
Crookshanks

www.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Practical Enterprise Software
Development Techniques
Practical Enterprise Software Development Techniques provides an overview of
tools and techniques used in enterprise software development, many of which are
not taught in academic programs or learned on the job. This is an ideal resource
containing lots of practical information and code examples that you need to master
as a member of an enterprise development team.

This book aggregates many of these “on the job” tools and techniques into a
concise format with code examples along with several discussions about the
operational aspects of enterprise software development and how it differs from
smaller development efforts.

For example, in the chapter on design patterns and architecture, the author
describes the basics of design patterns and highlights those that are more important
in enterprise applications due to separation of duties, enterprise security, and so
on. And in the architecture discussion the author emphasizes how different teams may
manage different aspects of the application’s components with little or no access to the
developer.

In this book, you’ll learn:

• Version control in a team environment
• Debugging, logging, and refactoring
• Unit testing, build tools, continuous integration
• An overview of business and functional requirements
• Enterprise design patterns and architecture

This book is for students and software developers who are new to enterprise
environments and recent graduates who want to convert their academic experience
into real-world skills.

RELATED

Shelve in
Software Engineering/Software Development

User level:
Beginning–Intermediate

SOURCE CODE ONLINE 9 781484 206218

54999
ISBN 978-1-4842-0621-8

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Introduction ���xix

Chapter 1: How Enterprise Software Is Different ■ ���������������������������� 1

Chapter 2: Software Requirements ■ �� 5

Chapter 3: Design Patterns and Architecture ■ ����������������������������� 19

Chapter 4: Development Methodologies and SDLC ■ ����������������������� 37

Chapter 5: Version Control ■ �� 61

Chapter 6: Unit Testing and Test-Driven Development ■ ����������������� 91

Chapter 7: Refactoring ■ ��� 109

Chapter 8: Debugging ■ ��� 129

Chapter 9: Build Tools and Continuous Integration ■ �������������������� 141

Chapter 10: Just Enough SQL ■ ��� 155

Appendix A: Enterprise Considerations and Other Topics ■ ���������� 181

Appendix B: Discussion Questions ■ ��� 191

Appendix C: Database Details ■ ��� 199

Appendix D: Bibliography ■ ��� 203

Index �� 205

xix

Introduction

Purpose
The purpose of this book is to discuss and provide additional resources for topics and
technologies that current university curriculums may leave out. Some programs or
professors may touch on some of these topics as part of a class, but individually they
are mostly not worthy of a dedicated class, and collectively they encompass some of the
tools and practices that should be used throughout a software developer’s career. Use of
these tools and topics is not mandatory, but applying them will give the student a better
understanding of the practical side of software development.

In addition, several of these tools and topics are the “extra” goodies that employers
look for experience working with or having a basic understanding of. In discussions with
industry hiring managers and technology recruiters, the author has been told repeatedly
that fresh college graduates, while having the theoretical knowledge to be hired, are
often lacking in more practical areas such as version control systems, unit testing skills,
debugging techniques, interpreting business requirements, and others. This is not to
slight or degrade institutional instruction, only to point out that there are tools and
techniques that are part of enterprise software development that don’t fit well within
the confines of an educational environment. Knowledge of these can give the reader an
advantage over those who are unfamiliar with them.

This guide will discuss those topics and more in an attempt to fill in the practical
gaps. In some cases, the topics are code-heavy; in other cases, the discussion is largely
a survey of methods or a discussion of theory. Students who have followed this guide
should have the means to talk intelligently on these topics and this will hopefully
translate to an advantage in the area of job hunting. Although it would be impossible to
cover all tools and technologies, the ones covered in this guide are a good representative
sample of what is used in the industry today. Beyond the theoretical aspects of computer
science are the practical aspects of the actual implementation; it is this realm that this
book attempts to demystify.

There are some “topics de jour” that have been left out; this is by design. To cover
every emerging technology and technique would quickly overwhelm the reader and
could have the effect of overemphasising a passing fad. Also, enterprise development
is typically governed by architects and risk managers; in their minds, new technology
is inheritly risky and, therefore, change in the enterprise occurs comparatively slowly.
This book attempts to stick with techniques, tools, and concepts that are the basis for
development in the enterprise; if these are understood, then layering new tools on top
should be easy to do.

xx

■ IntroduCtIon

In short, it is hoped that this companion guide will help graduates and even relatively
new hires overcome the “lack of practical experience” issue by becoming more familiar with
industry standard practices and common tools. This volume cannot create experts, but it
can at least provide enough cursory knowledge such that the reader can discuss the basics
of each topic during an interview. With a little practice and exploration on their own, the
student should realize that supplementing an excellent theoretical education with practical
techniques will hopefully prove useful not only in writing better software while in school
but also translate to an advantage when out of school and searching for a job.

