
Goldmeier

Shelve in
Applications/MS Excel

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Advanced Excel Essentials
Advanced Excel Essentials is the only book for experienced Excel developers
who want to channel their skills into building spreadsheet applications and
dashboards. This book starts from the assumption that you are well-versed in
Excel and builds on your skills to take them to an advanced level. It provides
the building blocks of advanced development and then takes you through
the development of your own advanced spreadsheet application. For the
seasoned analyst, accountant, financial professional, management consultant,
or engineer—this is the book you’ve been waiting for!

Author Jordan Goldmeier builds on a foundation of industry best practices,
bringing his own forward-thinking approach to Excel and rich real-world
experience, to distill a unique blend of advanced essentials. Among other topics,
he covers advanced formula concepts like array formulas and Boolean logic
and provides insight into better code and formulas development. He supports
that insight by showing you how to build correctly with hands-on examples.

In this book, you learn:

• How to build better, faster, and leaner spreadsheets that will make
you a force to be reckoned with in your organization

• How to write optimized code and formulas that are easily understood
even by less experienced users

• How to turn a spreadsheet into a powerhouse application that rivals
commercial software

• About the tools and techniques for optimal layout, data storage,
and advanced analytics

RELATED

9 781484 207352

53999
ISBN 978-1-4842-0735-2

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Part I: Core Advanced Excel Concepts■■ ��� 1

Chapter 1: Introduction to Advanced Excel Essentials■■ ���3

Chapter 2: Visual Basic for Applications for Excel, a Refresher■■ ���������������������������������������11

Chapter 3: Introducing Formula Concepts■■ ��31

Chapter 4: Advanced Formula Concepts■■ ��49

Chapter 5: Working with Form Controls■■ ���67

Part II: A Real World Example■■ �� 93

Chapter 6: Getting Input from Users■■ ���95

Chapter 7: Storage Patterns for User Input■■ ��115

Chapter 8: Building for Sensitivity Analysis■■ ���137

Chapter 9: Perfecting the Presentation■■ ��165

Index��191

Part I

Core Advanced Excel Concepts

In this part, I’ll review the core concepts that make up the essentials of advanced Excel.
Chapter 1 explains what is meant by advanced Excel development, and how this book differs from many

others. For instance, several books place significant emphasis on Visual Basic for Applications code, believing
macros to be the most important feature of Excel development. This chapter will challenge that notion and
present advanced concepts as a product of many different Excel features, including code. Additionally,
I discuss the most important required skill—creativity.

Chapter 2 provides a brief Visual Basic for Applications refresher. I’ll discuss how best to set up the
coding environment to make it conducive to headache-free coding. I’ll also challenge conventional coding
conventions and propose alternatives that will prove more effective.

Chapter 3 introduces the formula concepts that will be used in this book. The chapter starts with tips
that will make your experience developing advanced formulas run more smoothly. I’ll then show you how to
perform advanced calculations by simply using range operators. You’ll develop advanced alternatives to the
IF function that will prove more powerful in practice and more readable later on. In addition, you’ll
investigate the full extent of Excel’s Boolean logic features.

Chapter 4 continues the discussion of formulas by demonstrating how they can be used with advanced
applications. I take you through several examples applying these formula concepts and demonstrate how they
can be understood with a little bit of algebra. The chapter concludes by introducing the notion of reusable
components, which are spreadsheet mechanics that can be easily reused for other projects.

Chapter 5 shows how advanced capabilities can be built into spreadsheets by using the humble form
control. In this chapter, I argue against using ActiveX and UserForms. Instead, you’ll rely on the flexibility of
form controls combined with the speed and prowess of formulas. Chapter 5 concludes with several practical
reusable components that you can start using in your own work right away.

3

Chapter 1

Introduction to Advanced Excel
Essentials

I set out to write a book on the essentials of Excel development—that is, a book that concisely presents many of the
development principles and practices I’ve discovered through my work and consulting experience.

But whether on purpose or by accident, this book has become something considerably more than that. Indeed,
another name for this book could be A Contrarian’s Guide To Excel Development. You see, this book will push
back against the wisdom of other terrific Excel books, including my favorite book, Professional Excel Development
(Addison-Wesley 2005). To be sure, the information in those books is terrific, and whatever merits this book might
achieve, it will likely never come close to the impact of Professional Excel Development.

