
Sutherland

www.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

C++ Recipes
C++ Recipes: A Problem-Solution Approach is Apress’ solution for those C++
programmers looking for a handy code cookbook and reference guide. It covers the
latest C++ 14 as well as some of the code templates available in the latest Standard
Template Library (STL).

You’ll find numbers, strings, dates, times, classes, exceptions, streams, flows,
pointers and more in this book. Also, you’ll see various code samples, templates
for C++ algorithms, parallel processing, multithreading and numerical processes.
These have many applications including game development, big data analytics,
financial engineering and analysis, enterprise applications and more. A wealth of
STL templates on function objects, adapters, allocators, and extensions are also
available.

This is a “must have”, contemporary reference for your technical books library.

• How to handle numbers, strings, text, dates and times,
and data in general

• How to implement a variety of C++ algorithms
• How to handle and use classes, exceptions, streams and flows
• How to use the various numerical and scientific C++ recipes and

how to apply them to your own projects or applications
• How to build parallel processing C++ templates
• How to code for pointers
• How to leverage the wealth of C++ templates found in the STL,

including function objects, adapters, allocators and more
• How to extend the STL and more

RELATED

US $49.99

Shelve in
Programming Languages/C++

User level:
Beginning–Advanced

SOURCE CODE ONLINE 9 781484 201589

54999
ISBN 978-1-4842-0158-9

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author ��xix

About the Technical Reviewers ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

Chapter 1: Beginning C++ ■ ��� 1

Chapter 2: Modern C++ ■ ��� 17

Chapter 3: Working with Text ■ �� 59

Chapter 4: Working with Numbers ■ �� 81

Chapter 5: Classes ■ ��� 103

Chapter 6: Inheritance ■ ��� 133

Chapter 7: The STL Containers ■ �� 151

Chapter 8: The STL Algorithms ■ �� 177

Chapter 9: Templates ■ ��� 195

Chapter 10: Memory ■ �� 213

Chapter 11: Concurrency ■ ��� 259

Chapter 12: Networking ■ �� 309

Chapter 13: Scripting ■ �� 361

Chapter 14: 3D Graphics Programming ■ ��� 399

Index ��� 451

xxv

Introduction

The C++ programming language is undergoing continuous development and improvement. This effort to
keep C++ on the cutting edge of language features is driven by the fact that C++ still finds an important role
to play in high-performance, portable applications. Few other languages can be used on as many platforms
as C++ and without having a runtime environment dependency. This is partly thanks to the nature of C++ as
a compiled programming language. C++ programs are built into application binaries through a combination
of processes that include compiling and linking.

Compiler choice is particularly important in today’s C++ landscape, thanks to the rate at which the
language is changing. Development of the C++ programming language was started by Bjarne Stoustrup
in 1979, when it was called C with Classes. The language didn’t see formal standardization until 1998;
an updated standard was published in 2003. There was another gap of eight years until the standard was
updated again with the introduction of C++11 in 2011. This version brought a considerable number of
updates to the C++ programming language and is distinguished from “older” C++ with the Modern C++
moniker. A further, less significant, update to the C++ standard was introduced in late 2014, but we haven’t
yet begun to see compilers that support many of the features added to Modern C++.

This book introduces you to code written specifically for the C++14 standard using the Clang compiler.
Clang is an open source compiler that started life as a closed source Apple project. Apple released the
code to the open source community in 2007, and the compiler has been adding strengths ever since. This
book explains how to install and use Clang on a computer running OS X, Windows, or Linux (Ubuntu). The
examples that accompany each chapter have been compiled and tested using Clang 3.5. I chose Clang for
this project because it’s the compiler that provided support for the most C++14 features when I began to
write this book.

The book’s accompanying web site can be accessed at www.apress.com/9781484201589. You can find
source code for all of the executable code listings contained in this book along with makefiles that can be
used to build running programs.

www.apress.com/9781484201589

1

Chapter 1

Beginning C++

The C++ programming language is a powerful low-level language that allows you to write programs that are
compiled into machine instructions to be executed on a computer’s processor. This makes C++ different
from newer languages such as C# and Java. These languages are interpreted languages. This means they
are not executed directly on the processor but instead are sent to another program that is responsible for
operating the computer. Java programs are executed using the Java virtual machine (JVM), and C# programs
are executed by the Common Language Runtime (CLR).

