>");
 out.println("
Look ma, no WEB-XML!");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
 
 /**
 * Handles the HTTP <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 
 /**
 * Handles the HTTP <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 
}
 

In the end, the servlet will be accessible via a URL in the same way that it would if the servlet were registered
within web.xml.

Explanation
There are a couple of ways to register servlets with a web container. The first way is to register them using the web.xml
deployment descriptor, as demonstrated earlier in the chapter. The second way to register them is to use the
@WebServlet annotation. The Servlet 3.0 API introduced the @WebServlet annotation, which provides an easier
technique to use for mapping a servlet to a URL. The @WebServlet annotation is placed before the declaration of a
class, and it accepts the elements listed in Table 1-2.

Chapter 1 ■ Introduction to Servlets

12

In the solution to this example, the @WebServlet annotation maps the servlet class named
SimpleServletNoDescriptor to the URL pattern of /SimpleServletNoDescriptor, and it also names the servlet
SimpleServletNoDescriptor.
 
@WebServlet(name="SimpleServletNoDescriptor", urlPatterns={"/SimpleServletNoDescriptor"})
 

The new @WebServlet can be used rather than altering the web.xml file to register each servlet in an application.
This provides ease of development and manageability. However, in some cases, it may make sense to continue using
the deployment descriptor for servlet registration, such as if you do not want to recompile sources when a URL pattern
changes. If you look at the web.xml file used earlier, you can see the following lines of XML, which map the servlet to a
given URL and provide a name for the servlet. These lines of XML perform essentially the same function as the
@WebServlet annotation in this example.
 
<servlet>
 <servlet-name>SimpleServletNoDescriptor</servlet-name>
 <servlet-class>org.javaserverfaces.chapter01.SimpleServletNoDescriptor</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>SimpleServletNoDescriptor</servlet-name>
 <url-pattern>/SimpleServletNoDescriptor</url-pattern>
</servlet-mapping>

Displaying Dynamic Content with a Servlet
As mentioned previously in the chapter, it sometimes makes sense to deliver dynamic content (content that changes
frequently), rather than serving static content that never changes. In this example, we will take a look at how to
develop a servlet that has the ability to display dynamic content.

Table 1-2.  @WebServlet Annotation Elements

Element Description

description Description of the servlet

displayName The display name of the servlet

initParams Accepts list of @WebInitParam annotations

largeIcon The large icon of the servlet

loadOnStartup Load on start-up order of the servlet

name Servlet name

smallIcon The small icon of the servlet

urlPatterns URL patterns that invoke the servlet

Chapter 1 ■ Introduction to Servlets

13

Example
Define a field within your servlet to contain the dynamic content that is to be displayed. Post the dynamic content on
the page by appending the field containing it using the PrintWriter println method. The following example servlet
declares a Date field and updates it with the current Date each time the page is loaded:
 
package org.javaserverfaces.chapter01;
 
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
 
/**
 * Displaying Dynamic Content with a Servlet
 *
 * @author juneau
 */
@WebServlet(name = "CurrentDateAndTime", urlPatterns = {"/CurrentDateAndTime"})
public class CurrentDateAndTime extends HttpServlet {
 
 /**
 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet CurrentDateAndTime</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet CurrentDateAndTime at " + request.getContextPath() + "</h1>");
 out.println("
");
 
 Date currDateAndTime = new Date();
 out.println("The current date and time is: " + currDateAndTime);
 

Chapter 1 ■ Introduction to Servlets

14

 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
 
 /**
 * Handles the HTTP <code>GET</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 
 /**
 * Handles the HTTP <code>POST</code> method.
 *
 * @param request servlet request
 * @param response servlet response
 * @throws ServletException if a servlet-specific error occurs
 * @throws IOException if an I/O error occurs
 */
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
}
 

The resulting output from this servlet will be the current date and time.

Explanation
One of the reasons why Java servlets are so useful is because they allow dynamic content to be displayed on a web
page. The content can be taken from the server itself, a database, another web site, or many other web-accessible
resources. Servlets are not static web pages; they are dynamic, and that is arguably their biggest strength.

