The Expert’s Voice in Swift

Swift Quick Syntax
Reference

Matthew Campbell

Apress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a
Glance

About the Author ... —————— Xv
About the Technical ReVIEWErcvcsssessssmsssssssasssssssssnsssassssnsnsns xvii
Introduction.......cccsvenimmismmms s —————— Xix
Chapter 1: Hello World..........cccunnnmmmmmmmmmmmmmmmmsssssssssssssssssssssssssssnnns 1
Chapter 2: Declaring Constants and Variables..........ccceunsssennnnsssnnns 7
Chapter 3: Printing Variables and Constants...........cccinssnnnnnsssnnns 11
Chapter 4: Code COMMENTScocccmrmmsssnnmmmmssssnnnssssssssssssssnsnsssssnnns 15
Chapter 5: NUMDErS......cccuccmmismmmsssnmmsssssmsssssssssssssssssssssssssssssssssanes 19
Chapter 6: Srings........ccccnnemmmmmnssnnnmmsssnnnmmmssssnmssssssesssssnennnn. 21
Chapter 7: Bo0leanscccuemmmmssssnsmmsssssnsnmsssssssnsssssssssssssssnnnsssssnns 25
Chapter 8: TUPIES.....ccurmrrssemrmssansmssansssssnsssssnsssssnsesssnnssssnnssssnnssssnnss 27
Chapter 9: Optionals........ccccvimmmmsesssnnmmmmmmsssss e —————— 29
Chapter 10: Type Ali@Sescccirussssnnmmsssssnnnssssssnnssssssssssssssssnsssssssnns 31
Chapter 11: Global and Local Variables..........ccoiumsssmmnnmssssnnnsnssnnns 33

vi

Contents at a Glance

Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21:
Chapter 22:
Chapter 23:
Chapter 24:
Chapter 25:
Chapter 26:
Chapter 27:
Chapter 28:
Chapter 29:
Chapter 30:
Chapter 31:
Chapter 32:
Chapter 33:
Chapter 34:
Chapter 35:

ASSErtionsSccsssemmssssssmssmsssme s ——— 35
Assignment Operatorscccennssmmnmmmisssnnnmnsssnsnns 37
Arithmetic Operatorsc..cccusermsssnsmsssnsssssssssssnnssnns 39
Comparison 0peratorscccvusseemmmmssssssnmmssssssnsssssnnns 43
Ternary Conditional Operatorcccccusseeennnssssnnnsnsans 45
Range Operatorsccueeemmmssssssnssssssssnsssssssssssssssnnnnss 47
Logical Operators......cccesmsssesmssssnssssansssssnsssssnsssssnnssss 49
Enumerations........cccuvsmmsmmmmsssmssmmsmsmmsssnssssnsssssnssnsnsnns 51
AITAYS iviisssnnnnennnnmnmsssssssssssssnnsmssssssssssnnnsnnnnsssssssnnnnnnnns 53
0T (1) 57
LOOPS . ciisemennnssssnnnssssssnnnssssssnnnnnssssnnnnsssssannnnssssannnnsssnnns 61
if Statements...........cccccnnnnns———— 65
switch Statements.............cccnvcnninnnsmnnnnns——— 67
Control Transfer Statementsccoucnicenisnicnsnnns 4
Labeled Statementscocnimnimmsenmsnnisnmesmennen, 75
T T (1 L 79
Nested FUNCtionsccouvsmmsmmmssssmsmssmsmsssssssmssnsnsnns 83
L1 T 87
Structuresccccvvemmss s ————— 89
ClaSSES..cuversmmsasssnsssmsssmssnssssssnsssms s s s sssn s ssnn s 93
Using INStancCes.......ccccummseemmmnssssnnnsmssssssnsssssssnnsssssnnnns 97
Class Identity Operators.........ccocccmmmsssemnmmssssennsnsssnnnns 99
Propertiescceeeeemmmnnnmnsssssssssssnnmnnsssssssssssssnsnnnnnnns 101
Property ObServers.........ccormmssemnmmssssennnssssssnnsssssnnnns 107