Thanks to C++ being a language that is compiled ahead of time, it still finds wide use in fields where
absolute performance is paramount. The most obvious area where C++ is still the most predominantly used
programming language is the video game industry. C++ allows programmers to write applications that take
full advantage of the underlying system architecture. You might become familiar with phrases such as cache
coherency while pursuing a career as a C++ programmer. There aren’t many other languages that allow you
to optimize your applications to suit the individual processors that your program is being designed to run
on. This book introduces you to some of the pitfalls that can affect the performance of your applications at
different times and shows you some techniques to tackle those issues.

Modern C++ is in a period where the language is seeing continual updates to its features. This has not
always been the case. Despite being around since the early 1980s the C++ programming language was only
standardized in 1998. A minor update and clarification of this standard was released in 2003 and is known
as C++03. The 2003 update did not add any new features to the language however it did clarify some of the
existing features that had gone overlooked. One of these was an update to the standard for the STL vector
template to specify that the members of a vector should be stored contiguously in memory. The C++11
standard was released in 2011 and saw a massive update to the C++ programming language. C++ gained
features for generalized type deduction system outside of templates, lambda and closure support, a built-in
concurrency library and many more features. C++14 brings a smaller update to the language and generally
builds upon the features already supplied by C++14. Features such as auto return type deduction from
functions have been cleaned up, lambdas have been updated with new features and there are some new
ways to define properly typed literal values.

This book strives to write portable, standards compliant C++14 code. At the time of writing it’s possible
to write C++14 code on Windows, Linux and OS X machines so long as you use a compiler that provides all
of the language features. To this end, this book will use Clang as the compiler on Windows and Ubuntu and
will use Xcode on OS X. The rest of this chapter focuses on the software you need to write programs in C++
before showing you how to acquire some of the more common options available for Windows, OS X, and
Linux operating systems.

Chapter 1 ■ Beginning C++

2

Recipe 1-1. Finding a Text Editor
Problem
C++ programs are constructed from lots of different source files that must be created and edited by one or
more programmers. Source files are simply text files, which usually come in two different types: header files
and source files. Header files are used to share information about your types and classes between different
files, and source files are generally used to contain the methods and the actual executable code that makes
up your program.

Solution
A text editor then becomes the first major piece of software you require to begin writing C++ programs.
There are many excellent choices of text editors available on different platforms. My best two picks at the
moment are the free Notepad++ for Windows and Sublime Text 2, which despite not being free is available
on all major operating systems. Figure 1-1 shows a screenshot from Sublime Text 2. Vim and gvim are also
very good options that are available for all three operating systems. These editors provide many powerful
features and are excellent choices for someone willing to learn.

Figure 1-1. A screenshot from the Sublime Text 2 Editor

Chapter 1 ■ Beginning C++

3

Note ■ Don’t feel the urge to grab a text editor straight away. Some of the recipes later in this chapter cover
integrated development environments (iDes) that include all the software you need to write, build, and debug
C++ applications.

Figure 1-1 shows one of the most important features of a good text editor: it should be able to highlight
the different types of keywords in your source code. You can see in the simple Hello World program in
Figure 1-1 that Sublime Text 2 is capable of highlighting the C++ keywords include, int, and return.
It has also added different-colored highlights to the main function name and the strings <iostream> and
"Hello World!". Once you have some experience writing code with your text editor of choice, you will
become adept at scanning your source files to zero in on the area of code you are interested in, and syntax
highlighting will be a major factor in this process.

Recipe 1-2. Installing Clang on Ubuntu
Problem
You would like to build C++ programs that support the latest C++14 language features on a computer system
running Ubuntu.

Solution
The Clang compiler supports all of the latest C++14 language features and the libstdc++ library supports all
of the C++14 STL features.

How It Works
The Ubuntu operating system comes configured with package repositories that allow you to install Clang
without much difficulty. You can achieve this using the apt-get command in a Terminal window. Figure 1-2
shows the command that you should enter to install Clang.

To install Clang you can enter the following command on the command line sudo apt-get install
clang. Running this command will cause Ubuntu to query its repositories and work out all of the
dependencies needed to install Clang. You will be prompted once this process has been completed to
confirm that you wish to install Clang and its dependencies. You can see this prompt in Figure 1-3.