Overview of Topics
The following topics and tools are discussed:

How enterprise software development differs from academia and •	
small business settings

Writing requirements•	

Design patterns and architecture•	

Comparison of development methodologies•	

Version control•	

Unit testing and Test-driven development•	

Refactoring•	

Debugging•	

Build tools, automated build engineering, and continuous •	
integration

Basic SQL statements and data frameworks•	

In addition, there are discussion questions for each chapter listed in Appendix B.
In a classroom setting these can be used for review, classroom discussion, or as a starting
point for further discussion.

Prerequisites
It is assumed the reader is already familiar with many facets of languages and tools.
The typical student would have used Java, .NET, C++, or some other high-level language
for course assignments in a typical computer science or software curriculum and is
probably at the sophomore, junior, or senior level. The reader should also be familiar with
the differences between console applications, GUI applications, and service/daemon

xxi

■ IntroduCtIon

applications. The nuances of procedural, object-oriented, and event-driven programming
should be understood at a high level. The examples will be kept as simple as possible
where needed because the intent is not to teach CS topics and object-oriented design
but instead how to use these particular tools and concepts to assist in implementing the
problem at hand.

Disclaimer
The tools and techniques discussed in this guide are not the only ones on the market. If
a particular tool is mentioned in this guide it does not mean that it is the only tool for the
job, is endorsed in any way by the author or publisher, or is superior in any way to any of
its competitors. Nor does mention of any tool in this publication insinuate in any way that
the tool owners or resellers support or endorse this work.

Java and Java-based trademarks are the property of Sun Microsystems. Visual Studio®
is a registered product of Microsoft and all other Microsoft product trademarks,
registered products, symbols, logos, and other intellectual property is listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.
aspx. Eclipse™ is property of the Eclipse Foundation. All other trademarks, registered
trademarks, logos, patents, and registered names are the property of their respective
owner(s). We are aware of these ownership claims and respect them in the remainder of
the text by capitalizing or using all caps when referring to the tool or company in the text.

Any example code is not warranted and the author cannot be held liable for any
issues arising from its use. Also, the references provided for each topic are most definitely
not an exhaustive list and, again, their mention is not to be construed as an endorsement,
nor is any resource left off the list to be considered unworthy. Many additional books,
websites, and blogs are available on these topics and should be investigated for alternate
discussions. Any mentions of names anywhere in the book are works of fiction and
shouldn’t be associated with any real person.

What Is NOT Included
Unfortunately in many enterprise development situations, the latest bleeding edge
technology and tools are not frequently used. This can be for any number of reasons
including risk, enterprise architecture standards and policies, and simple scale of change.
For example, even though web systems using NodeJS and MongoDB are very popular in
web development (as of early 2015), these technologies aren’t nearly as common in the
enterprise world. Large corporations may have hundreds of thousands of dollars invested
in Windows Server farms running ASP.NET and SQL Server (not to mention large
teams supporting them) and are not willing to change as readily as small development
businesses. So although many of the concepts discussed in this book can be applied to
any language, framework, or technology, many of the current “hot” technologies are not
discussed here. This is not to slight them at all or say they have no place in enterprise
development, but the purpose of this book is not to emphasize the latest trends in tools
and technologies.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US

xxii

■ IntroduCtIon

Software Notes
Examples are provided in a variety of languages and with different tools, all of which
have some level of free software available. Enterprise versions of these tools may exist, or
similar tools with stricter licensing models and slightly different semantics may exist; it is
simply assumed that tools at the educational level will be closer to the free versions. Also,
most hobby developers or recent graduates will probably make use of free tools instead
of starting with an expensive development tool suite. If a particular topic/example is
not given in a familiar language or with a familiar tool it should be easily translated into
another environment. Where possible, notes on how different platforms solve different
problems in different ways will be noted. Some of these tools may already be mandated
by an employer, others may be free to choose which tools to use to start a practice
discussed here. The development tools were originally released with tools available in
early 2011 with the first edtion, namely, the Visual Studio 2010 Express Editions, and
Eclipse 3.6. Other tools used in the text were obtained around the same time. In 2014,
newer edtions were tested with success, including Visual Studio 2013, Eclipse 4.4, and
Spring Tool Suite, and others. There are further notes in the downloadable source code.
However, one common experience with enterprise software development is that versions
are often at least one or two behind the current market standard. Usually this is not a
great impact if the software being developed doesn’t employ bleeding edge technology,
and most risk managers is enterprise situations won’t allow that.