In the solution to this example, a servlet is used to display the current time and date on the server. When the
servlet is processed, the doGet method is called, which subsequently makes a call to the processRequest method,
passing the request and response objects. Therefore, the processRequest method is where the bulk of the work
occurs. The processRequest method creates a PrintWriter by calling the response.getWriter method, and the
PrintWriter is used to display content on the resulting web page. Next, the current date and time are obtained
from the server by creating a new Date and assigning it to the currDateAndTime field. Lastly, the processRequest
method sends the web content through the out.println method, and the contents of the currDateAndTime field
are concatenated to a String and sent to out.println as well. Each time the servlet is processed, it will display the
current date and time at the time in which the servlet is invoked because a new Date is created with each request.

Chapter 1 ■ Introduction to Servlets

15

This example just scratches the surface of what is possible with a Java servlet. Although displaying the current
date and time is trivial, you could alter that logic to display the contents of any field contained within the servlet.
Whether it be an int field that displays a calculation that was performed by the servlet container or a String field
containing some information, the possibilities are endless.

Handling Requests and Responses
Most applications allow forms that accept input, and then produce a response. This is one of the main components of
an HTTP application, and servlets are ideal for handling a request-response lifecycle. It can also be useful to develop
forms in HTML, and have the form submitted to a processing engine, such as a servlet.

Example
To see a request-response example in action, create a standard HTML-based web form, and when the submit
button is clicked, invoke a servlet to process the end-user input and post a response. To examine this technique,
you will see two different pieces of code. The following code is HTML that is used to generate the input form. Pay
particular attention to the <form> and <input> tags. You will see that the form’s action parameter lists a servlet name,
MathServlet.
 
<html>
 <head>
 <title>Simple Math Servlet</title>
 </head>
 <body>
 <h1>This is a simple Math Servlet</h1>
 <form method="POST" action="MathServlet">
 <label for="numa">Enter Number A: </label>
 <input type="text" id="numa" name="numa"/>

 <label for="numb">Enter Number B: </label>
 <input type="text" id="numb" name="numb"/>

 <input type="submit" value="Submit Form"/>
 <input type="reset" value="Reset Form"/>
 </form>
 </body>
</html>
 

Next, take a look at the following code for a servlet named MathServlet. This is the Java code that receives the
input from the HTML code listed earlier, processes it accordingly, and posts a response.
 
package org.javaserverfaces.chapter01;
 
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
 
import javax.servlet.*;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
 

Chapter 1 ■ Introduction to Servlets

16

/**
 * Handling Requests and Responses
 */
// Uncomment the following line to run example stand-alone
//@WebServlet(name="SessionServlet", urlPatterns={"/MathServlet"})
// The following will allow the example to run within the context of the JSFByExample example
// enterprise application (JSFByExample.war distro or Netbeans Project)
@WebServlet(name = "MathServlet", urlPatterns = {"/chapter01/MathServlet"})
public class MathServlet extends HttpServlet {
 
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {
 
 res.setContentType("text/html");
 
 // Store the input parameter values into Strings
 String numA = req.getParameter("numa");
 String numB = req.getParameter("numb");
 
 PrintWriter out = res.getWriter();
 out.println("<html><head>");
 out.println("<title>Test Math Servlet</title>");
 out.println("\t<style>body { font-family: 'Lucida Grande', "
 + "'Lucida Sans Unicode';font-size: 13px; }</style>");
 out.println("</head>");
 out.println("<body>");
 
 try {
 int solution = Integer.valueOf(numA) + Integer.valueOf(numB);
 
 /*
 * Display some response to the user
 */
 out.println("<p>Solution: "
 + numA + " + " + numB + " = " + solution + "</p>");
 
 } catch (java.lang.NumberFormatException ex) {
 // Display error if an exception is raised
 out.println("<p>Please use numbers only...try again.</p>");
 }
 
 out.println("</body></html>");
 
 out.close();
 }
} 

Chapter 1 ■ Introduction to Servlets

17

Note■■  T o run the example, deploy the JSFByExample application to your application server container, and then
enter the following address into your browser: http://localhost:8080/JSFByExample/chapter01/math.html.
This assumes you are using default port numbers for your application server installation. If using the NetBeans project
that was packaged with the sources, you do not need to worry about copying the code as everything is pre-configured.