Figure 1-2. An Ubuntu Terminal window showing the command needed to install Clang

Chapter 1 ■ Beginning C++

4

At this point you can hit enter to continue as yes is the default option. Ubuntu will then download and
install all of the software needed for you to be able to install Clang on your computer. You can confirm that
this has been successful by running the clang command. Figure 1-4 shows what this should look like if
everything was successful.

Figure 1-3. The apt-get dependency confirmation prompt

Figure 1-4. A successful Clang installation in Ubuntu

Chapter 1 ■ Beginning C++

5

Recipe 1-3. Installing Clang on Windows
Problem
You would like to build C++14 based programs on the Windows operating system.

Solution
You can use Cygwin for Windows to install Clang and build applications.

How It Works
Cygwin provides a Unix-like command line environment for Windows computers. This is ideal for building
programs using Clang as the Cygwin installed comes pre-configured with package repositories that include
everything you need to install and use Clang on Windows computers.

You can get a Cygwin installer executable from the Cygwin website at http://www.cygwin.com. Be sure
to download the 32bit version of the Cygwin installer as the default packages supplied by Cygwin currently
only work with the 32bit environment.

Once you have downloaded the installer you should run it and click through until you are presented
with the list of packages to install. At this point you want to select the Clang, make and libstdc++ packages.
Figure 1-5 shows the Cygwin installer with the Clang package selected.

Figure 1-5. Filtering the Clang package in the Cygwin installer

http://www.cygwin.com/

Chapter 1 ■ Beginning C++

6

Packages can be marked for installation in the installer by clicking on the Skip area on the line for the
package. Clicking skip once moves the package version to the latest. You should select the latest packages for
Clang, make and libstdc++. Once you have selected all 3 you can click Next to be taken to a window asking to
confirm the installation of the dependencies needed by these three packages.

Once you have successfully downloaded and installed all of the packages that you needed to be able
to run Clang you can check that it was successful by opening a Cygwin terminal and typing the clang
command. You can see the result of this output in Figure 1-6.

Recipe 1-4. Installing Clang on OS X
Problem
You would like to build C++14 based programs on a computer running OS X.

Solution
Apple’s Xcode IDE comes with Clang as its default compiler. Installing Xcode from the OS X App Store also
installs Clang.

How It Works
Install the latest version of Xcode from the App Store on your OS X computer. Once you’ve installed Xcode
you can open a Terminal window using Spotlight and type clang to see that the compiler has been installed.
Figure 1-7 shows how this should look.

Figure 1-6. Successfully running Clang in a Cywgin environment in Windows

Chapter 1 ■ Beginning C++

7

Recipe 1-5. Building Your First C++ Program
Problem
You would like to use your computer to generate executable applications from C++ source code that you write.

Solution
Generating executables from a C++ source file involves two steps; compiling and linking. The steps
undertaken in Recipe 1-2, Recipe 1-3 or Recipe 1-4 depending on your operating system will have resulted in
you having all of the software you need to build applications from C++14 source files. You are now ready to
build your first C++14 program. Create a folder to contain you project and add a text file named HelloWorld.
cpp. Enter the code from Listing 1-1 into the file and save.

Listing 1-1. Your first C++14 Program

#include <iostream>

#include <string>

int main(void)
{
 using namespace std::string_literals;

 auto output = "Hello World!"s;
 std::cout << output << std::endl;

 return 0;
}

The code in Listing 1-1 is a C++ program that will only compile when using a C++14 compatible

compiler. The Recipes 2-4 in this chapter contain instructions on how you can obtain a compiler that can
be used to compile C++14 code for Windows, Ubuntu and OS X. You can build a working application once
you have created a folder and the source file containing the code in Listing 1-1. You do this using a makefile.
Create a file named makefile in the folder alongside your HelloWorld.cpp file. The makefile should not
have a file extension which may seem a little strange to developers used to the Windows operating system
however this is completely normal for Unix based operating systems such as Linux and OS X. Enter the code
from Listing 1-2 into your makefile.

Figure 1-7. Running Clang on OS X after installing Xcode

Chapter 1 ■ Beginning C++

8

Listing 1-2. The makefile Needed to Build the Code in Listing 1-1

HelloWorld: HelloWorld.cpp
 clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Note ■ the whitespace before the clang++ command in Listing 1-2 is a tab. You cannot replace the tab with
spaces as make will fail to build. ensure that your recipes in a makefile always begin with tabs.

