
 COMPANION eBOOK

US $ 44.99

Shelve in
Mobile Computing

User level:
Intermediate www.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Interested in iPhone and iPad apps development? Want to learn more?
Whether you are a relative newcomer to iPhone and iPad or iOS development

or an old hand looking to expand your horizons, we have the perfect
Swift-flavored book for you.

The update to the bestselling More iPhone Development by Dave Mark and Jeff
LaMarche, More iPhone Development with Swift digs deeper into the new Apple
Swift programming language and iOS 8 SDK, explaining complex concepts and
techniques in the same friendly, easy-to-follow style you’ve come to expect.

More iPhone Development with Swift covers topics like Swift, Core Data,
peer-to-peer networking using Multipeer Connectivity, working with data
from the web, MapKit, in-application e-mail, Camera Live-Previews integration,
Barcode scanning and more. All the concepts and APIs are clearly presented
with code snippets you can customize and use, as you like, in your own apps.
You’ll journey through coverage of concurrent programming and some
advanced techniques for debugging your applications.

More
iPhone Development

 with Swift
M

ore iPhone Developm
ent w

ith Sw
ift

RE
LA

TE
D

TI
TL

ES

SOURCE CODE ONLINE

Companion

eBook
Available

Exploring the iOS SDK
David Mark | Jayant Varma | Jeff LaMarche | Alex Horovitz | Kevin Kim

M
ark

Varm
a

LaM
arche

Horovitz
Kim

9 781484 204498

54499
ISBN 978-1-4842-0449-8

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors��xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Chapter 1: Here We Go Round Again■■ ��� 1

Chapter 2: Core Data: What, Why, and How■■ �� 9

Chapter 3: A Super Start: Adding, Displaying, and Deleting Data■■ ������������������������� 43

Chapter 4: The Devil in the Detail View■■ �� 89

Chapter 5: Preparing for Change: Migrations and Versioning■■ ���������������������������� 127

Chapter 6: Custom Managed Objects■■ ��� 137

Chapter 7: Relationships, Fetched Properties, and Expressions■■ ������������������������ 171

Chapter 8: Behind Every iCloud■■ �� 219

Chapter 9: Peer-to-Peer Using Multipeer Connectivity■■ ��������������������������������������� 239

Chapter 10: Map Kit■■ �� 281

Chapter 11: Messaging: Mail, Social, and iMessage■■ �� 311

Chapter 12: Media Library Access and Playback■■ ��� 329

vi Contents at a Glance

Chapter 13: Lights, Camera, and Action■■ ��� 383

Chapter 14: Interface Builder and Storyboards■■ �� 405

Chapter 15: Unit Testing, Debugging, and Instruments■■ �������������������������������������� 425

Chapter 16: The Road Goes Ever On . . . ■■ ��� 453

Index�� 459

1

Chapter 1
Here We Go Round Again

So, you’re still creating iPhone applications, huh? Great! iOS and the App Store have
enjoyed tremendous success, fundamentally changing the way mobile applications are
delivered and completely changing what people expect from their mobile devices. Since
the first release of the iOS Software Development Kit (SDK) way back in March 2008, Apple
has been busily adding new functionality and improving what was already there. It’s no less
exciting a platform than it was back when it was first introduced. In fact, in many ways, it’s
more exciting because Apple keeps expanding the amount of functionality available to third-
party developers like us.

Since the last release of this book, More iOS 6 Development (Apress, 2012), Apple has
released a number of frameworks, tools, and services. These include, but aren’t limited to,
the following:

	Core frameworks: Core Motion, Core Telephony, Core Media, Core View,
Core MIDI, Core Image, and Core Bluetooth

	Utility frameworks: Event Kit, Quick Look Framework, Assets Library,
Image I/O, Printing, AirPlay, Accounts and Social Frameworks, Pass Kit,
AVKit

	Services and their frameworks: iAds, Game Center, iCloud, Newsstand

	Developer-centric enhancements: Blocks, Grand Central Dispatch (GCD),
Storyboards, Collection Views, UI State Preservation, Auto Layout,
UIAutomation

Obviously, there are too many changes to cover completely in a single book. But we’ll try our
best to make you comfortable with the ones that you’ll most likely need to know.

2 CHAPTER 1: Here We Go Round Again

What This Book Is
This book is a guide to help you continue down the path to creating better iOS applications.
In Beginning iPhone Development with Swift, the goal was to get you past the initial learning
curve and to help you get your arms around the fundamentals of building your first iOS
applications. In this book, we’re assuming you already know the basics. So, in addition to
showing you how to use several of the new iOS APIs, we’re also going to weave in some
more advanced techniques that you’ll need as your iOS development efforts grow in size
and complexity.

In Beginning iPhone Development with Swift, every chapter was self-contained, each
presenting its own unique project or set of projects. We’ll be using a similar approach in the
second half of this book, but in Chapters 2 through 8, we’ll focus on a single, evolving Core
Data application. Each chapter will cover a specific area of Core Data functionality as we
expand the application. We’ll also be strongly emphasizing techniques that will keep your
application from becoming unwieldy and hard to manage as it gets larger.