At the same time, much of the information in these books, I believe, is somewhat dated. For instance, let’s take
the case of Hungarian Notation. Hungarian Notation is a variable naming convention encouraged by virtually all
Excel development books. Even if you’ve never heard of Hungarian Notation, you’ve likely seen and used it, if you’ve
ever looked at or learned from example code. It basically says a variable’s name should start with a prefix of the
variable’s type. For instance, lblCaption, intCounter, and strTitle are all examples of Hungarian Notation: the lbl
in lblCaption tells us we’re working with a Label object; the int in intCounter tells us we’re working with an integer
type, and the str in strTitle tell us we’re working with a string type. If you’ve done any VBA coding before, this is
likely not new information.

You might not know this, however: most modern languages have all but abandoned Hungarian Notation.
Microsoft’s .NET style guidelines, for instance, even discourage its use. More than a decade has passed since Microsoft
last recommended Hungarian Notation. I argue that it’s time for a more modern naming style, which I introduce in
Chapter 2.

But this book is concerned with more than just naming conventions. I argue that we should change the way we
think about development. Previous books have placed significant emphasis on user interface with ActiveX objects
and UserForms. This book will eschew these bloated controls; rather, this book will show you how to develop complex
interactivity using the spreadsheet as your canvas. You’ll see that it’s easier and provides for more control and
flexibility compared to conventional methods from other books.

In addition, I’ll place less emphasis on code and a stronger emphasis on formulas (Chapters 3, 4, and 5). Many
books have narrowly defined the principles of advanced Excel in terms of VBA code. But formulas can be powerful.
And often they can be used in place of VBA code. You might be surprised by how much interactivity you can create
without writing a single line of code. And how much quicker your spreadsheet runs because of it.

This book is divided into two parts. Part I (Chapters 1-5) deals with concepts that are likely already familiar to you.
Specifically they concern VBA code and formulas—but I present these concepts in new ways. Part II makes up the last
four chapters of the book (Chapters 6-9). These chapters apply concepts from Part I to a real-world example product
I built in my consulting experience. Futhermore, in Part II, you’ll learn how to input form data without making your
spreadsheet bloated. You’ll also apply some data analytics used in the field of management science.

Chapter 1 ■ Introduction to Advanced Excel Essentials

4

However, if you learn anything from my book, it should be that the process of development never stops.
The most important skill you’ll need is creativity. Just as I saw different ways to approach a problem than my predecessors,
so too should you analyze what’s being presented to you. Undoubtedly, you’ll find even better approaches than I did.
I don’t expect everyone to agree with my approaches, but what’s important is that you understand them, so you can
see what works, what doesn’t, and why. Because you won’t become an advanced Excel developer through rote
memorization of the material presented herein; you must learn to think like an advanced developer. This book will
teach you the essentials of doing just that.

What to Expect from this Book
This is not a beginner level book. I assume you have intermediate level experience with formulas and Visual Basic
for Applications. At the very least, you should be able to understand and write both formulas and code. Complete
mastery isn’t necessary; because the topics presented in this book are somewhat new, a mastery in these topics might
not even help you. All that being said, if you’re an experienced Excel user—and you have the aptitude and thirst to
learn new things—there’s no reason you won’t be successful in reading this book! Again, the most important
(and cherished) skill that will guarantee your success is creativity.

What’s considered “advanced” may mean different things to different people. Here, we’re interested in the
principles that help us become better spreadsheet users and developers. That said, this book will make use of Excel
features such as formulas, tables, conditional formatting, Visual Basic for Applications code, form controls, and charts.
For the most part, I will present a brief refresher on what these features do and how they are used. However, you’ll
find this book moves at a quicker pace than beginner level treatments for these items. Features such as PivotTables,
PowerPivot, Power Map, and data tables are not discussed in this book. But you’ll find that the principles presented in
these pages are extendable to these topics.

Indeed, this book is most concerned with teaching Excel development as first principles. I will explain what they
are and how best they are used in practice. Once you learn underlying concepts, extending their use into applications
becomes trivial.

Example Files Used in This Book
This book comes with many examples as a complement to the material presented herein. The example files are
organized by chapter. Whenever there is a corresponding example file for the material presented, I’ll provide you the
name of the example file in the text. All example files are freely available to download from the book’s Apress web page
(www.apress.com/9781484207352). The files are designed to work in Excel 2007 and newer.