The text in Listing 1-2 consists of the instructions needed to build an application from your HelloWorld.
cpp source file. The first word on the first line is the name of the target of the makefile. This is the name that
the application executable will be given when the building process has been completed. In this case we
will be building an executable named HelloWorld. This is followed by the prerequisites needed to build the
program. Here you have listed HelloWorld.cpp as the only prerequisite as it is the only source file used to
build the executable.

The target and prerequisites are then followed by a list of recipes that are carried out in order to build
your application. In this small example you have a line that invokes the clang++ compiler to generate
executable code from the HelloWorld.cpp file. The parameter passed to clang++ using –std=c++1y asks
Clang to build using the C++14 language standard and the –o switch specifies the name of the object output
file generated by the compilation process.

Browse to the folder you created to store the source file and makefile using a command shell such as
cmd on Windows or Terminal on Linux or OS X and type make. This will invoke the GNU make program and
will automatically read and execute your makefile. This will output an executable file into the same folder
that you can then run from the command line. You should be able to do this now and see that the text
Hello World is output on your command line. Figure 1-8 shows what this would look like in an Ubuntu
Terminal window.

Figure 1-8. The Output Generated by Runnung HelloWorld in an Ubuntu Terminal

Chapter 1 ■ Beginning C++

9

Recipe 1-6. Debugging C++ programs using GDB in
Cygwin or Linux
Problem
You are writing a C++14 program and would like to be able to debug the application from the command line.

Solution
Both Cygwin for Windows and Linux based operating systems like Ubuntu can install and use the GDB
command line debugger for C++ applications.

How It Works
You can use the Cygwin installer for Windows or the Package Manager installed with your favorite Linux
distribution to install the GDB debugger. This will give you a command line C++ debugger that can be used
to inspect the functionality of your C++ programs. You can practice this using the source, makefile and
application generated as part of Recipe 1-5. To generate debugging information for your program you
should update the makefile to contain he contents of Listing 1-3 and run make to generate a debuggable
executable file.

Listing 1-3. A makefile to Generate a Debuggable Program

HelloWorld: HelloWorld.cpp
 clang++ -g -std=c++1y HelloWorld.cpp -o HelloWorld

Once you have followed Recipe 1-5, updated the makefile to contain the contents of Listing 1-5 and

generated an executable you can run GDB on your application by browsing to the folder on your command
line and typing gdb HelloWorld. The new –g switch passed to Clang in the makefile from Listing 1-3 asks
the compiler to generate additional information in the application that helps debuggers to provide you with
accurate information about the program while it is executing in the debugger.

Note ■ You may be presented with a notice informing you that your program is already up to date if you had
built previously. Simply delete the existing executable file if this occurs.

Running GDB in HelloWorld should result in your command line running GDB and providing output
such as that shown in Figure 1-9.

Chapter 1 ■ Beginning C++

10

You now have a running debugger that you can use to inspect the running program while it is executing.
The program has not yet begun when GDB first starts, this allows you to configure some breakpoints before
you get started. To set a breakpoint you can use the break command or the b shorthand for the same
command. Type break main into the GDB command prompt and hit enter. This should result in GDB
echoing the command back to you along with the address of the program where the breakpoint was set and
the filename and line number it detected for the function supplied. You can now type run into your window
to execute the program and have GDB halt at your breakpoint. The output should resemble that shown in
Figure 1-10.

Figure 1-9. A Running Instance of GDB

Chapter 1 ■ Beginning C++

11

At this point you have several options that allow you to continue the execution of your program. You can
see a list of the most common commands below.

step

The step command is used to step into a function that is to be called at the
current line.

next

The next command is used to step over the current line and stop on the next
line of the same function.

finish

The finish command is used to execute all of the code remaining in the
current function and stop on the next line in the function that called the
current function.

print <name>

The print command followed by the name of a variable can be used to print
the value of a variable in your program.

break

The break command can be used with a line number, a function name or a
source file and line number to set a breakpoint in your programs source code.