What You Need To Know
This book assumes you already have some programming knowledge and that you have
a basic understanding of the iOS SDK, either because you’ve worked through Beginning
iPhone Development with Swift or because you’ve gained a similar foundation from other
sources. We assume you’ve experimented a little with the SDK, perhaps written a small
program or two on your own, and have a general feel for Xcode. You might want to quickly
review Beginning iPhone Development with Swift.

COMPLETELY NEW TO IOS?

If you are completely new to iOS development, there are other books you probably should read before this
one. If you don’t already understand the basics of programming and the syntax of the C language, you should
check out Learn C on the Mac for OS X and iOS by David Mark and James Bucanek, which is a comprehensive
introduction to the C language for Macintosh programmers.

If you already understand C but don’t have any experience programming with objects, check out Learn
Objective-C on the Mac, an excellent and approachable introduction to Objective-C by Mac programming
experts Scott Knaster, Waqar Malik, and Mark Dalrymple.

If you also need to learn Swift, there is a book for that too; you can refer to Learn Swift on the Mac by
Waqar Malik

There is a comprehensive list of resources in Chapter 16 of this book in case you want to read and learn more
before you continue with this book.

3CHAPTER 1: Here We Go Round Again

What You Need Before You Can Begin
Before you can write software for iOS devices, you need a few things. For starters, you need
an Intel-based Macintosh running Yosemite (Mac OS X 10.10 or newer). Any Macintosh
computer—laptop or desktop—that has been released since 2009 should work just fine, but
make sure your machine is Intel-based and is capable of running Yosemite.

This may seem obvious, but you’ll also need an iPhone (5S/5C or newer) or an iPad (iPad 2
or newer) capable of running iOS 8.x. While much of your code can be tested using
the iPhone/iPad simulator, not all programs will run in the simulator. And you’ll want to
thoroughly test any application you create on an actual device before you ever consider
releasing it to the public.

Finally, you’ll need to sign up to become a Registered iOS Developer. If you’re already
a Registered iOS Developer, go ahead and download the latest and greatest iPhone
development tools; then skip ahead to the next section.

If you’re new to Apple’s Registered iOS Developer programs, navigate to http://developer.
apple.com/ios/, which will bring you to a page similar to that shown in Figure 1-1. Just
below the iOS Dev Center banner, on the right side of the page, you’ll find links labeled Log
in and Register. Click the Register link. On the page that appears, click the Continue button.
Follow the sequence of instructions to use your existing Apple ID or create a new one.

http://developer.apple.com/ios/
http://developer.apple.com/ios/

4 CHAPTER 1: Here We Go Round Again

At some point, as you register, you’ll be given a choice of several paths, all of which will lead
you to the SDK download page. The three choices are free, commercial, and enterprise. All
three options give you access to the iOS SDK and Xcode, Apple’s integrated development
environment (IDE). Xcode includes tools for creating and debugging source code, compiling
applications, and performance-tuning the applications you’ve written. Please note that
although you get at Xcode through the developer site, your Xcode distribution will be made
available to you via the App Store.

Figure 1-1.  Apple’s iOS Dev Center web site

5CHAPTER 1: Here We Go Round Again

The free option is, as its name implies, free. It lets you develop iOS apps that run on a
software-only simulator but does not allow you to download those apps to your iPhone, iPod
touch, or iPad, nor sell your apps on Apple’s App Store. In addition, some programs in this
book will run only on your device, not in the simulator, which means you will not be able to
run them if you choose the free solution. That said, the free solution is a fine place to start if
you don’t mind learning without doing for those programs that won’t run in the simulator.

The other two options are to sign up for an iOS Developer Program, either the Standard
(commercial) Program or the Enterprise Program. The Standard Program costs $99. It
provides a host of development tools and resources, technical support, distribution of
your application via Apple’s App Store, and, most important, the ability to test and debug
your code on an iPhone rather than just in the simulator. The Enterprise Program, which
costs $299, is designed for companies developing proprietary, in-house applications for
the iPhone, iPod touch, and iPad. For more details on these two programs, check out
http://developer.apple.com/programs/. (Prices are in USD and might vary based on the
country that you reside in along with the formalities that Apple might require to enroll in the
developer program.)

Note  If you are going to sign up for the Standard or Enterprise Program, you should go do it right
now. It can take a while to get approved, and you’ll need that approval to be able to run applications
on your iPhone. Don’t worry, though—the projects in the early chapters of this book will run just
fine on the iPhone simulator.

Because iOS devices are connected mobile devices that utilize a third party’s wireless
infrastructure, Apple has placed far more restrictions on iOS developers than it ever has on
Macintosh developers, who are able to write and distribute programs with absolutely no
oversight or approval from Apple except when selling on the App Store. Apple is not doing
this to be mean but rather to minimize the chances of people distributing malicious or poorly
written programs that could degrade performance on the shared network. It may seem like
a lot of hoops to jump through, but Apple has gone through quite an effort to make the
process as painless as possible.