Please note that the examples will be kept necessarily simple. In fact, most of the
examples will be so short that the tools and techniques used on them will probably not
seem worth it. However, in the context of much larger systems, enterprise systems, these
tools and techniques are very useful.

A very special note on Chapter 5 on version control. Since the publication of the first
edition of this book, a major paradigm shift has occurred in the repository world, and
distributed version control, in particular GIT, has become commonplace. Many students
and hobbyists alike have benefited from the true flexibility of GIT, its ease of use, and its
power when sharing code among distributed teams and via GITHUB.com. However, large
enterprises have been slower to adopt GIT as an enterprise-wide tool, not necessarily
because of its distributed model, but often because of the sheer amount of retooling it
would take to make the change. A small software shop with only a few developers and
a single source repository has far more flexibility than an enterprise organization with
four thousand software developers, multiple code repositories, and multiple layers
of infrastructure to support all of that and the systems that interface with it such as
continuous integration and automated deployment applications. So large organizations
that have invested in a working centralized version control such as SVN, CVS, or Team
Foundation Server will most likely not quickly move to GIT, as it potentially represents a
large effort, and therefore a large risk. So to summarize an overused cliché, when it comes
to version control (or any dedicated infrastructure component for that matter), many
large organizations may be aware of the latest and greatest cool software, but will follow
the “If it ain’t broke, don’t fix it” mentality.

xxiii

■ IntroduCtIon

Or at least fix it very slowly. In many cases, large “legacy” repositories would be left in
place and their current integrated systems such as continuous build and deploy systems
would be left as is. New repository systems, for example, Jira Stash, would be brought
online completely separate from the legacy systems. New projects would use the new
repository, and continuing projects would stay on the legacy system as migrated as time
permits.

For that reason, the chapter on version control remains in place and mainly centers
on SVN. Even if other tools are used, the concepts are easily demonstrated with SVN
and the tortoise shell exentsion. Distributed version control is mentioned, but not
emphasized because the concepts of check-in/check-out and the other main topics apply
equally to GIT as to SVN.

1

Chapter 1

How Enterprise
Software Is Different

Computer Science, software engineering, and software development are similar
terms that are often used interchangeably. Likewise, there are many different types of
educational opportunities available – Bachelor’s programs, associate programs, trade
schools, and high-intensity immersion programs. The intent of each of these is to
educate the student in varying degrees of theory and turn out an individual capable of
understanding and writing software.

Although each education program can produce students who can write software,
often the scope of learning is either very broad (universities) to very narrow (immersion
programs). A discussion of which education method is best is beyond the scope of this
book; the intent here is to discuss and illustrate tools and techniques commonly used in
professional enterprise software development. Some programs or professors may touch
on some of these topics as part of a class, but individually they are mostly not worthy of
a dedicated class, and collectively they encompass many of the tools and practices that
should be used throughout a software developer’s career in a team environment. In the
case in which a dedicated class might exist (e.g., Design Patterns), a quick overview of
the underlying principal is given but the majority of the discussion centers around
how the principal is useful in the enterprise and why. The goal of the chapter is not to
reteach patterns but to demonstrate how and why a few of them are important in an
enterprise setting.

The Association for Computing Machinery (ACM) put out their most recent
curriculum guideline in 2013. Although additional information was included concerning
professional development and an added emphasis on including “professional practice,”
the recommendation was fairly vague and lacking deterministic details about exactly
what those skills should be and how they should be taught. The topics selected for
discussion here came from the author’s personal experience with interviewing recent
graduates and those developers with less than five years’ experience. Also, in many
discussions with industry hiring managers and technology recruiters, the author has
been told repeatedly that fresh college graduates, while having the theoretical knowledge
to be hired, oftentimes are lacking in more practical areas such as interpreting business
requirements, unit testing skills, version control systems, debugging techniques,
collaboration tools, and so on. This is not to slight or degrade institutional instruction,
only to point out that there are tools and techniques that are part of enterprise software

Chapter 1 ■ how enterprise software is Different

2

development that don’t fit well or are rarely taught within the confines of an educational
environment. Nor are these consistently used in smaller software efforts such as startups
or single-application firms. Knowledge of these principles can give the reader an
advantage when going in to an environment where they are used.