Figure 1-10. The Output as Seen When GDB Halts at the Breakpoint Set in main

Chapter 1 ■ Beginning C++

12

continue

The continue command is used to resume code execution after it has been
halted at a breakpoint.

until

The until command can continue execution from a loop and stop on the first
line immediately after the loop execution has finished.

info

The info command can be used with either the locals command or the
stack command to show information about the current local variables or
stack state in the program.

help

You can type help followed by any command to have GDB give you
information about all of the different ways that a given command can be used.

The GDB debugger can also be run with the command –tui. This will give you a view of the source file
you are currently debugging at the top of the window. You can see how this looks in Figure 1-11.

Figure 1-11. GDB with a Source Window

Chapter 1 ■ Beginning C++

13

Recipe 1-7. Debugging Your C++ Programs on OS X
Problem
The OS X operating system does not provide any easy method for installing and using GDB.

Solution
Xcode comes with the LLDB debugger than can be used on the command line in-place of GDB.

How It Works
The LLDB debugger is, in essence, very similar to the GDB debugger used in Recipe 1-6. Changing between
GDB and LLDB is simply a case of learning how to carry out the same simple tasks in both by using the
commands provided by each to carry out the same task.

You can execute LLDB on your HelloWorld executable by browsing to the directory containing
HelloWorld in Terminal and typing lldb HelloWorld. This will give you output that resembles that of
Figure 1-12.

Figure 1-12. The LLDB Debugger Running in an OS X Terminal

Note ■ You will need to compile your program using the –g switch. take a look at Listing 1-3 to see where
this goes if you are unsure.

Once you have LLDB running as shown in Listing 1-12 you can set a breakpoint on the first line of
main by typing breakpoint set –f HelloWorld.cpp –l 8, or b main as shorthand. You can use the run
command to begin execution and have it halt at the breakpoint that you’ve just set. When the program stops
you can use the next command to step over the current line and halt on the next line. You could have used
the step command to step into a function on the current line and halt on the first line of the function. The
finish command will step out of the current function.

You can quit LLDB by typing q and hitting enter. Restart LLDB and type breakpoint set –f HelloWorld.
cpp –l 9. Follow this with the run command and LLDB should print the source around the line where the
application has stopped. You can now type print output to see the value stored by the output variable. You
can also use the frame variable command to see all of the local variables in the current stack frame.

Chapter 1 ■ Beginning C++

14

These simple commands will allow you to use the LLDB debugger adequately enough while working
through the samples provided along with this book. The following list can be used as a handy cheat sheet
while working with LLDB.

step

The step command is used to step into a function that is to be called at the
current line.

next

The next command is used to step over the current line and stop on the next
line of the same function.

finish

The finish command is used to execute all of the code remaining in the
current function and stop on the next line in the function that called the
current function.

print <name>

The print command followed by the name of a variable can be used to print
the value of a variable in your program.

breakpoint set –-name <name>

breakpoint set –file <name> --line <number>

The breakpoint command can be used with a line number, a function name or a
source file and line number to set a breakpoint in your programs source code.

help

You can type help followed by any command to have GDB give you
information about all of the different ways that a given command can be used.

Recipe 1-8. Switching C++ Compilation Modes
Problem
You would like to be able to switch between the different C++ standards before compiling your programs.

Solution
The std switch is supplied by Clang so that you can specify the C++ standard to be used when compiling.

How It Works
Clang builds with the C++98 standard by default. You can use the std argument with Clang++ to tell the
compiler to use a standard other than the default. Listing 1-4 shows a makefile that is configured to build a
program using the C++14 standard.

Chapter 1 ■ Beginning C++

15

Listing 1-4. Building with C++14

HelloWorld: HelloWorld.cpp
 clang++ -std=c++1y HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-4 shows how you can specify that Clang should build your source file using

C++14. This example was written using Clang 3.5 that uses the c++1y command to represent C++14.
Listing 1-5 shows how you can build a program using C++11.

Listing 1-5. Building with C++11

HelloWorld: HelloWorld.cpp
 clang++ -std=c++11 HelloWorld.cpp -o HelloWorld

In Listing1-5 you want to use the c++11 option with the std switch to build with C++11. Finally,

Listing 1-6 shows how to configure Clang to explicitly build with C++98.

Listing 1-6. Building with C++98

HelloWorld: HelloWorld.cpp
 clang++ -std=c++98 HelloWorld.cpp -o HelloWorld

The makefile in Listing 1-6 can be used to explicitly build with C++98. You can achieve the same result
by leaving out the std command altogether and Clang will build using C++98 by default.