The Two Most Important Principles
There are many different ideas and concepts presented in this book. But I’ll be daring and attempt to sum them up as
two key concepts:

	 1.	 When it make sense, do more with less.

	 2.	 Break every rule.

Note■■  T he two most important principles are (1) when it makes sense, do more with less, and (2) break every rule.

http://www.apress.com/9781484207352

Chapter 1 ■ Introduction to Advanced Excel Essentials

5

When It Makes Sense, Do More with Less
You don’t need VBA to do everything. Many times, the reason a spreadsheet is slow is because there is too much
reliance on code. Similarly, too many formulas—especially volatile functions like OFFSET and INDIRECT—will almost
always slow down a spreadsheet. There are better alternatives to these methods. Often, they require less code and can
get more done.

However, we should be wary of brevity for the sake of it. Bill “MrExcel” Jelen and I have a friendly disagreement1
on whether to use Option Explicit in your code. He says he doesn’t need it because he always writes perfect code to
start with—and that its use needlessly adds more lines of code. I, of course, respectfully disagree. I strongly encourage
you to use Option Explicit. Option Explicit requires that you declare your variables before they’re used. That
means that you cannot introduce a new variable in your code on the fly. Listing 1-1 shows code without Option
Explicit; Listing 1-2 shows code with Option Explicit.

Listing 1-1.  No Option Explicit

Public Sub MyResponse()
 ResponseMessage = "Code Executed Successfully!"
 MsgBox ResponseMessage
End Sub 

Listing 1-2.  With Option Explicit

Option Explicit
 
Public Sub MyResponse()
 Dim ResponseMessage as String
 
 ResponseMessage = "Code Executed Successfully!"
 MsgBox ResponseMessage
End Sub
 

Bill argued using Option Explicit required at least one additional line of code for every variable. And it might
appear Listing 1-1 is indeed doing more (or at least the same) with less code. But, as I show in Chapter 2, not using
Option Explicit might be more trouble than it is worth. Debugging is much harder without Option Explicit,
and not using it even encourages sloppy code. From my standpoint, leaving out Option Explicit (and the required
variable declaration) is simply getting less done with less code. But however you feel on this particular issue, it’s worth
testing your opinion against that first principle: ask yourself, am I really doing more with less?

Break Every Rule
I truly believe, and stand by, the material presented in this book. But I would have never discovered any of it without
departing from conventional wisdom. Again, I’ll keep hammering this point until I am blue in the face: the most
important takeway from this book is creativity. And you cannot be creative without pushing a few boundaries. Don’t
be scared to crash a spreadsheet or two in the pursuit of learning.

You’ll see in later chapters that some techniques won’t always be the best choice for every scenario. For instance,
a complex formula that is much faster in practice than a conventional formula might be useless if you must share
your spreadsheet and you’re the only one who understands it. There will always be an economy between formula
readability and utility. I present complex formulas in this book, but I also argue that readability should be a factor in
choosing when and where to use them.

1Watch Bill and I fight about this on Excel.TV: www.youtube.com/watch?v=yJRLzN3Dzmw.

http://www.youtube.com/watch?v=yJRLzN3Dzmw

Chapter 1 ■ Introduction to Advanced Excel Essentials

6

Most important, you shouldn’t be satisfied with Excel’s perceived limitations. Over the last several years, I’ve
been blown away by what I’ve seen others accomplish with Excel. There is a thriving online community dedicated to
helping people realize their imaginations with spreadsheets. Whenever I need inspiration, I look to the community.

For your own consideration, I’ll provide two examples of my own work that show what can be done with Excel
when we think creatively. Figure 1-1 shows a three dimensional maze I created. It might surprise you to learn there is
very little code involved. And the “maze” is simply an area chart formatted to look like a three dimensional plane.

Figure 1-1.  A three dimensional maze, made with Excel

The second item I would like to present is a periodic table of elements with Excel, shown in Figure 1-2.
The periodic table uses a mouseover capability. When the user hovers their mouse over a cell, a macro is executed
that updates information about the element. However, the macro uses only a few lines of code, and besides that
update, the functionality is largely driven by formula functions. Moreover, that mouseover capability is one I
discovered by accident. Before I first wrote about it on my blog, it had been considered impossible.

Chapter 1 ■ Introduction to Advanced Excel Essentials

7

Both the three dimensional maze and periodic table are available for you to investigate in the project files
included with this book. While it’s beyond the scope of this book to explain in detail how these particular spreadsheets
were created, they are the direct product of the material I present in the rest of the book. However, if you’re interested
in reading how these items were developed, see the links in the sidebar.