Contents at a Glance vii
Chapter 36: Class Type Properties.......ccccummmmmmmsmnnmmmmssssssssssnsnnns 109
Chapter 37: Type Methodsccccmemmmmnnssssssssssssnssnssssssssssssssnsnnas 111
Chapter 38: SubSCIIPTS....ccuvcmmrrmisennmmmssssnnnnssssssnsnsssssssessssnnsnensns 113
Chapter 39: Inheritance........cccinissemmmmnssssnnmmssssssnnmssssssnsessssnsssnnans 115
Chapter 40: Overriding Methods and Propertiesuouseeeeennnnnaas 117
Chapter 41: Initializationccusccnmnnnnnnmnssesnnmnssssnessssnnm. 121
Chapter 42: De-initialization...........ccccusseeemnmnssnnnnnnssssnnnnssssnnn. 123
Chapter 43: Type Casting.......ccccusseemmmssssnsnsmssssnsnssssssssnssssssnnnsnssns 125
Chapter 44: Nested TYPES ...ccccrrrrsnmmnssssssnsnssssssnssssssssssnssssssnnnssssss 129
Chapter 45: EXtensions.........ccovunemmmmmmsssssnmmssssssnmsssssssnssssssssssnssns 131
Chapter 46: Protocols..........cccimmsmmmmmmmsssnsnmsssssnsnssssssssnssssssnsnsnssss 133
Chapter 47: Delegationccccunemmnmmssssssnnsssssssnssssssssnssssssnsssnssns 137
Chapter 48: GENEeriCSccuusumermrssssnnnsrssssnsnssssssnnnssssssnnnssssssnnnssssns 143
Chapter 49: Automatic Reference Countingc.cccvusemrnssansssanns 147
INdeX..i i ——————————— 153

Introduction

The expressions of the WWDC 2014 audience quickly changed from excitement
and enthusiasm to looks of shock, horror, and awe. At this WWDC, after a
succession of ever-surprising announcements, Apple ended the conference

by announcing a completely new programming language designed entirely for
Mac and iOS applications. This programming language is named Swift, which
is what | have written about in this book.

The audience members’ looks of shock and horror were understandable in
context. Most of the developers at that conference had spent the past six
years mastering the previous, relatively obscure programming language used
to develop apps called Objective-C. The people sitting in those seats were
world-class experts in a programming language that was just declared dead
right in front of them.

What many of these developers probably had long since forgotten was just
how difficult it is for most people to use Objective-C at first. Objective-C is also
missing many features that other programmers take for granted such as tuples
and generics. This is likely why that over the summer of 2014 many developers
would become quite enthusiastic about adopting Swift in their projects.

It didn’t take long for me to get on board with Swift. My initial reaction was
relief that Apple decided to clean up the syntax, remove the clutter associated
with Objective-C, and eject nonmainstream notions like messaging objects.

| could tell immediately that the students | teach would take to Swift way more
quickly than Objective-C.

Xix

XX Introduction

This is one of the reasons | was so excited to write this book with Apress.

Swift is absolutely the programming language that will take iOS and Mac into
the future. Swift is a dramatic improvement to the application ecosystem.

If you were turned off from making applications before because of Objective-C,
now is the time to give making your app another go.

This book is written for programmers who want to get up to speed quickly in
Swift. | made an effort to keep chapter headings specific, simple, and clear
SO you can go right to the area that you need to focus on. Chapters are short
and focus on the syntax, but concepts are briefly illustrated at times when the
information is crucial to the programming concepts that I’'m presenting.

Since Swift is so new, | didn’t make many assumptions about your technical
background, so anyone with a general understanding of programming will
benefit from this book. If you know what loops, functions, and objects are, you
can follow the content here. Any niche or advanced programming constructs
will be explained so you can follow along.

Good luck with your app! | hope that this book will help you appreciate Swift
and see how this new language will make your life and your app much better.

Chapter

Hello World

| will start our conversation about Swift with the venerable Hello World
program. However, you need to get some things in place before | can do
that. Most importantly, you need a Mac app that will help you write and test
Swift code. This Mac app is called Xcode.

Xcode

Xcode is a free app that you can download from the Apple App Store.
Xcode gives you all the tools that you need to build applications for the Mac
and iOS devices. These tools include a code editor, debugging tools, and
everything else you need to turn your Swift code into an app.

Note Xcode requires a Mac with 0S X 10.9.3 or 0S X 10.10. You cannot
install Xcode on a Windows- or Linux-based computer.