Why are these practical topics important? As noted earlier, they are important because
they are rarely formally discussed and the industry as a whole is continuously striving for
a quicker “time to productivity” for new programmers. And although most new graduates
are comfortable writing code, especially if they already have one or two years of actual
experience, they may not be familiar with large team or enterprise practices.

Because both tools and techniques are covered, in some cases the topics are
code-heavy; in other cases, the discussion is largely a survey of methods or a discussion
of theory. Students and newcomers who have absorbed the material in this book should
have the means to talk intelligently on these topics and this will hopefully translate to
an advantage in the area of job hunting or quicker acclimation to a team environment.
Although it would be impossible to cover all tools and technologies in various usage
scenarios, the ones covered in this guide are a representative sample of what is used in
the industry today. Beyond the theoretical aspects of computer science are the practical
aspects of the actual implementation; it is this realm that this book attempts to demystify.

But isn’t software development still software development no matter where it is
written? The answer is both yes and no. Yes, at the end of the day the goal is to produce
software that does what the end user wants. Even in large organizations, development
efforts can be broken into small enough teams that coding seems very much like any
other small team. And depending on management, the effect could be a small team feel
as part of a much larger organization.

The “no” part of the answer stems from the corollary of “how do we get there?”
In academia and even in small startup companies, the focus is usually on learning the
theory or producing a website or product to sell and generate revenue. Typically the work
is individual (academia) or in very small teams (startup); the final solution/product may
be specified with the end goal of simply getting there at all costs.

In smaller companies, employees may wear many different hats, that is, being a
developer, database administrator, tester, and deployment engineer all in one day. This
is usually out of necessity and because of the limited resources available. When there
are only seven people in the company, “many hats” is simply a fact of life. If the effort
is around producing an app or service that contains mainly user-relevant data, some of
those steps may not even be necessary. And although these experiences are good for
understanding all the links in the chain, they may not be appropriate or even permissible
in all organizations.

In enterprise development, there can be several additional factors present that are
of little or no concern to small companies. Large organizations may be required by law
or regulation to have more stringent processes around software development. Later
discussions in this book involve multiple environments and separation of duties, but
these concepts are usually in place in large organizations to reduce operational risk or
a result of other corporate policy concerns. So understanding all links in the chain is
important. For example, instead of changing a database entry manually, a SQL script may
have to be sent to an administrator and the results verified without access to the database.
In that case, knowing what the DBA has to do and how he will do it would be beneficial
should problems arise.

Chapter 1 ■ how enterprise software is Different

3

Also, many enterprise development efforts are internally focused; therefore the “end
user” is also an employee of the company and the developer is not directly responsible
for generating revenue or producing a product. The software being developed could
be for internal-only use (a payroll system), an operations system (scheduling plant
maintenance), or to help an employee better serve an external customer (a bank teller
application). And, as internal software, the entire infrastructure is usually kept internal
as well, meaning that web servers and database servers are housed internally and all
networking is internal via an intranet. Also, many systems may share a particular piece of
infrastructure and changes to them, even for a single application, must be coordinated
through them. This can be another very different aspect of enterprise software
development.

To repeat and expand on the introduction, here again is the list of topics. A brief
statement concerning the rational of each topic was chosen and how each is used in the
enterprise or can differ from smaller development efforts is added to clarify the purpose
of the discussions.

Chapter 2, Requirements – Large enterprises may still have formal project
management teams in place even if development uses less formal methods. Being able to
produce and understand the various documents is essential.

Chapter 3, Design Patterns and Architecture – There are often design pattern classes
in academia. The purpose of this chapter is to (re)introduce patterns that are important
in an enterprise environment and discuss why they are important. Also, enterprise
architecture is discussed, both as a rational to why the design patterns are important and
to highlight typical separation of duty issues.

Chapter 4, Comparison of Development Methodologies – This is a survey
discussion of the two major methodologies, waterfall and agile. Agile is a broad brush and
several of the different aspects are summarized. Again, like requirements, there may be
different methodologies at different levels of the organization and knowing about each
can be beneficial.

Chapter 5, Version Control – This chapter is a review of version control basics and a
discussion about version control in an enterprise setting. With the recent popularity of Git
and distributed collaborative efforts, students are generally more aware of the principles
of version control, but enterprises may employ a slightly different model as a result of
separation of duty concerns.