LINKS ON DEVELOPING A MAZE AND MOUSE OVER MECHANISM

How to Create a Rollover Effect in Excel: Execute a Macro When Your Mouse is Over a Cell

http://optionexplicitvba.blogspot.com/2011/04/rollover-b8-ov1.html

Roll Over Tooltips and Web Actions on a Microsoft Excel Dashboard

www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-
microsoft-excel-dashboard.html

Development Principles for Excel Games and Applications

http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-
applications/

Your First Maze

http://optionexplicitvba.com/2013/09/17/your-first-maze-2/

Figure 1-2.  A periodic table of elements with interactivty previously thought impossible with Excel

http://optionexplicitvba.blogspot.com/2011/04/rollover-b8-ov1.html
http://www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-microsoft-excel-dashboard.html
http://www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-microsoft-excel-dashboard.html
http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-applications/
http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-applications/
http://optionexplicitvba.com/2013/09/17/your-first-maze-2/

Chapter 1 ■ Introduction to Advanced Excel Essentials

8

Available Resources
As I said in the previous section, sometimes you need some inspiration to help get you going. Here’s a list of resources
I use regularly.

Google
Google...Google...Google! Google is your best friend. If you’re ever stuck on a problem, simply ask Google the same way
you might your friend. Usually, you’ll find the results in Excel forums where folks have asked the very same questions.

Chandoo
This site, by Purna “Chandoo” Duggirala, is a phenomenal resource for every Excel developer, from novice to
professional. Chandoo covers many topics including dashboards, VBA, data visualization, and formula techniques.
His site is also host to a thriving online forum community.

www.chandoo.org

Cleary and Simply
Clearly and Simply is a site by Robert Mundigl. The site is mainly focused on dashboards and data visualization
techniques with Excel and Tableau.

www.ClearlyAndSimply.com

Contextures
Debra Dalgleish runs the Contextures web site, which focuses on Excel development and dashboards, particularly
with PivotTables. Her approach to dashboards and the use of PivotTables is different from mine, but well worth a read.
She is also the author of these Apress Books:

•	 Excel Pivot Tables Recipe Book: A Problem-Solution Approach

•	 Beginning PivotTables in Excel 2007: From Novice to Professional

www.contextures.com

Excel Hero
Excel Hero was created by Daniel Ferry. While his blog is not very active anymore, you will find his older content
incredibly useful. Several of his articles have served as the inspiration for the content found in these pages.

www.ExcelHero.com

Peltier Tech
Jon Peltier is a chartmaster. His web site is full of charting tutorials and examples. He provides sage wisdom on data
visualization and proper data analysis. His web site covers every conceivable thing you might want to do with a chart in Excel.

www.peltiertech.com

http://www.chandoo.org/
http://www.clearlyandsimply.com/
http://www.contextures.com/
http://www.excelhero.com/
http://www.peltiertech.com/

Chapter 1 ■ Introduction to Advanced Excel Essentials

9

The Last Word
Above all, advanced development is about thinking creatively. You’ll see this in practice in the chapters to come.
Because some of the material is new, it may appear challenging at first. You may even find yourself frustrated at times.
In these moments, it’s best to take a break for a moment, find your bearings, and start from the beginning of the
section in which you left off. The material is complex, but well within your grasp. I urge you to push through to the
end of the book. The material is worth it; but more important, you’re worth it. What will you learn in this book will
distinguish you. We’re only still scratching the surface of what Excel can do. By the time you’re finished with this book,
you’ll be developing work that might even surprise you.

11

Chapter 2

Visual Basic for Applications for
Excel, a Refresher

Of course, no advanced book on developing anything in Excel would be complete without a chapter on the interpreter
language housed within Excel, Visual Basic for Applications–or better known by its shorthand moniker, VBA.

This chapter won’t be an introduction to VBA but rather a review of VBA programming techniques and
development principles found in this book and practiced throughout most of my career. What follows may appear
unconventional, at first. Indeed, it may differ somewhat from what you’ve been previously taught. However, I don’t
leave you with a few instructions and no guidance. Instead, I’ll explain in detail why I believe what I believe—and
why you should believe as I do. If you find that you don’t—and I certainly welcome disagreement—consider the other
important—actually, more important—takeaway from this chapter: the code choices and styles we use should always
follow from a set of principles, guidelines, and convention. When you code, do so with structure and meaning. Know
why you believe what you believe.