What’s In This Book
As we said earlier, Chapters 2 through 7 of this book focus on Core Data, Apple’s primary
persistence framework. The rest of the chapters cover specific areas of functionality either
that are new with iOS SDK or that were simply too advanced to include in Beginning iPhone
Development with Swift.

http://developer.apple.com/programs/

6 CHAPTER 1: Here We Go Round Again

Here is a brief overview of the chapters that follow:

	Chapter 2, “Core Data: What, Why, and How”: In this chapter, we’ll
introduce you to Core Data. You’ll learn why Core Data is a vital part
of your iPhone development arsenal. We’ll dissect a simple Core Data
application and show you how all the individual parts of a Core Data–
backed application fit together.

	Chapter 3, “A Super Start: Adding, Displaying, and Deleting Data”: Once
you have a firm grasp on Core Data’s terminology and architecture,
you’ll learn how to do some basic tasks, including inserting, searching
for, and retrieving data.

	Chapter 4, “The Devil in the Detail View”: In this chapter, you’ll learn
how to let your users edit and change the data stored by Core Data.
We’ll explore techniques for building generic, reusable views so you can
leverage the same code to present different types of data.

	Chapter 5, “Preparing for Change: Migrations and Versioning”: Here,
we’ll look at Apple tools that you can use to change your application’s
data model, while still allowing your users to continue using their data
from previous versions of your application.

	Chapter 6, “Custom Managed Objects”: To really unlock the power
of Core Data, you can subclass the class used to represent specific
instances of data. In this chapter, you’ll learn how to use custom
managed objects and see some benefits of doing so.

	Chapter 7, “Relationships, Fetched Properties, and Expressions”: In this
final chapter on Core Data, you’ll learn about some mechanisms that
allow you to expand your applications in powerful ways. You’ll refactor
the application you built in the previous chapters so that you don’t need
to add new classes as you expand your data model.

	Chapter 8, “Behind Every iCloud”: The iCloud Storage APIs are among
the coolest features of iOS. The iCloud APIs will let your apps store
documents and key-value data in iCloud. iCloud will wirelessly push
documents to a user’s device automatically and update the documents
when changed on any device—automatically. You’ll enhance your Core
Data application to store information on iCloud.

	Chapter 9, “Peer-to-Peer Over Bluetooth Using Multipeer Connectivity”:
The Multipeer Connectivity framework makes it easy to create programs
that communicate over Bluetooth and WiFi, such as multiplayer games
for the iPhone and iPad. You’ll explore Multipeer Connectivity by
building a simple two-player game.

	Chapter 10, “MapKit”: This chapter explores another great new piece
of functionality added to the iOS SDK: an enhanced CoreLocation.
This framework now includes support for both forward and reverse
geocoding location data. You will be able to convert back and forth
between a set of map coordinates and information about the street, city,

7CHAPTER 1: Here We Go Round Again

and country (and so on) at that coordinate. Plus, you’ll explore how all
this interoperates with enhanced MapKit.

	Chapter 11, “Messaging: Mail, Social, and iMessage”: Your ability to
get your message out has gone beyond e-mail. In this chapter, we’ll
take you through the core options of Mail, the Social Framework, and
iMessage, and you’ll see how to leverage each appropriately.

	Chapter 12, “Media Library Access and Playback”: It’s now possible to
programmatically get access to your users’ complete library of audio
tracks stored on their iPhone or iPod touch. In this chapter, you’ll look at
the various techniques used to find, retrieve, and play music and other
audio tracks.

	Chapter 13, “Lights, Camera and Action”: In this chapter, you’ll be taking
a detailed look into the AVFoundation framework, which provides a
standard set of APIs and classes for iOS applications to play audio and
video and even capture the same. In addition to the basic interfaces of
this framework, you will utilize some additions for managing capturing,
saving images, and audio.

	Chapter 14, “Interface Builder and Storyboards”: The new additions
to Interface Builder allow you to have live previews and create custom
controls to use in your projects. You will create custom transitions
between your views and view controllers.

	Chapter 15, “Unit Testing, Debugging, and Instruments”: No program
is ever perfect. Bugs and defects are a natural part of the programming
process. In this chapter, you’ll learn various techniques for preventing,
finding, and fixing bugs in iOS SDK programs.

	Chapter 16, “The Road Goes Ever On. . .”: Sadly, every journey must
come to an end. We’ll wrap up this book with fond farewells and some
resources we hope you’ll find useful.

iOS is an incredible computing platform, an ever-expanding frontier for your development
pleasure. In this book, we’re going to take you further down the iPhone development road,
digging deeper into the SDK, touching on new and, in some cases, more advanced topics.

Read the book and be sure to build the projects yourself—don’t just copy them from the
archive and run them once or twice. You’ll learn most by doing. Make sure you understand
what you did, and why, before moving on to the next project. Don’t be afraid to make
changes to the code. Experiment, tweak the code, and observe the results. Rinse and
repeat.

Got your iOS SDK installed? Turn the page, put on some iTunes, and let’s go. Your
continuing journey awaits.

