
Shelve in
Linux/General

User level:
Intermediate

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

M
cDonnell

SOURCE CODE ONLINE

www.apress.com

tmux Taster
tmux Taster is your short, concise volume to learn about tmux, the terminal multiplexer
that allows you to multiplex several virtual consoles. With tmux you can access multiple
separate terminal sessions inside a single terminal window or remote terminal session,
and much more.

Through seven to-the-point chapters, you’ll learn the fundamentals of tmux, scripting
and automation, pane and window management, pair programming, and workflow
management.

Increase your productivity by using a terminal multiplexer - start with tmux Taster today.

9 781484 207765

51999
ISBN 978-1-4842-0776-5

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewers ��� xv

Acknowledgments ��� xvii

Introduction �� xix

Chapter 1: Terminal Multiplexer ■ ��� 1

Chapter 2: Fundamentals ■ ��� 19

Chapter 3: Modifications ■ �� 31

Chapter 4: Copy and Paste ■ �� 37

Chapter 5: Pane/Window Management ■ �� 43

Chapter 6: Scripting and Automation ■ ��� 51

Chapter 7: Pair Programming ■ ��� 59

Chapter 8: Workflow Management ■ ��� 67

Index �� 73

xix

Introduction

The standard terminal that comes installed as part of your operating system (whether
it be Mac, Linux, or Windows based) is seen by most users to be a harsh and barren
wasteland, devoid of emotion and color. Respected by many a neckbeard for its power in
all but a few areas where it falls short.

If you’re unfamiliar with the (joke) term “neckbeard”, it roughly refers to a Unix
system administrator type user. You know, the type of person who has an intimate
knowledge of the internals of the Linux kernel and could probably write an OS over a
weekend – the sort of hardened engineer who fears no terminal environment. Even they
have experienced times where their terminal fails to do the advanced tasks required to
ease their workload; and this is where a terminal multiplexer steps in. The focus of this
book being one particularly popular multiplexer: tmux.

At this stage I won’t divulge any further details, as I cover the majority of “why use
a multiplexer?” thoughts in the opening chapter of this book. But suffice to say that the
information contained in this book should help you not only understand what tmux is
and how to use its basic features, but it also covers customizations and abstractions;
automation via a scripted interface; resolving notorious copy and paste issues; pair
programming (using a tool such as Vagrant to emulate a remote server environment), as
well as looking at the best ways to manage your workflow with tmux.

With all this in mind, I hope you enjoy reading tmux Taster and that you’ll be sure
to get in contact to let me know if, and how, this fantastic tool has helped you to improve
your own workflow.

1

Chapter 1

Terminal Multiplexer

The terminal emulators we use on a day-to-day basis do their job admirably. Having
direct access to the shell environment is a fundamental way of life for most software
engineers, as it gives us a sense of power and efficiency that cannot be matched by
GUI-based applications and mouse interactions.

But even a reasonably modern terminal application can fall short in many areas
(such as the Terminal.app on Mac OS X). As an example, imagine your terminal window
is busy with a long-running process, and you want to interact with another part of your
application or project (but you want to keep an eye on the current process, so that you
know when it’s finished). One way you could do this is to create a new terminal tab and
simply switch back and forth. This isn’t a very elegant solution or efficient, but it
would work.

But some terminal emulators don’t let you create tabs, so if you’re one of those
unfortunate souls, you’ll have a worse option ahead of you, which is to use your mouse
to reduce the size of your terminal and then open a new instance of your terminal
application and resize that new instance so you can see both terminal windows at once
(that is, if you even have a GUI; if you don’t, then . . . well, you’re almost out of luck).

Imagine a similar (but much more typical) example: you’re a software engineer and
you’re writing new (or modifying existing) tests for your application. Ideally, you want
to be able to make changes to your tests and application code while getting immediate
feedback as to whether any of those changes have broken your test suite. You want a fast
feedback loop. This is where being able to split your terminal window becomes a very
useful tool.

But just being able to split a window into one or more screens isn’t the only problem
that has to be solved. Software engineers open many different types of files during a
typical workday, and sometimes, you may find yourself in a situation in which the files
you have open would be easier to read and modify if they were placed in a different layout
that just wasn’t possible using a standard terminal emulator.