Note ■ it’s not guaranteed that every compiler will use C++98 by default. Check with your compiler’s
documentation if you’re unsure which standard is the default. You can also be adventurous with Clang and
enable its experimental C++17 support using the c++1z option!

Recipe 1-9. Building with the Boost Library
Problem
You would like to write a program using the Boost library.

Solution
Boost is supplied as source code that can be included with and compiled into your application.

How It Works
Boost is a large C++ library that includes all sorts of great functionality. Coverage of the entire library is out of
the scope of this book; however the string formatting library will be used. You can acquire the Boost library
from the Boost website at http://www.boost.org/.

You will be able to get a compressed folder from the Boost website that contains the latest version of the
Boost library. The only folder you absolutely need to be able to include basic boost functionality is the boost
folder itself. I have downloaded Boost 1.55 and therefore I have created a folder inside my project folder
named boost_1_55_0 and copied the boost folder into this location from the downloaded version.

http://www.boost.org/

Chapter 1 ■ Beginning C++

16

Once you have a project folder set up with a downloaded copy of Boost you can include Boost header
files into your source code. Listing 1-7 shows a program that uses the boost::format function.

Listing 1-7. Using boost::format

#include <iostream>
#include "boost/format.hpp"

using namespace std;

int main()
{
 std::cout << "Enter your first name: " << std::endl;
 std::string firstName;
 std::cin >> firstName;

 std::cout << "Enter your surname: " << std::endl;
 std::string surname;
 std::cin >> surname;

 auto formattedName = str(boost::format("%1% %2%"s) % firstName % surname);
 std::cout << "You said your name is: " << formattedName << std::endl;

 return 0;
}

The code in Listing 1-7 shows how you can include a Boost header into a source file and how that file’s
functions can be used in your program.

Note ■ Don’t worry about how the format function works if it’s not immediately clear, it is covered in Chapter 3.

You must also tell the compiler where to look for the Boost header files in a makefile otherwise
your program will not compile. Listing 1-8 shows the contents of the makefile that can be used to build
this program.

Listing 1-8. A makefile to Build with Boost

main: main.cpp
 clang++ -g -std=c++1y -Iboost_1_55_0 main.cpp -o main

The makefile in Listing 1-8 passes the –I option to Clang++. This option is used to tell Clang that you

would like to include the given folder in the search paths used when including files using the #include
directive. As you can see I have passed the boost_1_55_0 folder that I created in my project folder. This
folder contains the boost folder that you can see used when including a Boost header in Listing 1-7.

Note ■ if you’re having trouble getting this example to work and aren’t sure of where to put the Boost header
files you can download the samples that accompany this book from the www.apress.com/9781484201589.

http://dx.doi.org/10.1007/9781484201589_3
http://www.apress.com/9781484201589

17

Chapter 2

Modern C++

Development of the C++ programming language began in 1979 as the C with Classes language. The name
C++ was formally adopted in 1983 and development of the language continued throughout the 1980s and
1990s without the adoption of a formal language standard. This all changed in 1998 when the first ISO
standard of the C++ programming language was adopted. There have been three updates to the standard
published since that time, one in 2003, again in 2011 and the latest in 2014.

Note ■ The standard published in 2003 was a minor update to the 1998 standard that didn’t introduce much
in the way of new features. For this reason, it won’t be discussed in any great detail in this book.

This book is primarily going to focus on the very latest C++ programming standard, C++14. Whenever I
mention the C++ programming language you can be assured that I am talking about the language as described by
the current ISO standard. If I am discussing features that were introduced in 2011 then I will explicitly mention the
language as C++11 and for any features that were introduced prior to 2011 I will use the name C++98.

This chapter will look at the programming features added to the language in the latest standard
and with C++11. Many of the modern features of C++ were added in the C++11 standard and have been
expanded with the C++14 standard therefore it is important to be able to identify the differences when
working with compilers that support a standard that is not the latest.

Recipe 2-1. Initializing Variables
Problem
You would like to be able to initialize all variables in a standard manner.

Solution
Uniform initialization was introduced in C++11 and can be used to initialize a variable of any type.

ChapTer 2 ■ Modern C++

18

How It Works
It’s necessary to understand the deficiencies with variable initialization in C++98 to appreciate why uniform
initialization is an important language feature in C++11. Listing 2-1 shows a program that contains a single
class, MyClass.