Explanation
Servlets make it easy to create web applications that adhere to a request and response life cycle. They have the
ability to provide HTTP responses and also process business logic within the same body of code. The ability to
process business logic makes servlets much more powerful than standard HTML code. The solution to this example
demonstrates a standard servlet structure for processing requests and sending responses. An HTML web form
contains parameters that are sent to a servlet. The servlet then processes those parameters in some fashion and
publishes a response that can be seen by the client. In the case of an HttpServlet object, the client is a web browser,
and the response is a web page.

Values can be obtained from an HTML form by using HTML <input> tags embedded within an HTML <form>.
In the solution to this example, two values are accepted as input, and they are referenced by their id attributes as
numa and numb. There are two more <input> tags within the form; one of them is used to submit the values to the form
action, and the other is used to reset the form fields to blank. The form action is the name of the servlet that the form
values will be passed to as parameters. In this case, the action is set to MathServlet. The <form> tag also accepts a
form-processing method, either GET or POST. In the example, the POST method is used because form data is being sent
to the action; in this case, data is being sent to MathServlet. You could, of course, create an HTML form as detailed
as you would like and then have that data sent to any servlet in the same manner. This example is relatively basic; it
serves to give you an understanding of how the processing is performed.

The <form> action attribute states that the MathServlet should be used to process the values that are contained
within the form. The MathServlet name is mapped back to the MathServlet class via the web.xml deployment
descriptor or the @WebServlet annotation. Looking at the MathServlet code, you can see that a doPost method is
implemented to handle the processing of the POST form values. The doPost method accepts HttpServletRequest
and HttpServletResponse objects as arguments. The values contained with the HTML form are embodied within the
HttpServletRequest object. To obtain those values, call the request object’s getParameter method, passing the id
of the input parameter you want to obtain. In this example, those values are obtained and stored within local String
fields.
 
String numA = req.getParameter("numa");
String numB = req.getParameter("numb");
 

Once the values are obtained, they can be processed as needed. In this case, those String values are converted
into int values, and then they are added together to generate a sum and stored into an int field. That field is then
presented as a response on a resulting web page.
 
int solution = Integer.valueOf(numA) + Integer.valueOf(numB);
 

As mentioned, the HTML form could be much more complex, containing any number of <input> fields.
Likewise, the servlet could perform more complex processing of those field values. This example is merely the tip
of the iceberg, and the possibilities are without bounds. Servlet-based web frameworks such as Java Server Pages
and Java Server Faces hide many of the complexities of passing form values to a servlet and processing a response.
However, the same basic framework is used behind the scenes.

Chapter 1 ■ Introduction to Servlets

18

Listening for Servlet Container Events
There are cases when it may be useful for an application to perform some tasks when it is being started up or shut
down. In such cases, servlet context event listeners can become useful.

Example
Create a servlet context event listener to alert when the application has started up or when it has been shut down.
The following solution demonstrates the code for a context listener, which will log application start-up and shutdown
events and send e-mail alerting of such events:
 
package org.javaserverfaces.chapter01;
 
import java.util.Properties;
import javax.mail.Message;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.servlet.ServletContextListener;
import javax.servlet.ServletContextEvent;
import javax.servlet.annotation.WebListener;
 
@WebListener
public class StartupShutdownListener implements ServletContextListener {
 
 @Override
 public void contextInitialized(ServletContextEvent event) {
 System.out.println("Servlet startup...");
 System.out.println(event.getServletContext().getServerInfo());
 System.out.println(System.currentTimeMillis());
 sendEmail("Servlet context has initialized");
 }
 
 @Override
 public void contextDestroyed(ServletContextEvent event) {
 System.out.println("Servlet shutdown...");
 System.out.println(event.getServletContext().getServerInfo());
 System.out.println(System.currentTimeMillis());
 // See error in server.log file if mail is unsuccessful
 sendEmail("Servlet context has been destroyed...");
 }
 