Chapter 6, Unit Testing and Test Driven Development – Test Driven Development
(TDD) is a form of agile programming, but it is included in this section because of how
tightly it is coupled with unit testing. Often in academic settings the practice is “code until
it works” with minimal thought for ongoing modification and verification. This chapter
discusses those ideas, how important they are for ongoing changes and maintenance, and
illustrates some of the tools used.

Chapter 7, Refactoring – This is often done informally; this chapter formally defines
some of the terms and acts as a complement to the TDD chapter. And again, refactoring
in the enterprise is commonly done to increase extensibility or when new integration
points need to be added, which is also the next step after “code until it works.”

Chapter 8, Debugging – This is often not formally covered anywhere. In this chapter,
some of the more powerful techniques are discussed and demonstrated. Also, logging is
discussed as it is one of the only ways to “debug” in a production environment in which
the developer has no access rights.

Chapter 1 ■ how enterprise software is Different

4

Chapter 9, Build Tools, Automated Build Engineering, and Continuous Integration –
These tools and techniques are common in enterprise environments because of
separation of duties and risk. Developers are often not allowed to compile and deploy
code outside of the development realm, meaning that in the testing and production
environments other teams handle this. They, in turn, are typically not developers and
may make use of automation tools to accomplish the task. Knowing this process and
preparing for lack of access outside of development is very beneficial.

Chapter 10, Basic SQL Statements and Data Frameworks – Although key in many
projects, database theory and programming is not necessarily a required class, especially
in associate programs or similar environments. Sometimes automated tools are used
to create a data framework and do all the “behind-the-scenes plumbing” work. This
chapter is a basic review/introduction to SQL statements to assist in understanding how
to directly interact with a database. In addition, data framework programming is briefly
touched on to demonstrate how relational data is presented in a language construct with
some of the latest tools.

Summary
Enterprise software development can often be much more than just writing code.
Collaboration with other teams and team members is important, as are the extra steps in
documenting the process. In addition, the actual code can be different as well. Designing
for integration, expandability, and flexibility in an environment that the developer
may not have access to is a key consideration. Enterprises may also use various tools
to automate certain processes and/or reduce risk. The remaining chapters attempt to
highlight some of these important areas and prepare the reader for developing software
in the enterprise.

5

Chapter 2

Software Requirements

Writing good requirements is difficult. Interpreting bad requirements is even tougher. But
almost all projects start with them and thus they are extremely important. In this chapter,
we will define requirements from a couple of different perspectives, discuss how the
different perspectives work together, and list some general recommendations about each.
We will also cover the roles the developers play in the requirements process and why
developing and interpreting requirements are important skills. As with many of the topics
in this book, there are countless permutations of the concepts that we are trying to cover
and other works that are dedicated solely to the topic of requirements. Here we present a
general overview with an emphasis on aspects that are important to developers from an
enterprise or large organization perspective.

In our section on Test Driven Development and the Agile method, we will discuss
minimal documentation and using index cards or story cards to capture desired behavior.
Here we address the other extreme – documenting requirements in a more “traditional”
project management manner so that both the business and technical project managers
can track their status through the life of a project. This is often part of the waterfall process.
In this chapter, we will use a human resources time-card application as our target system.
All examples will be in the context of developing this as an internal application for internal
users. Similar concepts apply to external and retail applications, however.

Business Requirements
Business analysts – those familiar with the day-to-day operations of the end users – will
usually be instrumental in bridging the gap between business terminology and technical
implementation. These analysts will assist in documenting requirements (described
later) and will represent the business users to the technical staff in discussions.

At the highest level of abstraction is the Vision Statement, sometimes referred to as
Primary Business Goal. This is a document or statement usually written from the business
perspective describing the overall strategic goal of the software. Typically this statement is
brief—only a few sentences or paragraphs long.

One theoretical goal statement is shown here. The statement is admittedly simple
and brief, but the high-level purpose of the system is summed up in a single statement:

Chapter 2 ■ Software requirementS

6

To provide employees and management with an easy-to-use, electronic
time-card system that allows tracking of work, vacation, holidays,
volunteer time, and other work-related activities.

The vision statement describes the overall purpose of the application and may not
necessarily need to be changed with each additional feature. However, for major changes
(or when starting from scratch), the first document constructed is typically a Business
Requirements Document, often referred to as a BRD. In this document, the business, with the
assistance of the business analyst, spells out in business terms what the software should do.
The document is typically written in business terms; the technical team will create their own
document spelling out the technical details needed to accomplish what the business wants.