Listing 2-1. The C++Most Vexing Parse Problem

class MyClass
{
private:
 int m_Member;

public:
 MyClass() = default;
 MyClass(const MyClass& rhs) = default;
};

int main()
{
 MyClass objectA;
 MyClass objectB(MyClass());
 return 0;
}

The code in Listing 2-1 will generate a compile error in C++ programs. The problem exists in the
definition of objectB. A C++ compiler will not see this line as defining a variable named objectB of type
MyClass calling a constructor that takes the object constructed by calling the MyClass constructor. This
is what you might expect the compiler to see however what it actually sees is a function declaration.
The compiler thinks that this line is declaring a function named objectB that returns a MyClass object
and has a single, unnamed function pointer to a function that returns a MyClass object and is passed no
parameters.

Compiling the program shown in Listing 2-1 causes Clang to generate the following warning:

main.cpp:14:20: warning: parentheses were disambiguated as a function
 declaration [-Wvexing-parse]
 MyClass objectB(MyClass());
 ^~~~~~~~~~~
main.cpp:14:21: note: add a pair of parentheses to declare a variable
 MyClass objectB(MyClass());
 ^
 ()

The Clang compiler has properly identified that the code entered in Listing 2-1 contains a vexing parse
problem and even helpfully suggests wrapping the MyClass constructor being passed as a parameter in
another pair of parentheses to solve the problem. C++11 has provided an alternative solution in uniform
initialization. You can see this in Listing 2-2.

ChapTer 2 ■ Modern C++

19

Listing 2-2. Using Uniform Initialization to Solve the Vexing Parse Problem

class MyClass
{
private:
 int m_Member;

public:
 MyClass() = default;
 MyClass(const MyClass& rhs) = default;
};

int main()
{
 MyClass objectA;
 MyClass objectB{MyClass{}};
 return 0;
}

You can see in Listing 2-2 that uniform initialization replaces parentheses with braces. This syntax
change informs the compiler that you would like to use uniform initialization to initialize your variable.
Uniform initialization can be used to initialize almost all types of variables.

Note ■ The paragraph above mentions that uniform initialization can be used to initialize almost all variables.
It can have trouble when initializing aggregates or plain old data types however you won’t need to worry about
those for now.

The ability to prevent narrowing conversions is another benefit of using uniform initialization. The code
in Listing 2-3 will fail to compile when using uniform initialization.

Listing 2-3. Using Uniform Initialization to Prevent Narrowing Conversions

int main()
{
 int number{ 0 };
 char another{ 512 };

 double bigNumber{ 1.0 };
 float littleNumber{ bigNumber };

 return 0;
}

The compiler will throw errors when compiling the code in Listing 2-3 as there are two narrowing
conversions present in the source. The first occurs when trying to define a char variable with the literal
value 512. A char type can store a maximum value of 255 therefore the value 512 would be narrowed into
this data type. A C++11 or newer compiler will not compile this code due to this error. The initialization
of the float from a double type is also a narrowing conversion. Narrowing conversions occur when data is
transferred from one type to another in where the destination type cannot store all of the values represented
by the source type. Precision is lost in the case of a double being converted to a float therefore the compiler

ChapTer 2 ■ Modern C++

20

correctly will not build this code as-is. The code in Listing 2-4 uses a static_cast to inform the compiler
that the narrowing conversions are intentional and to compile the code.

Listing 2-4. Using a static_cast to Compile Narrowing Conversions

int main()
{
 int number{ 0 };
 char another{ static_cast<char>(512) };

 double bigNumber{ 1.0 };
 float littleNumber{ static_cast<float>(bigNumber) };

 return 0;
}

Recipe 2-2. Initializing Objects with Initializer Lists
Problem
You would like to construct objects from multiple objects of a given type.

Solution
Modern C++ provides initializer lists that can be used to supply many objects of the same type to a constructor.

How It Works
Initializer lists in C++11 build upon uniform initialization to allow you to initialize complex types with ease.
A common example of a complex type that can be difficult to initialize with data is a vector. Listing 2-5 shows
two different calls to a standard vector constructor.