 /**
 * This implementation uses the GMail smtp server
 * @param message
 * @return
 */

Chapter 1 ■ Introduction to Servlets

19

 private boolean sendEmail(String message) {
 boolean result = false;
 String smtpHost = "smtp.gmail.com";
 String smtpUsername = "username";
 String smtpPassword = "password";
 String from = "fromaddress";
 String to = "toaddress";
 int smtpPort = 587;
 System.out.println("sending email...");
 try {
 // Send email here
  
 //Set the host smtp address
 Properties props = new Properties();
 props.put("mail.smtp.host", smtpHost);
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.starttls.enable", "true");
 
 // create some properties and get the default Session
 Session session = Session.getInstance(props);
 
 // create a message
 Message msg = new MimeMessage(session);
 
 // set the from and to address
 InternetAddress addressFrom = new InternetAddress(from);
 msg.setFrom(addressFrom);
 InternetAddress[] address = new InternetAddress[1];
 address[0] = new InternetAddress(to);
 msg.setRecipients(Message.RecipientType.TO, address);
 msg.setSubject("Servlet container shutting down");
 // Append Footer
 msg.setContent(message, "text/plain");
 Transport transport = session.getTransport("smtp");
 transport.connect(smtpHost, smtpPort, smtpUsername, smtpPassword);
  
 Transport.send(msg);
 
 result = true;
 } catch (javax.mail.MessagingException ex) {
 ex.printStackTrace();
 result = false;
 }
 return result;
 }
} 

Note■■  T o run this example, you may need additional external JARs in your CLASSPATH. Specifically, make sure you
have mail.jar and javaee.jar.

http://smtp.gmail.com

Chapter 1 ■ Introduction to Servlets

20

Explanation
Sometimes it is useful to know when certain events occur within the application server container. This concept can be
useful under many different circumstances, but most often it would likely be used for initializing an application upon
start-up or cleaning up after an application upon shutdown. A servlet listener can be registered with an application
to indicate when it has been started up or shut down. Therefore, by listening for such events, the servlet has the
opportunity to perform some actions when they occur.

To create a listener that performs actions based upon a container event, you must develop a class
that implements the ServletContextListener interface. The methods that need to be implemented are
contextInitialized and contextDestroyed. Both of the methods accept a ServletContextEvent as an argument,
and they are automatically called each time the servlet container is initialized or shut down, respectively. To register
the listener with the container, you can use one of the following techniques:

Utilize the •	 @WebListener annotation, as demonstrated by the solution to this example.

Register the listener within the •	 web.xml application deployment descriptor.

Use the •	 addListener methods defined on ServletContext.

For example, to register this listener within web.xml, you would need to add the following lines of XML:
 
<listener>
 <listener-class> org.javaserverfaces.chapter01.StartupShutdownListener</listener-class>
</listener>
 

Neither way is better than the other. The only time that listener registration within the application deployment
descriptor (web.xml) would be more helpful is if you had the need to disable the listener in some cases. On the other
hand, to disable a listener when it is registered using @WebListener, you must remove the annotation and recompile
the code. Altering the web deployment descriptor does not require any code to be recompiled.

There are many different listener types, and the interface that the class implements is what determines the
listener type. For instance, in this example, the class implements the ServletContextListener interface. Doing so
creates a listener for servlet context events. If, however, the class implements HttpSessionListener, it would be a
listener for HTTP session events. The following is a complete listing of listener interfaces:
 
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttrbiteListener
javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.HttpSessionListener
javax.servlet.HttpSessionAttributeListener
 

It is also possible to create a listener that implements multiple listener interfaces. To learn more about listening
for different situations such as attribute changes, please see the section entitled Listening for Attribute Changes.

Setting Initialization Parameters
It is possible to set initialization parameters for servlets as well. Doing so can be handy in cases where you would like
to implement a task with default values if none were given.