Use cases are another higher-level abstraction that begins to show interaction
with the system. Actors are defined and are shown interacting with specific processes
or components that produce a specific outcome. It is a standard convention that a use
case begins with a verb before the component being acted on (Wiegers, 2006). There are
several ways to define use cases; the two most common being a use case diagram in UML
and a more detailed written description.

In Figure 2-1, an overly simplified use case diagram for some of the operations in
the example time card system is shown. In this diagram there are four actors and six use
cases; this shows that use cases may be shared among actors. Also note that each use case
is a meaningful action that is carried out by each actor. The diagram doesn’t show any
restrictions or special conditions. When more detail is needed for a use case, the diagram
is supplemented with a written description.

Create Time Card Create User

Edit Exiting Generate Report

Check Vacation Approve Time

Team LeadSalary Employee

Contractor HR Employee

Time Entry System

Figure 2-1. Example use-case diagram

Chapter 2 ■ Software requirementS

7

Formatting for the written description varies widely and the example presented
here is one of many formats. The amount of information and level of detail can differ
depending on the complexity of the use case, the use of standard templates, or other
organizational and/or team factors. Sometimes a use case can be an informal paragraph,
but the example we show here is moderately more complex. In the example HR timecard
system, each use case in the diagram would be matched by a corresponding use case
description. The example shown in Table 2-1 is loosely based on the template in Wiegers
(2006) but, as mentioned earlier, many formats are available and there is no single
industry standard use case description template.

Table 2-1. Example use case written description

Use Case Name Create Time Card

Created by: EC

Date Created: 8-1-2011

Actors: Contractor, Salaried Employee

Description: Actors should be able to create a time card for a specific
reporting period. They should be able to add tasks and hours for
the period and mark it “ready for review” when done.

Priority: 1

Assumptions: Actors set up with proper projects and task choices.

Rules: Actors can save a time card without completing it—they may
enter the entire period at once or update daily or as needed
before completing.

Before marking “ready for review” each work day must have
an entry.

Two time cards cannot be created for the same payroll period by
the same person.

Contractors are not allowed to enter vacation time.

Preconditions: Actors successfully signed(?) onto the system.

Notes:

In addition to or sometimes in place of use cases, the BRD may include more specific
business user requirements spelled out in sentence form. These items may map more
closely to the technical implementation. In fact, they may actually spell out some specific
items to be implemented in the source code. In the written description, the “Rules”
section most closely resembles these specific requirements but in a typical BRD these
“line items” have identifiers that project managers and team leads can use to address a
specific item. Table 2-2 shows a small sample of this type of BRD entry.

Chapter 2 ■ Software requirementS

8

Note that the sample is an overly simple example, and most likely a real BRD would
have additional columns. These might be a requirement category, such as “System,”
“Legal,” “Performance,” and so on. There could also be a “Notes” column for additional
information, a “Date” for when the requirement was added, a desired release number
if the project is in phases, and more. The main point is that the statements are from the
business perspective and while not technical, care must be taken to understand exactly
how a business expectation translates into a technical implementation. For example, a
business requirement of “User should be able to search entire intranet for search term
in less than one second” is likely unattainable and that sort of requirement should be
tempered in consultation with the business analyst.

Functional Design
Once the business requirements have been completed, another typical piece of
documentation is the Function System Design, or FSD. In many organizations, this serves
two purposes: to address the coverage of the business requirements and to specify the

Table 2-2. Example user requirements

ID Description Priority Status

R-11 Users should not have to sign into the system;
their current network login should be used for
identification.

Med Done

R-12 The user should pick a project first; the tasks
available are a derivative of the project.

High Open

R-13 A full-time employee should not be able to submit a
time card with less than 40 hours per week recorded.

High Open

R-14 A contractor can submit any number of hours
up to 60 without special approval.

Med Open

R-15 A team lead can see his/her team’s time cards before
they are submitted but cannot approve them until
the user submits it.

High Open

R-16 Each approver should have a surrogate approver
with the same approval rights.

High Open

R-17 If the user attempts to submit a time card without
an entry for each work day, the user should see an
alert stating “Time card incomplete” and the action
should fail.

High Open

R-18 If a user is inactive for 5 minutes the system will
timeout and kick the user off.