Install Xcode

To install Xcode, go to the Mac App Store by selecting your Mac’s menu
bar, clicking the Apple symbol, and then clicking App Store. Use the App
Store search feature to locate Xcode by typing the word Xcode into the text
box next to the hourglass. Press Return to search for Xcode. You will be
presented with a list of apps, and Xcode should be the first app in the list.
Install Xcode by clicking the button with the word free next to the Xcode
icon. The word free changes to installed once it’s ready to go, as shown in
Figure 1-1.

2 CHAPTER 1: Hello World

aoo - "
¥ % = S ® T —
[4.»] Festured Top Chane Categories Purchates Updater Xcod
Search Results for “Xcode” Sort By: | Relevance

@ 3, Xcode Tutorial for Xcode Docs for Xcode Templates for XCod
W Ceveloper Tools Developer Tools Developer Tool Developer Tools
KR AH S 116 Rating = R KRR AH S Ratings LT
D N Eb «ap

5 | Project Statistics fo Templates for Xcode Tutorial for XCode 5 Apps Source Code
B Oeveloper Tools Developer Toals Developer Tools) Developer Tools
g €EED {51030} "Q\\ €D L5200 =]
b - =

Project Analyzer fo == Training for Xcode Project Duplicator f App Academy: Xcod
Developer Toals Developer Tools Developer Tools Education

* kAT SRatings [sc03 [~] ok 13 Ratings (5350 |~]

L sx0s]+ [43001~]

Spice for Xcode
Developer Togls

oD

Figure 1-1. Downloading Xcode from the App Store

Note Xcode version 6 is required to do Swift programming. By the time
this book is released, Xcode 6 should be available in the Apple App Store,
and you should be able to get it by following the previous instructions.
However, at the time of this writing, Xcode 6 is still in beta and available
only to registered Apple developers who can download it from the Apple
developer web site at http://developer.apple.com.

Create a New Playground

Playgrounds are a workspace that you use to quickly prototype Swift code.
The examples in this book will assume that you are using playgrounds to
follow along. You use Xcode to make a playground.

Open Xcode by going to your Applications folder and clicking the Xcode
app. You will be presented with a welcome screen. Click the text “Get
started with a playground” to build your playground (see Figure 1-2).

http://developer.apple.com/

CHAPTER 1: Hello World

Welcome to Xcode e

Version 6.0 (6A215l)

‘ Get started with a playground
s Explore new ideas quickly and easily

’;’ﬁ Create a new Xcode project
¥*%] Start building a new iPhone, iPad or Mac application.

@ Check out an existing project
Start working on something from an SCM repository

 Show this window when Xcode launches

Figure 1-2. Xcode welcome screen

You will be presented with a Save As screen, as shown in Figure 1-3. Use
this screen to choose a name and location for your Swift playground.

.06

Open another project...

Save As: [Mlmmnd,plmmund | -

Tags:

0o | e s 1 Desktop 2| (Q

i
FAVORITES
(] Dropbox
Desktop
%1 Documents
) Downloads
15} matt
2] Pictures
(] Cade
(] Mabile App Mastery
(0] Swift-Quick-Syntax-...
(] Swift
[_] Objective-C Quick 5...

SHARED

TAGS
@ Red

New Folder Cancel

Create

Figure 1-3. Playground Save As screen

3

4 CHAPTER 1: Hello World

Once you choose your playground’s name and folder location, Xcode will
present a code editor with some boilerplate code already filled in for you
(see Figure 1-4).

e 00 ® 000-Hello-World-Playground.playground "

4 b @ 000-Hello-World-Playground.playground » No Selection
1 P." Playground - noun: a place where people can play

import Cocoa

var str = "Hello, playground” Hello, playground

Figure 1-4. Playground boilerplate

Your first playground has been created, and you already have a sort of Hello
World program coded for you. Well, not exactly. Your code says “Hello,
playground,” as you can see in Listing 1-1.

Listing 1-1. Hello Playground

// Playground - noun: a place where people can play
import Cocoa
var str = "Hello, playground"

You use a playground by typing in code in the left area of the code editor. You
can immediately see results appear on the right in the playground. To create a
Hello World program, all you need to do is type in the phrase "Hello World"
(including the quotes) into the playground code editor (see Listing 1-2).