But, the most important thing to do right now is to ready yourself to begin coding. This requires that you set the
right conditions in your coding environment.

Making the Most of Your Coding Experience
I tend to get more done when I’m less frustrated. I’ll be so daring to suggest you’re probably the same way. And let’s
not kid ourselves: coding in VBA can be a frustrating experience. For instance, have you ever been halfway through
writing an IF statement and then realized you needed to fix something on another line? So you click that other line
and Excel stops everything to pop up a message box saying that you’ve written a syntax error, like in Figure 2-1.
Chances are, you already knew that. In fact, you wanted to change an earlier line in the code to prevent another error
from happening.

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

12

Tell Excel: Stop Annoying Me!
I mean, nobody’s perfect, but you don’t need this popup ruining your coding flow every time you click to another line.
So, save yourself from unnecessary popups by disabling Auto Syntax Check from the Options dialog box, which you
access by selecting Tools > Options (see Figure 2-2). This will only disable the popup. The offending syntax error is still
highlighted in red—in other words, you don’t lose any functionality, just the annoyance.

Figure 2-2.  Uncheck Auto Syntax Check for distraction-free coding

Figure 2-1.  That all-too-annoying popup error box telling you what you likely already know

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

13

Make Loud Comments
If you comment your code regularly—and you should—you’ve probably noticed comments don’t “stand out” very
much. In fact, I’ll be the first to admit I’ve gone through code and missed comments because they’ve “blended in”
with their surroundings. Figure 2-3 shows perhaps a more extreme example involving rather busy code, but the point
remains: the two comment markers (') I’ve placed in the routine are not easily or immediately found.

Figure 2-3.  Comment markers at 6 and 14 blend in with the code

Luckily, you don’t have to use the preset colors. In fact, you can make the comments stand out. Go back to the
Options dialog box from the Tools menu. Click the Editor Format tab and select Comment Text from the Code Colors
list box. Below the list box you can specify the foreground and background color, which are the text color and highlight
properties, respectively (see Figure 2-4). Personally, I like using a dark blue foreground and light blue background
(see Figure 2-5). You’ll have to try this on your own to get the full effect; to that end, and to preserve the formatting
guidelines of this book, the highlight does not appear in the code listings throughout the book.

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

14

Figure 2-5.  Let your comments be heard with bold colors

Figure 2-4.  The Editor Format dialog box

Pick a Readable Font
Leave that Options dialog box open because you’ll need it once more. By default, Excel uses Courier New (Figure 2-6)
as its default coding font. Again, this font, like the comment style defaults, doesn’t emphasizes the clear readability.
I prefer the font Consolas shown in Figure 2-7 because I think it does a much a better job in this regard.

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

15

You can change the font by selecting Normal Text from the list box (Figure 2-4) and using the font dropdown
on the side of the dialog box. Excel gives you lots of fonts to choose from, but the best fonts with which to code are
those of fixed width. So if you choose something other than Consolas or Courier New, make sure to pick a readable,
fixed-width font.

Start Using the Immediate Window, Immediately
The Immediate window is like a handy scratchpad with many uses. If the Immediate window is not already open,
go to View ➤ Immediate Window in the Visual Basic Editor. You can type calculations and expressions directly into
the Immediate window using the print keyword. Figure 2-8 provides some examples of typing directly into the
Immediate window.

Figure 2-6.  Sample code with Courier New as the font

Figure 2-7.  More readable text with Consolas

Figure 2-8.  The Immediate window

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

16

In addition, you can also print the response of a loop or method directly into the Immediate window. To do this,
use Debug.Print. Listing 2-1 shows you how.

Listing 2-1.  Using Debug.Print to Write to the Immediate Window While in Runtime

For i = 1 to 100
 Debug.Print "Current Iteration: " & i
Next i
Debug.Print "Loop finished."

Opt for Option Explicit
VBA doesn’t require you declare your variables before using them—that is, unless you place the words Option Explicit
at the top of your code module. Without Option Explicit, the For loop from Listing 2-1 would run without problems.
When you use Option Explicit, you must declare all variables before they are used. In Listing 2-2, I’ve used the Dim
keyword to declare the integer i.

Listing 2-2.  A For-Next Loop with Declared Variables

Dim i as Integer
For i = 1 to 100
 Debug.Print "Current Iteration: " & i
Next i
Debug.Print "Loop finished."
 