Chapter 1 ■ Introduction to Servlets

21

Example #1
Set the servlet initialization parameters using the @WebInitParam annotation. The following code sets an initialization
parameter that is equal to a String value:
 
package org.javaserverfaces.chapter01;
 
import java.io.IOException;
import java.io.PrintWriter;
 
import javax.servlet.*;
import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
 
@WebServlet(name="SimpleServletCtx1", urlPatterns={"/SimpleServletCtx1"},
initParams={ @WebInitParam(name="name", value="Duke") })
public class SimpleServletCtx1 extends HttpServlet {
  
 @Override
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException, ServletException {
 
 res.setContentType("text/html");
 
 PrintWriter out = res.getWriter();
 
 /* Display some response to the user */
 
 out.println("<html><head>");
 out.println("<title>Simple Servlet Context Example</title>");
 out.println("\t<style>body { font-family: 'Lucida Grande', " +
 "'Lucida Sans Unicode';font-size: 13px; }</style>");
 out.println("</head>");
 out.println("<body>");
  
 out.println("<p>This is a simple servlet to demonstrate context! Hello "
 + getServletConfig().getInitParameter("name") + "</p>");
 
 out.println("</body></html>");
 out.close();
 }
}
 

To execute the example using the sources for this book, load the following URL into your web browser:
http://localhost:8080/JSFByExample/SimpleServletCtx1. The resulting web page will display the following text:
 
This is a simple servlet to demonstrate context! Hello Duke

Chapter 1 ■ Introduction to Servlets

22

Example #2
Place the init parameters inside the web.xml deployment descriptor file. The following lines are excerpted from the
web.xml deployment descriptor for the SimpleServlet application. They include the initialization parameter names
and values.
 
<web-app>
 <servlet>
 <servlet-name>SimpleServletCtx1</servlet-name>
 <servlet-class> org.javaserverfaces.chapter01.SimpleServletCtx1</servlet-class>
 
 <init-param>
 <param-name>name</param-name>
 <param-value>Duke</param-value>
 </init-param>
 ...
 </servlet>
 ...
</web-app>

Explanation
Oftentimes there is a requirement to set initialization parameters for a servlet in order to initialize certain values.
Servlets can accept any number of initialization parameters, and there are a couple of ways in which they can be
set. The first example is to annotate the servlet class with the @WebInitParam annotation, and the second way to set
an initialization parameter is to declare the parameter within the web.xml deployment descriptor, as demonstrated
in the second example. Either way will work; however, the solution using @WebInitParam is based upon the newer
Java Servlet 3.0 API. Therefore, Example #1 is the more contemporary approach, but Example #2 remains valid for
following an older model or using an older Java servlet release.

To use the @WebInitParam annotation, it must be embedded within the @WebServlet annotation. Therefore, the
servlet must be registered with the web application via the @WebServlet annotation rather than within the web.xml
file. For more information on registering a servlet via the @WebServlet annotation, see the section entitled Registering
Servlets Without web.xml.

The @WebInitParam annotation accepts a name-value pair as an initialization parameter. In the solution to this
example, the parameter name is name, and the value is Duke.
 
@WebInitParam(name="name", value="Duke")
 

Once set, the parameter can be used within code by calling getServletConfig().getInitializationParameter()
and passing the name of the parameter, as shown in the following line of code:
 
out.println("<p>This is a simple servlet to demonstrate context! Hello "
 + getServletConfig().getInitParameter("name") + "</p>");
 

The annotations have the benefit of providing ease of development, and they also make it easier to maintain
servlets as a single package rather than jumping back and forth between the servlet and the deployment descriptor.
However, those benefits come at the cost of compilation because in order to change the value of an initialization
parameter using the @WebInitParam annotation, you must recompile the code. Such is not the case when using the
web.xml deployment descriptor. It is best to evaluate your application circumstances before committing to a standard
for naming initialization parameters.

Chapter 1 ■ Introduction to Servlets

23

Filtering Web Requests
Another useful technique can be to apply a filter against a specified URL for a servlet. A filter can then invoke custom
processing each time the URL is visited, and the filter will be executed prior to the servlet.