9

Chapter 2
Core Data: What, Why,
and How

Core Data is a framework and set of tools that allow you to save (or persist) your
application’s data to an iOS device’s file system automatically. Core Data is an
implementation of something called object-relational mapping (ORM). This is just a fancy
way of saying that Core Data allows you to interact with your Swift objects without having
to worry about how the data from those objects is stored and retrieved from persistent data
stores such as relational databases (such as SQLite) or flat files.

Core Data can seem like magic when you first start using it. Core Data objects are, for the
most part, handled just like plain old objects, and they seem to know how to retrieve and
save themselves automagically. You won’t create SQL strings or make file management calls,
ever. Core Data insulates you from some complex and difficult programming tasks, which is
great for you. By using Core Data, you can develop applications with complex data models
much, much faster than you could using straight SQLite, object archiving, or flat files.

Technologies that hide complexity the way Core Data does can encourage “voodoo
programming,” that most dangerous of programming practices where you include code in
your application that you don’t necessarily understand. Sometimes that mystery code arrives
in the form of a project template. Or, perhaps you download a utilities library that does a task
for you that you just don’t have the time or expertise to do for yourself. That voodoo code
does what you need it to do, and you don’t have the time or inclination to step through it
and figure it out, so it just sits there, working its magic...until it breaks. As a general rule, if
you find yourself with code in your own application that you don’t fully understand, it’s a sign
you should go do a little research, or at least find a more experienced peer to help you get a
handle on your mystery code.

The point is that Core Data is one of those complex technologies that can easily turn into a
source of mystery code that will make its way into many of your projects. Although you don’t
need to know exactly how Core Data accomplishes everything it does, you should invest
some time and effort into understanding the overall Core Data architecture.

10 CHAPTER 2: Core Data: What, Why, and How

This chapter starts with a brief history of Core Data, and then it dives into a Core Data
application. By building a Core Data application with Xcode, you’ll find it much easier to
understand the more complex Core Data projects you’ll find in the following chapters.

A Brief History of Core Data
Core Data has been around for quite some time, but it became available on iOS with the
release of iPhone SDK 3.0. Core Data was originally introduced with Mac OS X 10.4 (Tiger),
but some of the DNA in Core Data actually goes back about 15 years to a NeXT framework
called Enterprise Objects Framework (EOF), which was part of the toolset that shipped with
NeXT’s WebObjects web application server.

EOF was designed to work with remote data sources, and it was a pretty revolutionary
tool when it first came out. Although there are now many good ORM tools for almost every
language, when WebObjects was in its infancy, most web applications were written to use
handcrafted SQL or file system calls to persist their data. Back then, writing web applications
was incredibly time- and labor-intensive. WebObjects, in part because of EOF, cut the
development time needed to create complex web applications by an order of magnitude.

In addition to being part of WebObjects, EOF was also used by NeXTSTEP, which was the
predecessor to Cocoa. When Apple bought NeXT, the Apple developers used many of the
concepts from EOF to develop Core Data. Core Data does for desktop applications what EOF
had previously done for web applications: it dramatically increases developer productivity by
removing the need to write file system code or interact with an embedded database.

Let’s start building your Core Data application.

Creating a Core Data Application
Fire up Xcode and create a new Xcode project. There are many ways to do this. When you
start Xcode, you may get the Xcode startup window (Figure 2-1). You can just click “Create a
New Xcode project.” Or you can select File ➤ New ➤ Project. Or you can use the keyboard
shortcut ÒN—whatever floats your boat. Going forward, we’re going to mention the
options available in the Xcode window or the menu options, but we won’t use the keyboard
shortcut. If you know and prefer the keyboard shortcuts, feel free to use them. Let’s get back
to building your app.

11CHAPTER 2: Core Data: What, Why, and How

Xcode will open a project workspace and display the Project Template sheet (Figure 2-2).
On the left are the possible template headings: iOS and OS X. Each heading has a bunch
of template groups. Select the Application template group under the iOS heading and then
select Master-Detail Application template on the right. On the bottom right, there’s a short
description of the template. Click the Next button to move the next sheet.

Figure 2-1.  Xcode startup window

Figure 2-2.  Project Template sheet

12 CHAPTER 2: Core Data: What, Why, and How

The next sheet is the Project Configuration sheet (Figure 2-3). You’ll be asked to provide a
product name; enter CoreDataApp. The Organization Name and Company Identifier fields
will be set automatically by Xcode; by default these will read MyCompanyName and com.
mycompanyname. You can change these to whatever you like, but for Company Identifier,
Apple recommends using the reverse domain name style (such as com.oz-apps).

Figure 2-3.  Project Configuration sheet

Note that the Bundle Identifier field is not editable; rather, it’s populated by the values from
the Company Identifier and Product Name fields.

The Devices drop-down field lists the possible target devices for this project: iPad, iPhone,
or Universal. The first two are self-explanatory. Universal is for applications that will run on
both the iPad and iPhone. It’s a blessing and a curse to have to a single project that can
support both iPads and iPhones. But for the purposes of this book, you’ll stick with iPhone.
You obviously want to use Core Data, so select its check box. Finally, make sure that you
have Swift selected as the language.