Low Open

Chapter 2 ■ Software requirementS

9

actual system implementation down to the class, object, and possibly even the sequence
diagram level. In other scenarios, it simply focuses as a logical design document to ensure
that all aspects of the Business Requirements are covered. As there are plenty of other
references on classes, objects, object-oriented design, and sequence diagrams, here we
will address the coverage of the business requirements. Later on, we will discuss technical
specifications at a high level in a section on Technical Design.

As stated for the other items in this section, there are countless formats, templates,
and structured documents that may be called an FSD. The focus in this section is to
show a mapping between the requirements in Table 2-3 and a functional statement that
implements the requirement in question. Oftentimes this is referred to as a “traceability
matrix” and can provide a way of verifying that all requirements are covered by at least
one functional design statement.

Table 2-3. Sample FSD statement showing requirement number

ID Description Bus Req Status

F-23 The system will use Windows integrated
authentication for identifying the user.

R-11 Assigned

F-24 The list of active tasks will not be retrieved
until a project is selected. These will be
child-parent tables in the database and can
be associated.

R-12 Open

F-25 The session timeout will be configurable and
default to 5 minutes.

R-18 Assigned

One representation involves the creation of a set of statements similar to Table 2-2;
however, these statements describe technical aspects of the system. They would also have
an additional column stating which requirement in the BRD is covered by this functional
statement. These two columns could easily be extracted into a matrix to compare the
mappings between business requirement ID and function requirement ID.

Another popular format is to lift the requirements table from the BRD and insert
it directly into the functional design. An additional column is then added to the table,
which shows the functional implementation directly alongside the requirement. This is
shown in Table 2-4.

Table 2-4. Combined FSD and BRD

ID BRD Description Functional Solution

R-11 F-23 Uses should not have to sign into the
system; their current network login
should be used for identification.

The system will use Windows
integrated authentication for
identifying the user.

R-18

F-25

If a user is inactive for 5 minutes the
system will timeout and kick the user off.

The session timeout will be
configurable and default to
5 minutes.

Chapter 2 ■ Software requirementS

10

Technical Design
Although the BRD and FSD are generally written at a high level so that both analysts
and developers can interpret the information, “technical design” is a term given to
documentation that is targeted toward developers. Whereas some teams may have a
standard “Technical Design Document (TDD)” or “Software Design Document (SDD),”
multiple documents can also make up the technical design documentation. The most basic
of these would be the flowchart, but others are common as well. These could include:

Database design diagram•	

UML diagrams, such as class diagram, sequence diagram, and so on•	

API documentation•	

Architecture diagrams•	

An introduction to database design is discussed in Chapter 10: Just Enough SQL.
A basic database diagram is shown in Figure 10-1. In short, the database diagram shows
the structure of the database such as the table names and data types, constraints, and
relationships. Refer to Chapter 10: for more information.

UML (Unified Modeling Language) is a way to express several aspects of a software
project. A use-case diagram has already been shown in Figure 2-1; this section will
discuss lower-level diagrams such as the class diagram and sequence diagram. There are
many more possible diagrams and covering them all is beyond the scope of this book.
The reader should refer to Appendix D for additional resources.

A class diagram is a representation of the static class structure of an application.
It illustrates class names, attributes, operations, and relationships between classes.
Figures 2-2 and 2-3 show the beginnings of a class diagram for the time tracker
application discussed in this section. Figure 2-2 shows the beginnings of modeling the
application users and includes classes and interfaces; Figure 2-3 shows how reports for
the application could be represented as code classes.

Chapter 2 ■ Software requirementS

11

Figure 2-2. Very simple class diagram of users

Figure 2-3. Simple class diagram for report classes

Chapter 2 ■ Software requirementS

12

Obviously these are very early-on diagrams; as the application progresses, the
diagrams may become much more complex. Keep in mind also that there are several
different ways of generating these diagrams. Some development tools will automatically
create diagrams based on the project structure, but diagrams are often done beforehand
and maintained manually by using tools such as Microsoft Visio®.

Sequence diagrams represent the internal moving pieces of software. These diagrams
illustrate what is going on at the object and method level. They highlight method calls,
method return values, and object lifetimes. An example is shown in Figure 2-4.

AppUser Report ReportDataLayerReportFactory

ReportFactory:CreateReport

Create

Return reportReturn Report

Report.GenerateReport

GetReportData

Return data

Return Report

Figure 2-4. Sequence diagram

There are generally two levels of detail for sequence diagrams. Some are at a
somewhat higher level and don’t specify actual method names or parameters, only
actions and interactions. These are useful for reviewing object interactions and getting
a sense for how many objects are needed to produce a desired result. Other sequence
diagrams can be very detailed, specifying actual method names with parameters, looping
structures, and more.