Example
Create a servlet filter that will be processed when the specified URL format is used to access the application. In this
example, the filter will be executed when a URL conforming to the format of /* is used. This format pertains to any
URL in the application. Therefore, any page will cause the servlet to be invoked.
 
package org.javaserverfaces.chapter01;
 
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.*;
 
/**
 * This filter obtains the IP address of the remote host and logs
 * it.
 *
 * @author juneau
 */
@WebFilter("/*")
public class LoggingFilter implements Filter {
 
 private FilterConfig filterConf = null;
 
 public void init(FilterConfig filterConf) {
 this.filterConf = filterConf;
 }
 
 public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {
 String userAddy = request.getRemoteHost();
 filterConf.getServletContext().log("Vistor User IP: " + userAddy);
 chain.doFilter(request, response);
 }
 
 @Override
 public void destroy() {
 throw new UnsupportedOperationException("Not supported yet.");
 }
}
 

Chapter 1 ■ Introduction to Servlets

24

The filter could contain any processing; the important thing to note is that this servlet is processed when a
specified URL is used to access the application.

Note■■  T o invoke the filter, load a URL for the application with which the filter is associated. For the purposes of this
example, load the following URL (for the previous example) to see the filter add text to the server log:
http://localhost:8080/JSFByExample/SimpleServletCtx1.

How It Works
Web filters are useful for preprocessing requests and invoking certain functionality when a given URL is visited.
Rather than invoking a servlet that exists at a given URL directly, any filter that contains the same URL pattern will be
invoked prior to the servlet. This can be helpful in many situations, perhaps the most useful for performing logging,
authentication, or other services that occur in the background without user interaction.

Filters must implement the javax.servlet.Filter interface. Methods contained within this interface include
init, destroy, and doFilter. The init and destroy methods are invoked by the container. The doFilter method
is used to implement tasks for the filter class. As you can see from this example, the filter class has access to the
ServletRequest and ServletResponse objects. This means the request can be captured, and information can be
obtained from it. This also means the request can be modified if need be. For example, including the user name in the
request after an authentication filter has been used.

If you want to chain filters or if more than one filter exists for a given URL pattern, they will be invoked in the
order in which they are configured in the web.xml deployment descriptor. It is best to manually configure the filters
if you are using more than one per URL pattern rather than using the @WebFilter annotation. To manually configure
the web.xml file to include a filter, use the <filter> and <filter-mapping> XML elements along with their associated
child element tags. The following excerpt from a web.xml configuration file shows how the filter that has been created
for this example may be manually configured within the web.xml file:
 
<filter>
 <filter-name>LoggingFilter</filter-name>
 <filter-class>LoggingFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>LogingFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
 

Of course, the @WebFilter annotation takes care of the configuration for you, so in this case the manual
configuration is not required.

Note■■   As of Servlet 3.1 API, if a filter invokes the next entity in the chain, each of the filter service methods must run
in the same thread as all filters that apply to the servlet.

Chapter 1 ■ Introduction to Servlets

25

Listening for Attribute Changes
Servlets can perform listening event tasks when HTTP session attributes are changed by implementing the
HttpSessionAttributeListener interface.

Example
This example demonstrates how to generate an attribute listener servlet to listen for such events as attributes
being added, removed, or modified. The following class demonstrates this technique by implementing
HttpSessionAttributeListener and listening for attributes that are added, removed, or replaced within the HTTP
session:
 
package org.javaserverfaces.chapter01;
 
import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;
import javax.servlet.annotation.WebListener;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpSessionAttributeListener;
import javax.servlet.http.HttpSessionBindingEvent;
 
/**
 * Attribute Listener
 */
@WebListener
public final class AttributeListener implements ServletContextListener,
 HttpSessionAttributeListener {
 
 private ServletContext context = null;
 
 @Override
 public void attributeAdded(HttpSessionBindingEvent se) {
 HttpSession session = se.getSession();
 String id = session.getId();
 String name = se.getName();
 String value = (String) se.getValue();
 �String message = new StringBuffer("New attribute has been added to session: \n").