Click Next and choose a location to save your project (Figure 2-4). The check box on the
bottom will set up your project to use Git (www.git-scm.com), a free, open source version
control system. We won’t discuss it, but if you don’t know about version control or Git, we
suggest you get familiar with them. Click Create. Xcode should create your project, and it
should look like Figure 2-5.

http://www.git-scm.com/

13CHAPTER 2: Core Data: What, Why, and How

Figure 2-4.  Choose a location to put your project

Figure 2-5.  Voilà, your project is ready!

14 CHAPTER 2: Core Data: What, Why, and How

Build and run the application. Either press the Run button on the toolbar or select Product
➤ Run. The simulator should appear. Press the Add (+) button in the upper right. A new
row will insert into the table that shows the exact date and time the Add button was pressed
(Figure 2-6). You can also use the Edit button to delete rows. Exciting, huh?

Figure 2-6.  CoreDataApp in action

Under the hood of this simple application, a lot is happening. Think about it: without adding
a single class or any code to persist data to a file or interact with a database, pressing the
Add button created an object, populated it with data, and saved it to a SQLite database
created for you automatically. There’s plenty of free functionality here.

Now that you’ve seen an application in action, let’s take a look at what’s going on behind
the scenes.

15CHAPTER 2: Core Data: What, Why, and How

Core Data Concepts and Terminology
Like most complex technologies, Core Data has its own terminology that can be a bit
confusing to newcomers. Let’s break down the mystery and get your arms around Core
Data’s nomenclature.

Figure 2-7 shows a simplified, high-level diagram of the Core Data architecture. Don’t expect
it all to make sense now, but as you look at different pieces, you might want to refer to this
diagram to cement your understanding of how they fit together.

There are five key concepts to focus on here. As you proceed through this chapter, make
sure you understand each of the following:

Data model	

Persistent store	

Persistent store coordinator	

Managed object and managed object context	

Fetch request	

Persistent
Store

Data
Model

Persistent
Store

Coordinator

Entity
Description

Based on

Managed Objects Context

Retrieves

Fetch Request

PredicatesManaged
Objects

Figure 2-7.  The Core Data architecture

Once again, don’t let the names throw you. Follow along and you’ll see how all these pieces
fit together.

The Data Model
What is a data model? In an abstract sense, it’s an attempt to define the organization of data
and the relationship between the organized data components. In Core Data, the data model
defines the data structure of objects, the organization of those objects, the relationships
between those objects, and the behavior of those objects. Xcode allows you, via the model
editor and inspector, to specify your data model for use in your application.

If you expand the CoreDataApp group in the Navigator content pane, you’ll see a file
called CoreDataApp.xcdatamodel. This file is the default data model for your project. Xcode
created this file for you because you selected the Use Core Data check box in the Project
Configuration sheet. Single-click CoreDataApp.xcdatamodel to bring up Xcode’s model editor.
Make sure the Utility pane is visible (it should be the third button on the View bar) and select
the inspector. Your Xcode window should look like Figure 2-8.

16 CHAPTER 2: Core Data: What, Why, and How

When you selected the data model file, CoreDataApp.xcdatamodel, the Editor pane changed
to present the Core Data model editor (Figure 2-9). Along the top, the jump bar remains
unchanged. Along the left, the gutter has been replaced by a wider pane, the Top-Level
Components pane. The Top-Level Components pane outlines the entities, fetch requests,
and configurations defined in the data model (we’ll cover these in detail in a little bit).
You can add a new entity by using the Add Entity button at the bottom of the Top-Level
Components pane. Alternately, you can use the Editor ➤ Add Entity menu option. If you
click and hold the Add Entity button, you will be presented with a pop-up menu of choices:
Add Entity, Add Fetch Request, and Add Configuration. Whatever option you choose, the
single-click behavior of the button will change to that component, and the label of the button
will change to reflect this behavior. You can find the menu equivalents for adding fetch
requests and configurations under the Editor ➤ Add Entity menu item.

Figure 2-8.  Xcode with the model editor and inspector

17CHAPTER 2: Core Data: What, Why, and How

The Top-Level Components pane has two styles: list and hierarchical. You can toggle
between these two styles by using the Outline Style selector group found at the bottom
of the Top-Level Components pane. Switching styles with the CoreDataApp data model
won’t change anything in the Top-Level Components pane; there’s only one entity and one
configuration, so there’s no hierarchy to be shown. If you had a component that depended
on another component, you’d see the hierarchical relationship between the two with the
hierarchical outline style.

The bulk of the Editor pane is taken up by the Detail editor. The Detail editor has two editor
styles: table and graph. By default (and pictured in Figure 2-9), the Detail editor is in table
style. You can toggle between these styles by using the Editor Style selector group on the
bottom right of the Editor pane. Try it. You can see the difference in the two styles.