If you forgo Option Explicit, as I did in the first instance, Excel will simply create the variable i for you.
However, that i won’t be an integer; rather it will be of a variant type. This may not sound like such a bad thing
at first, but letting Excel simply make variables for you is a recipe for trouble. What if you misspell a variable, like
RecordCount, as I’ve done in Listing 2-3?

Listing 2-3.  An Example of a Variable Created on the Spot Because Option Explicit Wasn’t Used

RecordCount = 1
Msgbox RecordCout
 

Excel won’t alert you to an error. Instead, it will simply create RecordCout as a new variable. Do you trust your
ability to find misspellings in your code quickly?

In practice, I’ve found using Option Explicit alleviates many potential headaches. So do yourself a favor, in
the Option dialog box (Tools ➤ Options), check Require Variable Declaration to Excel to automatically (and proudly)
display Option Explicit at the top of every module. And when the error in Figure 2-9 appears, give yourself a pat on
the back for not having to scour your code to find your misspellings.

Figure 2-9.  Breath a sigh of relief ! You have Option Explicit on the case!

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

17

Seriously, I can’t tell you how important Option Explicit is. I’d repeat “Always use Option Explicit!” 1,000 times
here if I could. But I’ll just let Excel do it for me instead. Paste the following formula into an empty cell before moving
to the next section.
 
=REPT("Always use Option Explicit! ",1000)

Naming Conventions
A naming convention is a common identification system for variables, constants, and objects. By definition, then, a
good naming convention should be sufficiently descriptive about the content and nature of the thing named. In the
next subsections, I’ll talk about two naming conventions. The first, Hungarian Notation, is the most common notation
used for VBA coding. Indeed, I’m unaware of any book that has argued against its use—that is, until now. The second,
my preferred notation, is what I call “loose” CamelCase notation, and it’s similar to the standard for just about all
modern object-oriented languages.

Hungarian Notation
In this section, I’ll talk about Hungarian Notation. In this notation, the variable name consists of a prefix—usually
an abbreviated description the variable’s type—followed by one or two words describing the variable’s function
(e.g. its reason for existing). For example, in Listing 2-4, the “s” before Title is used to indicate the variable is of
String type. The term “title,” as I’m sure you can guess, describes to the string’s function—in other words, its reason
for existing.

Listing 2-4.  An Example of Hungarian Notation

Dim sTitle as String
sTitle = “The new spreadsheet.!”
 

Table 2-1 shows some suggested prefixes for common variables and classes.

Table 2-1.  Prefixes Suggested by Hungarian Notation

Prefix Data Type

B Boolean

D Double

I Integer

S String

V Variant

Rng Excel.Range

Obj Excel.Object

Chrt Excel.Chart

Ws Excel.Worksheet

Wb Excel.Workbook

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

18

In this book, I will discourage the use of Hungarian Notation in your code. I’m not here to tell you that Hungarian
Notation is terrible because it does have its uses. For instance, VBA code isn’t known for having very strict data type
rules. This means you can assign integers to strings without casting from one type to the other. So including the type
in a variables name isn’t a terrible idea at all.

But much of this type confusion can be resolved by using descriptive and proper variables names, as you’ll see
in the next few pages. For now, however, it’s a good idea to at least familiarize yourself with Hungarian Notation if you
haven’t done so already. Hungarian Notation is still widely used in VBA to this day, so it’s important that you can read
it proficiently even if you decide in this moment to never use it again. (Good choice!)

The fact is, Hungarian Notation is old. Indeed, in many ways, it’s a relic of a bygone era–namely, the era in which
people still used Visual Basic 6.0. (Those were the days, right?) In fact, Microsoft’s Design Guidelines for .NET libraries
has discouraged its use for more than decade. So what I’m proposing in this next section might feel new, but it’s
actually been around for quite some time.

“Loose” CamelCase Notation
In this section, I’ll talk about loose CamelCase notation as my preferred alternative. CamelCase notation begins with a
description (with the first letter in the “lower case,” when it’s a local, private variable—hence the name “CamelCase”)
and usually ends with the object type unabbreviated. For example, the variable in Listing 2-5 refers to chart on a
worksheet for sales.