In Figure 1-1, we can see we’re not just splitting a terminal window into equal-sized
chunks. We have window C, which spans the full width of the screen, while windows D, E,
and F are a third of the overall screen, and windows A, B, G, and H split 50% of the available
screen dimensions.

Chapter 1 ■ terminal multiplexer

2

We also want to be able to manipulate these windows very easily, through shorthand
key bindings, and change their dimensions (and even change the layout of the windows,
so that they are rearranged into a different format, to fit with the work we do later on in
the day).

Humans are also creatures of habit, meaning that there will be a particular layout of
windows that we find works best for us 90% of the time, and, so, being able to automate
the creation of a particular layout is another feature that would be useful.

Finally, a tool that has the capability to allow me to share my screen seamlessly, so
that I can pair program with another individual and have him/her take over the typing on
my machine, is incredibly useful when you’re a remote worker.

Having complete control over our terminal environment—how it looks and
behaves—is a very powerful idea, and one that is possible through the use of an
application called tmux. In the next section, I’ll explain a little about what tmux is and
means, as well as how to install and configure it.

Note ■ Some readers may have heard of a recent terminal emulator called iterm2
(http://iterm2.com [for mac OS x only]), which allows you to make split windows
(among other features) but suffers from much less ubiquity than my tool of choice: tmux.
For example, if i’m on a remote linux server, i can quickly download and install tmux and be
up and running. i can’t do that with a program that is limited to a single operating system.
as with Vim, a popular terminal based text editor, ubiquity is the key.

tmux
tmux is short for [t]erminal [mu]ltiple[x]er. A multiplexer is simply a fancy way of
describing an application that lets you easily manage multiple terminal windows within
one screen.

tmux runs a server/client architecture, meaning that when you start the application,
it will fire up a single server, and every tmux instance you create on your machine will
ultimately connect to that single tmux server. The benefit of this design is that while

| A | B |

C
D

| G | H |

Figure 1-1. Example of a complex layout of terminal windows

http://iterm2.com/

Chapter 1 ■ terminal multiplexer

3

your machine is running, you can detach a tmux “session” (i.e., close tmux but keep the
details of that session open, as it’ll be stored on the tmux server running in a background
process), so you can then reattach to the session at another time.

Note ■ Visit http://tmux.sourceforge.net/ for frequently asked questions and
helpful information (such as documentation, irC, and mailing list details), as well as to
download binaries of the software.

tmux provides a lot of powerful features (most of which were described indirectly via
the introduction of this chapter), which I’ve summarized into a few categories following:

Ability to connect to existing local and remote sessions•	

Advanced window and pane management•	

Ability to move windows between different sessions•	

Scripted automation•	

The usefulness of tmux truly reveals itself once you start utilizing it on a day-to-day
basis and incorporating it firmly into your workflow. By the time we’re finished, you
should have a much better understanding of the power and flexibility tmux provides and
will wonder how you ever managed without it.

Terminology
Let’s take a brief detour to consider the terminology we’ll be using to describe tmux’s
functionality. This will help to understand different tmux concepts as we move through
the following chapters.

Prefix Command
The purpose of a multiplexer is to help you load multiple programs within a single
window. Because you are effectively loading a program within a program (e.g., loading
Vim inside a tmux window), tmux must avoid command conflicts with the subprograms
being loaded. To do this, it introduces the concept of a prefix command, which helps to
differentiate tmux commands from other programs you use.

Note ■ the default prefix for tmux commands is <C-b>. You’ll notice that we shorten
references to keyboard shortcuts. the principle is as follows: pressing the keys <Ctrl> and b
at the same time can be represented as <C-b>. Similarly, pressing the keys <Esc> and 1 can
be expressed as <Esc-1>. if we need to press any further keys, for example, let’s say we need
to press <Ctrl> and b at the same time followed by d, then we express that as <C-b>d

http://tmux.sourceforge.net/

Chapter 1 ■ terminal multiplexer

4

Let’s take a look at a quick example, to clarify what the prefix command does and
why. I appreciate that we have yet to even open tmux, but the concept of a prefix key is
fundamental to using tmux in the first place, and so I’m hoping you’ll indulge me for just
a moment longer, while I attempt to explain it.