append("Attribute Name: ").append(name).append("\n").append("Attribute Value:").
append(value).toString();

 log(message);
 }
 
 /**
 *
 * @param se
 */
 @Override
 public void attributeRemoved(HttpSessionBindingEvent se) {
 HttpSession session = se.getSession();
 String id = session.getId();

Chapter 1 ■ Introduction to Servlets

26

 String name = se.getName();
 if (name == null) {
 name = "Unknown";
 }
 String value = (String) se.getValue();
 String message = new StringBuffer("Attribute has been removed: \n")
 .append("Attribute Name: ").append(name).append("\n").append("Attribute Value:")
 .append(value).toString();
 log(message);
 }
 
 @Override
 public void attributeReplaced(HttpSessionBindingEvent se) {
 String name = se.getName();
 if (name == null) {
 name = "Unknown";
 }
 String value = (String) se.getValue();
 �String message = new StringBuffer("Attribute has been replaced: \n ").append(name).

toString();
 log(message);
 }
 
 private void log(String message) {
 if (context != null) {
 context.log("SessionListener: " + message);
 } else {
 System.out.println("SessionListener: " + message);
 }
 }
 
 @Override
 public void contextInitialized(ServletContextEvent event) {
 this.context = event.getServletContext();
 log("contextInitialized()");
 }
 
 @Override
 public void contextDestroyed(ServletContextEvent event) {
// Do something
 }
}
 

Messages will be displayed within the server log file indicating when attributes have been added, removed, or
replaced.

Chapter 1 ■ Introduction to Servlets

27

Explanation
In some situations, it can be useful to know when an attribute has been set or what an attribute value has been set
to. This example demonstrates how to create an attribute listener in order to determine this information. To create a
servlet listener, you must implement one or more of the servlet listener interfaces. To listen for HTTP session attribute
changes, implement HttpSessionAttributeListener. In doing so, the listener will implement the attributeAdded,
attributeRemoved, and attributeReplaced methods. Each of these methods accepts HttpSessionBindingEvent as
an argument, and their implementation defines what will occur when an HTTP session attribute is added, removed,
or changed, respectively.

In this example, you can see that each of the three methods listed in the previous paragraph contains a similar
implementation. Within each method, the HttpSessionBindingEvent is interrogated and broken down into String
values, which represent the ID, name, and value of the attribute that caused the listener to react. For instance,
in the attributeAdded method, the session is obtained from HttpSessionBindingEvent, and then the session
ID is retrieved from that via the use of getSession. The attribute information can be obtained directly from the
HttpSessionBindingEvent using the getId and getName methods, as shown in the following lines of code:
 
HttpSession session = se.getSession();
String id = session.getId();
String name = se.getName();
String value = (String) se.getValue();
 

After these values are obtained, the application can do whatever it needs to do with them. In this example, the
attribute ID, name, and session ID are simply logged and printed.
 
String message = new StringBuffer("New attribute has been added to session: \n")
.append("Attribute Name: ").append(name).append("\n")
.append("Attribute Value:").append(value).toString();
log(message);
 

The body of the attributeReplaced and attributeRemoved methods contain similar functionality. In the end,
the same routine is used within each to obtain the attribute name and value, and then something is done with those
values.

A few different options can be used to register the listener with the container. The @WebListener annotation is the
easiest way to do so, and the only downfall to using it is that you will need to recompile code in order to remove the
listener annotation if you ever need to do so. The listener can be registered within the web deployment descriptor, or
it can be registered using one of the addListener methods contained in ServletContext.

Although the example does not perform any life-changing events, it does demonstrate how to create and use an
attribute listener. In the real world, such a listener could become handy if an application needed to capture the user
name of everyone who logs in or needed to send an e-mail whenever a specified attribute is set.

Applying a Listener to a Session
In the same way that a listener can be applied to an HTTP session to listen for attribute changes, a listener can be
applied for performing tasks when sessions are created and destroyedAssume in the following example that you wish
to listen for sessions to be created so that you can count how many active sessions your application currently contains,
as well as perform some initialization for each session.