Listing 2-5.  A Demonstration of Camel Back Notation

Dim salesChart as Excel.Chart
Set salesChart = Sheet1.ChartObjects(1).Chart
 

I’ll be honest and admit I’m not always such a stickler about that lower case descriptor, which is why I call my
use of this notation “loose.” The important takeaway when using this notation is to use very descriptive names. It’s
unlikely a variable name like ChartTitle will be confused for an integer in your code. Whether it’s recordCount or
RecordCount, you’ll likely understand that count refers to a nonnegative integer.

My rule of thumb is, local primitive types should start with a lower case, if you feel so inclined. Variables that
represent objects should end with the object name unabbreviated. Notice in Listing 2-5 that the variable name ends
with Chart. Ranges should end with Range, etc.

Descriptive names are important. Use a variable name that describes what the variable does so when you come
back to it later, you can remember what you did. If you have a test variable, then (please, for the love of God) call it
“test,”; don’t just call it “t.” It’s OK to use i in a For/Next loop where the i is simply an iterator and is not used later in
the code, but don’t name variables used to count objects with short names like i,j,k,a,b,c. Finally, there’s really no
good reason to use an underscore in your variable names. They’re not easier to read.

Named Ranges
As I said above, naming convention goes beyond just VBA. Indeed, a proper naming convention should be applied to
all Excel objects, including those that reside on a spreadsheet. Therefore, in this section, I’ll talk about naming objects
on the spreadsheet in the form of named ranges.

It’s rather common to see Excel developers use the prefix “val” to refer to named cell ranges. This prefix is an
attempt to extend the Hungarian Notation principles into the physical spreadsheet (as if we haven’t already had enough
of it!). However, I still prefer a more modern approach. Specifically, what I like to do is combine the name of the tab and
the function of the variable in to be object-oriented-like. Figure 2-10 shows a good example of what I mean.

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

19

In Figure 2-10, the name of the tab is combined with the variable. Aside from being more object-oriented-ish, this
type of naming brings other distinct advantages. For one, you can more easily and logically group named ranges that
exist on the same worksheet tab. In addition, as you’ll see in the next section, this type of convention works very well
when interfacing between named ranges and VBA.

Sheet Objects
In this section, I’ll focus on naming conventions for sheet objects. There’s one property of the sheet object that I’m
a big fan of changing, and it’s the name of the object itself. When you change the name of a worksheet tab on the
spreadsheet, you’re actually changing the name of the tab (think of it as changing a caption); you are not, in fact,
changing the name of the worksheet object itself.

If for nothing else, changing the name of the worksheet object is a great way to clear up confusion when looking
at the Project Explorer window. For example, Excel seems to have a problem keeping the names of worksheet tabs
and the names of the objects themselves straight, as I’m sure you’ve noticed before. Take a look at Figure 2-11 to see
what I mean.

Figure 2-10.  An object-oriented like naming convetion for named ranges

Figure 2-11.  The Project Explorer demonstrating a lack of consistency when it comes to worksheet object and
tab names

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

20

The object name is the item outside the parenthesis; the tab name is the one inside the parenthesis. If I were to
write MsgBox Sheet1.Name in the Immediate window, I would see a response of “Sheet2.”

To change the name of the object itself, go to the Properties window from within the editor (View ➤ Properties
Window, if it’s not already visible) and change the line that says (name). In Figure 2-12, my worksheet tab’s caption is
“Financial Data,” so I’m going to change its object name to FinancialData.

Figure 2-12.  The Properties Explorer showing how to change the worksheet object’s name

YES, I KNOW IT’S CONFUSING

If you look at the Project Explorer window (Figure 2-12, above), you’ll see that the worksheet object name comes
first and the tab name follows in parenthesis. The Properties Explorer window appears to do just the opposite;
the first name in parenthesis, “(name)”, refers to the object’s name, while the second name item (under Enable
Selection) refers to its name as it appears on the tab. Why did Microsoft choose to do it this way? Your guess is as
good as mine.

Referencing
In this section, I’ll talk about referencing. Referencing refers to interacting with other worksheet elements from within
VBA code and also on the worksheet. This is where a good naming convention and proper coding style really makes
the difference.

Let’s take a made-up named range concerning Cost of Goods Sold. Hungarian Notation proponents would give
the named range something like valCoGS (CoGS = Cost of Goods Sold). The notation I suggest would combine the
tab name with a nicely descriptive title (you could make it shorter if you’d like, but I like long titles), something like
IncomeStatement.CostOfGoodsSold. So let’s take a look at why you might prefer a long named range such as this in
the next section.