Figure 2-9.  A close look at the model editor

18 CHAPTER 2: Core Data: What, Why, and How

When you select an entity in the Top-Level Components pane, the Detail editor will display,
in table style, three tables: Attributes, Relationships, and Fetched Properties. Again, we’ll
cover these in detail in a little bit. You can add a new attribute by using the Add Attribute
button below the Detail editor. Similar to the Add Entity button, a click-and-hold will reveal
a pop-up menu of choices: Add Attribute, Add Relationship, and Add Fetched Property.
Again, the single-click behavior of this button will change depending on your choice, with
its label reflecting that behavior. Under the Editor menu there are three menu items: Add
Attribute, Add Relationship, and Add Fetched Property. These are active only when an entity
is selected in the Top-Level Components pane.

If you switch the Detail editor to graph style, you’ll see a large grid with a single rounded
rectangle in the center. This rounded rectangle represents the entity in the Top-Level
Components pane. The template you used for this project creates a single entity, Event.
Selecting Event in the Top Level Components pane is the same as selecting the rounded
rectangle in the graph view.

Try it. Click outside the entity in the Detail editor grid to deselect it and then click the Event
line in the Top-Level Components pane. The entity in the graph view will also be selected.
The Top Level Components pane and the graph view show two different views of the same
entity list.

When unselected, the title bar and lines of the Event entity square should be pink. If you select
the Event entity in the Top-Level Components pane, the Event entity in the Detail editor should
change color to a blue, indicating it’s selected. Now click anywhere on the Detail editor grid,
outside the Event rounded square. The Event entity should be deselected in the Top Level
Components pane and should change color in the Detail editor. If you click the Event entity in
the Detail editor, it will be selected again. When selected, the Event entity should have a resize
handle (or dot) on the left and right sides, allowing you to resize its width.

You are currently given the Event entity. It has a single attribute, named timeStamp, and no
relationships. The Event entity was created as part of this template. As you design your own
data models, you’ll most likely delete the Event entity and create your own entities from scratch.
A moment ago, you ran your Core Data sample application in the simulator. When you pressed
the + icon, a new instance of Event was created. Entities, which we’ll look at more closely in a
few pages, replace the Swift data model class you would otherwise use to hold your data. We’ll
get back to the model editor in just a minute to see how it works. For now, just remember that
the persistent store is where Core Data stores its data, and the data model defines the form of
that data. Also remember that every persistent store has one, and only one, data model.

The inspector provides greater detail for the items selected in the model editor. Since each
item could have a different view in the inspector, we’ll discuss the details as we discuss
the components and their properties. That being said, let’s discuss the three top-level
components: entities, fetch requests, and configurations.

19CHAPTER 2: Core Data: What, Why, and How

Entities
An entity can be thought of as the Core Data analog to a Swift class declaration. In fact,
when using an entity in your application, you essentially treat it like a Swift class with some
Core Data–specific implementation. You use the model editor to define the properties that
define your entity. Each entity is given a name (in this case, Event), which must begin with a
capital letter. When you ran CoreDataApp earlier, every time you pressed the Add (+) button,
a new instance of Event was instantiated and stored in the application’s persistent store.

Make sure the Utility pane is exposed, and select the Event entity. Now look at the inspector
in the Utility pane (make sure the inspector is showing by selecting the Inspector button in
the Inspector selector bar). Note that the Inspector pane now allows you to edit or change
aspects of the entity (Figure 2-10). We’ll get to the details of the inspector later.

Figure 2-10.  The inspector for the Event entity

20 CHAPTER 2: Core Data: What, Why, and How

Properties
While the Editor pane lists all the data model’s entities, the Inspector pane allows you to
“inspect” the properties that belong to the selected entity. An entity can consist of any
number of properties. There are three different types of properties: attributes, relationships,
and fetched properties. When you select an entity’s property in the model editor, the
property’s details are displayed in the Inspector pane.

Attributes
The property that you’ll use the most when creating entities is the attribute, which serves the
same function in a Core Data entity as an instance variable does in a Swift class: they both
hold data. If you look at your model editor (or at Figure 2-10), you’ll see that the Event entity
has one attribute named timeStamp. The timeStamp attribute holds the date and time when
a given Event instance was created. In your sample application, when you click the + button,
a new row is added to the table displaying a single Event’s timeStamp.

Just like an instance variable, each attribute has a type. There are two ways to set an
attribute’s type. When the model editor is using the table style, you can change an attributes
type in the Attributes table in the Detail editor (Figure 2-11). In your current application,
the timeStamp attribute is set to the Date type. If you click the Date cell, you’ll see a pop-
up menu. That pop-up menu shows the possible attribute types. You’ll look at the different
attribute types in the next few chapters when you begin building your own data models.

Figure 2-11.  Attributes table in the model editor, table style

Make sure that the timeStamp attribute is still selected, and take a look at the inspector
(Figure 2-12). Notice among the fields there is an Attribute Type field with a pop-up button.
Click the button, and a pop-up menu will appear. It should contain the attribute’s types you
saw in the Attribute table. Make sure the attribute type is set to date.

21CHAPTER 2: Core Data: What, Why, and How

A date attribute, such as timeStamp, corresponds to an instance of NSDate. If you want to
set a new value for a date attribute, you need to provide an instance of NSDate to do so.
A string attribute corresponds to an instance of NSString, and most of the numeric types
correspond to an instance of NSNumber.