Listing 1-2. Hello World

// Playground - noun: a place where people can play
import Cocoa

var str = "Hello, playground"

"Hello World"

When you type in "Hello World", you will immediately see the output
“Hello World” appear on the right. See Figure 1-5 as a reference.

CHAPTER 1: Hello World 5

-4 » . 001-Hello-World-Playground. playground » No Selection

1 /7 Playground - noun: a place where people can play

i import Cocoa

: var str = "Hello, playground" “Helle, playground”
: "Hello World"| “Hello World"

Figure 1-5. “Hello World” output

Chapter

Declaring Constants and
Variables

While you can use values like the string "Hello World" from the previous
chapter or a number like 3.14 directly in code, usually you assign values like
these to either a variable or a constant. You can give values a convenient
name using variables and constants in Swift.

Variables can change their values over time, while constants get an assigned
value and keep that value throughout the execution of a program. Both
variables and constants can store only one type of data.

Constants

Let’s reproduce the Hello World example from Chapter 1 using a constant.
Listing 2-1 shows how to store the string "Hello World" in a constant
named s1.

Listing 2-1. Hello World Constant
let s1:String = "Hello World"

The first part of the constant declaration is the let keyword. The let
keyword lets you know that you are working with a constant. The next part
is the constant name s1. You will use the constant name s1 to refer to this
constant in your code from now on.

You also have the type declaration :String. The type declaration tells you
what data type the constant stores. Since you used the type declaration
:String, you know that you can store strings (a sequence of characters) in
the constant s1.

8 CHAPTER 2: Declaring Gonstants and Variables

The next part is the assignment operator =, which assigns a value to the
constant s1. The value here is a string enclosed in quotes, "Hello World".

If you use a playground to prototype the code here, you will see that it
immediately reports the value of the s1 constant on the right side of the screen.

You can reference a constant by using its name. To get the value of s1, you
can just type in the constant name anywhere in your code. Try it right now
by typing s1 into your playground (see Listing 2-2).

Listing 2-2. Referencing Constants

sl

You will be using constants more as you learn about the capabilities of Swift.

Constants Are Immutable

Let’s say you would rather have “Hello World” print as “Hello World!” (with
an exclamation point). Since s1 is a constant, you cannot simply change the
value or this code would cause an error (see Listing 2-3).

Listing 2-3. Error Caused by Assigning a Value to a Constant
s1 = "Hello World!"

When you need to change a value when a program runs, you must use a
variable.

Variables

Variables are mostly used like constants but with two key differences. The
first is that variables use the var keyword instead of the let keyword when
variables are being declared. The second difference is that variable values
can change.

Listing 2-4 shows an example of a variable s2 that can change value over
time.

Listing 2-4. Variable Declaration

var s2:String = "Hello World"

CHAPTER 2: Declaring Gonstants and Variables 9

As you can see in Listing 2-4, you use the var keyword to specify variables.
Variables also don’t require that you immediately assign a value to them, so
you could have waited to assign the "Hello World" string to s2.

Variables Are Mutable

Since s2 is a variable, you can change its value. So, if you wanted to say
“Hello World” in Spanish instead, you could change the value of s2 as
shown in Listing 2-5.

Listing 2-5. Changing Variable Value

s2 = "Hola Mundo"

Now if you type s2 into your playground, you will see the value “Hola
Mundo” appear on the right.

Type Inference

In the previous examples, you clearly spelled out the data type for both the
variables and the constants. However, Xcode can figure this out for you
based on what value you assign to the variable or constant. This is called
type inference. This means you could have omitted the :String from your
declarations and instead use something like Listing 2-6.

Listing 2-6. Type Inference

var s3 = "Hallo Welt"

Data Types

Swift supports more than the String data type. You also work with numbers
and booleans. Table 2-1 describes the common Swift data types.

10 CHAPTER 2: Declaring Gonstants and Variables

Table 2-1. Swift Data Types

Data Type Description

String Sequence of characters

Int Whole number

Float Number with fractional component
Double Bigger number with fractional component
Bool True or false value

See Listing 2-7 for examples of how to use these data types.

Listing 2-7. Swift Data Types

let s:String = "Hey There"
let i:Int = -25

let f:Float = 3.14

let d:Double = 99.99

let b:Bool = true