API documentation is among the very lowest level of technical documentation.
Simply put, every method of every class, its parameters and return value, and sometimes
even usage context is included in this documentation. Numerous examples of this exist
online, the most prevalent being Microsoft’s MSDN documentation for the .NET library
and Oracle’s JavaDoc documentation.

Chapter 2 ■ Software requirementS

13

As with class diagrams, this information can be generated manually or automatically.
Manual creation of this documentation is done using a simple text editor. However, a
more popular way of creating this type of documentation is through documentation
comments in the source code itself. These are very similar to normal comments except
for the special identifiers and tags and the fact that they begin with /** (two asterisks)
instead of the normal one asterisk. Tools exist for taking these comments and producing
standard format documentation in various formats such as HTML or XML.

Listing 2-1 shows an example of the comment format in Java that is used to produce
the code documentation. By comparing with the generated page shown in Figure 2-5
with the tags (@author, @param, @return), it can be seen how the comments translate to
generated information.

Listing 2-1. Java documentation comments

package com.nokelservices;

/**
 * How about an actual comment in here and not just the @author?
 * @author Author Name
 *
 */
public class SettingValidator
{
 /**
 * Validates the given key/value pair for allowable values
 * @param key key of the setting to validate
 * @param value value of the setting to validate
 * @return boolean indicating valid value or not
 */
 public boolean isValidSetting(String key, String value)
 {
 return (key.length() > 0 && value.length() > 0);
 }
}

These comments can be applied to the package, class, and methods, as well as other
types such as enumerations. There are also more tags than are shown here; please refer
to the online documentation for a complete list of these tags and their uses. Once these
comments are processed, a series of web pages are generated that follow a standard
format. Figure 2-5 is the page generated from the Java code and comments.

Chapter 2 ■ Software requirementS

14

Other languages may have their own commenting standards and procedures for
documenting code. In .NET, the format of the documentation comments is very similar
to the preceding Java format. PHP and Perl also have standards for creating code from
comments.

The architecture diagram is highlighted in , as part of the pattern discussion. These
diagrams are also often included in technical documentation. Not only are they useful for
“big picture” discussions, but they also are useful in determining which teams to partner
with and how many other teams will be necessary. Also, special hardware situations such
as clustering and firewalls may be depicted in these diagrams, which may or may not
result in some special code considerations.

Figure 2-5. Sample JavaDoc page

Chapter 2 ■ Software requirementS

15

Change Control
In a system in which rigid documentation principles are followed, the frequent changing
of requirements is typically not allowed to happen. In the past, this frequently led to a
phenomenon known as “scope creep.” One would start out with a simple design to turn
on a light switch and end up with a functioning nuclear plant—very late and very much
over the original budget! This necessitated an approach in which after the requirements
and design documents are completed and approved, any changes in requirements or
the design implementation must follow a formal change control process. This is not
to prevent changes to the system but, rather, to properly analyze and document them
(Weigers, 2003). This intentional review also helps to limit “scope creep.” If these aren’t
properly vetted and documented, they will cause the project to be late or improperly
implemented. Through this process, some may be implemented right away; some may be
designated as a requirement in a future release of the product.

Again, there are countless policies for handling change control as well as countless
ways of documenting the process. Some organizations may use an email trail, some may
use a “mini-BRD/FSD” structure, and still others may blend the two based on the severity
of the change. Ideally, all changes should follow the same system, and the discussion in
this section only outlines a single change control process. Also, we only briefly discuss the
surrounding process and focus mainly on the documentation of the change.

In the time card project, assume that the BRD is complete and approved, the FSD is
complete and approved, and actual coding has begun. After reviewing the document and
current practices in a legacy system, the business analyst comes to the development team
and states that there was a scenario that was missed and could slightly change the flow.

The new requirement is this: “a team lead may need to complete and approve a time
card on behalf of the team members.” This leads to the creation of a change request (CR)
that will formally document this new requirement as part of the change control process.

For clarity and tracking purposes, each change request should be documented
in a single document. Like requirements, a CR is given a unique identifier and has a
brief description. However, because it is arriving after the design is complete and the
coding has started, many more questions and factors have to be considered before
adopting the new requirement as part of the implementation. Again, documentation
standards vary widely, but a sample CR with additional questions and sample
answers is shown in Table 2-5.