Figure 2-12.  Inspector for the timeStamp attribute

Tip  Don’t worry too much about all the other buttons, text fields, and check boxes in the model
editor. As you make your way through the next few chapters, you’ll get a sense of what each does.

22 CHAPTER 2: Core Data: What, Why, and How

Relationships
As the name implies, a relationship defines the associations between two different entities.
In the template application, no relationships are defined for the Event entity. We’ll begin
discussing relationships in Chapter 7, but here’s an example just to give you a sense of how
they work.

Suppose you created an Employee entity and wanted to reflect each Employee’s employer
in the data structure. You could just include an employer attribute, perhaps an NSString,
in the Employee entity, but that would be pretty limiting. A more flexible approach would
be to create an Employer entity, and then create a relationship between the Employee and
Employer entities.

Relationships can be to one or to many, and they are designed to link specific objects.
The relationship from Employee to Employer might be a to-one relationship, if you assume
that your Employees do not moonlight and have only a single job. On the other hand, the
relationship from Employer to Employee is to many since an Employer might employ many
Employees.

To put this in Swift terms, a to-one relationship is like using an instance variable to hold a
pointer to an instance of another Swift class. A to-many relationship is more like using a
pointer to a collection class like NSMutableArray or NSSet, which can contain multiple objects.

Fetched Properties
A fetched property is like a query that originates with a single managed object. For example,
suppose you add a birthdate attribute to Employee. You might add a fetched property called
sameBirthdate to find all Employees with the same date of birth as the current Employee.

Unlike relationships, fetched properties are not loaded along with the object. For example,
if Employee has a relationship to Employer, when an Employee instance is loaded, the
corresponding Employer instance will be loaded, too. But when an Employee is loaded,
sameBirthdate is not evaluated. This is a form of lazy loading. You’ll learn more about
fetched properties in Chapter 7.

23CHAPTER 2: Core Data: What, Why, and How

Fetch Requests
While a fetched property is like a query that originates with a single managed object, a fetch
request is more like a class method that implements a canned query. For example, you
might build a fetch request named canChangeLightBulb that returns a list of Employees who
are taller than 80 inches (about 2 meters). You can run the fetch request any time you need
a lightbulb changed. When you run it, Core Data searches the persistent store to find the
current list of potential lightbulb-changing Employees.

You will create many fetch requests programmatically in the next few chapters, and you’ll
be looking at a simple one a little later in this chapter in the “Creating a Fetched Results
Controller” section.

Configurations
A configuration is a set of entities. Different configurations may contain the same entity.
Configurations are used to define which entities are stored in which persistent store. Most of
the time, you won’t need anything other than the default configuration. We won’t cover using
multiple configurations in this book. If you want to learn more, check the Apple Developer
site or Pro Core Data for iOS.

The Data Model Class: NSManagedObjectModel
Although you won’t typically access your application’s data model directly, you should be
aware of the fact that there is a class that represents the data model in memory. This class
is called NSManagedObjectModel, and the template automatically creates an instance of
NSManagedObjectModel based on the data model file in your project. Let’s take a look at the
code that creates it now.

In the Navigation pane, open the CoreDataApp group and AppDelegate.swift. In the Editor
jump bar, click the last menu (it should read No Selection) to bring up a list of the methods
in this class (see Figure 2-13). Select managedObjectModel in the Core Data Stack section,
which will take you to the method that creates the object model based on the CoreDataApp.
xcdatamodel file.

24 CHAPTER 2: Core Data: What, Why, and How

Fi
gu

re
 2

-1
3.

 S
et

tin
g

th
e

ed
ito

r p
an

e
to

 s
ho

w
 c

ou
nt

er
pa

rt
s

w
ill

 a
llo

w
 y

ou
 to

 s
ee

 th
e

de
cl

ar
at

io
n

an
d

im
pl

em
en

ta
tio

n

25CHAPTER 2: Core Data: What, Why, and How

The method should look like this:
 
lazy var managedObjectModel: NSManagedObjectModel = {
 �// The managed object model for the application. This property is not optional.

It is a fatal error for the application not to be able to find and load its model.
 �let modelURL = NSBundle.mainBundle().URLForResource("CoreDataApp",

withExtension: "momd")
 return NSManagedObjectModel(contentsOfURL: modelURL)
}()
  
Using the lazy construct of Swift, the managedObjectModel variable is created of type
NSManagedObjectModel when required. The variable is instantiated the first time it is called.

Tip  The data model class is called NSManagedObjectModel because, as you’ll see a little later
in the chapter, instances of data in Core Data are called managed objects.

While it creates the managedObjectModel, it also sets the modelObject with the contents of the
data model called CoreDataApp.momd as the default with the following code:
 
Let modeURL = NSBundle.mainBundle().URLForResource("CoreDataApp", withExtension:"momd")
 
Remember how we said that a persistent store was associated with a single data model?
Well, that’s true, but it doesn’t tell the whole story. You can combine multiple .xcdatamodel
files into a single instance of NSManagedObjectModel, creating a single data model that
combines all the entities from multiple files. If you are planning on having more than one
model, you can use the mergedModelFromBundles class method of the NSManagedObjectModel.