Imagine we have tmux running, and for those who have never seen tmux before,
you’ll likely not notice much difference in your terminal’s appearance (other than a bar at
the foot of your screen, but I’ll come back to this and describe what the bar is and what it
means later), because visually, tmux should act as a container around your terminal.

Now, let’s say we want to open a text file within the popular Vim text editor
(e.g., vim ~/foo.txt) and modify the content by deleting a specific selection. Chances
are you would open the file in Vim, find the content you want to delete, select it, and
execute the d command (which is Vim’s delete command). The problem with this process
is that tmux assigns its own functionality to the d key (a command for detaching from
a session; again, if this doesn’t make sense, don’t worry too much for now, as I’ll cover
sessions in due time). This is a perfect example of why tmux commands have a prefix: to
avoid conflicts with other programs loaded within a tmux screen.

Due to tmux commands having a prefix, we can safely use Vim (or any other program)
and not have to worry that executing a command within our subprograms will cause a
side effect in tmux. In the previous scenario, we would detach from our tmux session
using the command <C-b>d (where <C-b> is the prefix, followed by the d to indicate we
wish to detach from the session).

Throughout the rest of the book, I’ll refer to the prefix key <C-b> as just <P>
(for [P]refix). This means the structure of all tmux commands in this book will take the
form <P>{key-binding|:command-prompt}. In the preceding example, in which we
detached from the tmux session using the key binding <C-b>d, we would represent this
using <P>d (see the following note regarding the “command prompt”).

Note ■ tmux provides a “command prompt” (similar in ways to Vim’s COmmanD-line/ex
modes), which you can access by using <P>:, followed by a command. For example,
<P>:{command}.

The reason for shortening the prefix command in the following chapters is, first,
to make the commands shorter and easier to read, but more important, I’ll be showing
you how you can change the prefix key to be any key combination you like. So if you
end up using this book as a reference, and you happen to have changed the prefix to be
something else (let’s say <C-a>), it would be easier to mentally replace <C-b> with your
own prefix.

Help?
Unfortunately, if you need help with tmux commands, you don’t have as rich a support
feature as found in other programs, such as the Vim text editor (whose built-in :help
documentation are very detailed and useful), but there are still a few options available to
you, which are useful to know about.

Chapter 1 ■ terminal multiplexer

5

Command and Key Binding References
tmux provides a quick reference list of all available key bindings, which you can access
either via a key binding or the command-line prompt (or even from outside tmux itself).

To access the key binding reference via a key binding, you would use <P>?. To access
this reference via the command prompt, you would use <P>:list-keys. Finally, you can
also access this list from outside of tmux, using tmux list-keys (allowing you to utilize
this information in some form of scripted automation, which I’ll cover in more detail in
Chapter 6).

The list-keys command will only display a list of available tmux key bindings. This
does not include all commands that are executable within the tmux command prompt.
For that list, you would use <P>:list-commands (or tmux list-commands, if you’re outside
of tmux); there is no key binding variation.

If you would like to see some extra information regarding each of the tmux sessions
you have open, the following command will display this information for you: <P>:info
(or tmux info, if you’re outside of tmux).

Manual
Although the Internet has lots of useful information about how to do certain things in
tmux, ultimately, the best resource of documentation is the official manual, which is
linked to from the tmux web site and is directly accessible at www.openbsd.org/cgi-bin/
man.cgi/OpenBSD-current/man1/tmux.1.

Alternatively, and more usefully, you can access this documentation via your
terminal, using the command man tmux (which also makes it much easier to filter and
search through).

Message Feedback
One annoyance with tmux is when you execute a command incorrectly. What you’ll
notice happen is that tmux tries to be helpful by displaying a message telling you the
correct format of the command it thinks you were trying to execute. But, unfortunately,
that message only displays for a fraction of a second and then disappears, not leaving you
enough time to see what the requirements of the command actually are.

Luckily, tmux provides a key binding that shows us the complete list of messages
tmux has passed to us during our current session (the list of messages is displayed
in ascending order, so the oldest messages are at the top, and the most recent at the
bottom): <P>~. (You can also access this feature via the command prompt
<P>:show-messages.)

Installation and Configuration
I mentioned earlier that one of the benefits of using tmux over other solutions is its
ubiquity across different platforms. Installing tmux is remarkably simple for such a
powerful and distributed piece of software, as we can see in the following options.

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/tmux.1
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/tmux.1