This function will take all .xcdatamodel files that might be in your Xcode project and combine
them into a single instance of NSManagedObjectModel:
 
return NSManagedObjectModel.mergedModelFromBundles(nil)
 
So, for example, if you create a second data model file and add it to your project, that new
file will be combined with CoreDataApp.xcdatamodel into a single managed object model that
contains the contents of both files. This allows you to split up your application’s data model
into multiple smaller and more manageable files.

The vast majority of iOS applications that use Core Data have a single persistent store and a
single data model, so the default template code will work beautifully most of the time. That
said, Core Data does support the use of multiple persistent stores. You could, for example,
design your application to store some of its data in a SQLite persistent store and some
of it in a binary flat file. If you find that you need to use multiple data models, remember
to change the template code here to load the managed object models individually using
mergedModelFromBundles.

26 CHAPTER 2: Core Data: What, Why, and How

The Persistent Store and Persistent Store Coordinator
The persistent store, which is sometimes referred to as a backing store, is where Core Data
stores its data. By default, on iOS devices Core Data uses a SQLite database contained in
your application’s Documents folder as its persistent store. But this can be changed without
impacting any of the other code you write by tweaking a single line of code. We’ll show you
the actual line of code to change in a few moments.

Caution  Do not change the type of persistent store once you have posted your application to the
App Store. If you must change it for any reason, you will need to write code to migrate data from the
old persistent store to the new one, or else your users will lose all of their data—something that will
almost always make them quite unhappy.

Every persistent store is associated with a single data model, which defines the types of
data that the persistent store can store.

The persistent store isn’t actually represented by a Swift class. Instead, a class called
NSPersistentStoreCoordinator controls access to the persistent store. In essence, it takes
all the calls coming from different classes that trigger reads or writes to the persistent store
and serializes them so that multiple calls against the same file are not being made at the
same time, which could result in problems because of file or database locking.

As is the case with the managed object model, the template provides you with a method
in the application delegate that creates and returns an instance of a persistent store
coordinator. Other than creating the store and associating it with a data model and a location
on disk (which is done for you in the template), you will rarely need to interact with the
persistent store coordinator directly. You’ll use high-level Core Data calls, and Core Data will
interact with the persistent store coordinator to retrieve or save the data.

Let’s take a look at the method that returns the persistent store coordinator. In
AppDelegate.swift, select persistentStoreCoordinator from the function pop-up menu.
Here’s the method:
 
lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator? = {
 �// The persistent store coordinator for the application. This implementation creates and

return a coordinator, having added the store for the application to it. This property is
optional since there are legitimate error conditions that could cause the creation of
the store to fail.

 // Create the coordinator and store
 �var coordinator: NSPersistentStoreCoordinator? = NSPersistentStoreCoordinator

(managedObjectModel: self.managedObjectModel)
 �let url = self.applicationDocumentsDirectory.URLByAppendingPathComponent

("CoreDataApp.sqlite")
 var error: NSError? = nil
 �var failureReason = "There was an error creating or loading the application's

saved data."

27CHAPTER 2: Core Data: What, Why, and How

 if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil,
 URL: url,
 options: nil,
 error: &error) == nil {
 coordinator = nil
 // Report any error we got.
 let dict = NSMutableDictionary()
 dict[NSLocalizedDescriptionKey] = "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey] = failureReason
 dict[NSUnderlyingErrorKey] = error
 error = NSError.errorWithDomain("YOUR_ERROR_DOMAIN", code: 9999, userInfo: dict)
 // Replace this with code to handle the error appropriately.
 �// abort() causes the application to generate a crash log and terminate. You should

not use this function in a shipping application, although it may be useful during
development.

 NSLog("Unresolved error \(error), \(error!.userInfo)")
 abort()
 }
  
 return coordinator
}()
 
As with the managed object model, this persistentStoreCoordinator accessor method
uses lazy loading and doesn’t instantiate the persistent store coordinator until the first time
it is accessed. It is prefixed with the lazy keyword. Then it creates a path to a file called
CoreDataApp.sqlite in the Documents directory in your application’s sandbox. The template
will always create a filename based on your project’s name. If you want to use a different
name, you can change it here, though it generally doesn’t matter what you call the file since
the user will never see it.

Caution  If you do decide to change the filename, make sure you don’t change it after you’ve posted
your application to the App Store, or else future updates will cause your users to lose all of their data.

Take a look at this line of code:
 
if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType,
 configuration: nil,
 URL: url,
 options: nil,
 error: &error) == nil {
 
The first parameter to this method, NSSQLiteStoreType, determines the type of the persistent
store. NSSQLiteStoreType is a constant that tells Core Data to use a SQLite database for
its persistent store. If you want your application to use a single, binary flat file instead
of a SQLite database, you could specify the constant NSBinaryStoreType instead of
NSSQLiteStoreType. The vast majority of the time, the default setting is the best choice, so
unless you have a compelling reason to change it, leave it alone.