Listing 2-5. Constructing vector Objects

#include <iostream>
#include <vector>

using namespace std;

int main()
{
 using MyVector = vector<int>;

 MyVector vectorA(1);
 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);
 cout << vectorB.size() << " " << vectorB[0] << endl;

 return 0;
}

ChapTer 2 ■ Modern C++

21

The code in Listing 2-5 might not do what you expect at first glance. The vectorA variable will be
initialized with a single int containing 0. You might expect that it would contain a single integer containing
1 but this would be incorrect. The first parameter to a vector constructor determines how many values
the initial vector will be set up to store and in this case we are asking it to store a single variable. You
might similarly expect vectorB to contain two values, 1 and 10 however what we have here is a vector that
contains one value and that value is 10. The vectorB variable is constructed using the same constructor as
vectorA however it specifies a value to use to instantiate the members of the vector rather than using the
default value.

The code in Listing 2-6 uses an initializer list in conjunction with uniform initialization to construct a
vector that contains two elements with the specified values.

Listing 2-6. Using Uniform Initialization to Construct a vector

#include <iostream>
#include <vector>

using namespace std;

int main()
{
 using MyVector = vector<int>;

 MyVector vectorA(1);
 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);
 cout << vectorB.size() << " " << vectorB[0] << endl;

 MyVector vectorC{ 1, 10 };
 cout << vectorC.size() << " " << vectorC[0] << endl;

 return 0;
}

The code in Listing 2-6 creates three different vector objects. You can see the output generated by this
program in Figure 2-1.

Figure 2-1. The Output Generated by Listing 2-6

ChapTer 2 ■ Modern C++

22

The console output shown in Figure 2-1 shows the size of each vector and the value stored in the first
element of each vector. You can see that the first vector contains a single element and that its value is 0.
The second vector also contains a single element however its value is 10. The third vector is constructed
using uniform initialization and it contains two values and the value of its first element is 1. The value of the
second element will be 10. This can cause a significant different to the behavior of your programs if you are
not taking particular care to ensure that the correct type of initialization has been used with your types. The
code in Listing 2-7 shows a more explicit use of the initializer_list to construct a vector.

Listing 2-7. Explicit initializer_list Usage

#include <iostream>
#include <vector>

using namespace std;

int main()
{
 using MyVector = vector<int>;

 MyVector vectorA(1);
 cout << vectorA.size() << " " << vectorA[0] << endl;

 MyVector vectorB(1, 10);
 cout << vectorB.size() << " " << vectorB[0] << endl;

 initializer_list<int> initList{ 1, 10 };
 MyVector vectorC(initList);
 cout << vectorC.size() << " " << vectorC[0] << endl;

 return 0;
}

The code in Listing 2-7 contains an explicit initializer_list that is used to construct a vector. The
code in Listing 2-6 implicitly created this object when constructing a vector using uniform initialization.
There’s usually little need to explicitly create initializer lists like this however it’s important that you
understand what the compiler is doing when you write code using uniform initialization.

Recipe 2-3. Using Type Deduction
Problem
You would like to write portable code that doesn’t have a high maintenance cost when changing types.

Solution
C++ provides the auto keyword that can be used to let the compiler deduce the type for a variable automatically.

ChapTer 2 ■ Modern C++

23

How It Works
C++98 compilers had the ability to automatically deduce the type of a variable however this functionality
was only available while you were writing code that used templates and you omitted the type specialization.
Modern C++ has extended this type deduction support to many more scenarios. The code in Listing 2-8
shows the use of the auto keyword and the typeid method of working out the type of a variable.

Listing 2-8. Using the auto Keyword

#include <iostream>
#include <typeinfo>

using namespace std;

int main()
{
 auto variable = 1;
 cout << "Type of variable: " << typeid(variable).name() << endl;

 return 0;
}

The code in Listing 2-8 shows how to create a variable with automatically deduced type in C++. The
compiler will automatically work out that you wanted to create an int variable with this code and that’s the
type that will be output by the program, sort of. The Clang compiler will output its internal representation of
an integer type which is actually i. You can pass this output to a program named c++filt to convert this into
a normal typename. Figure 2-2 shows how this can be achieved.

The c++filt program has successfully converted the Clang type i into a human readable C++ type
format. The auto keyword also works with classes. Listing 2-9 shows this.

Figure 2-2. Using c++filt to Produce Proper Type Output From Clang

ChapTer 2 ■ Modern C++

24

Listing 2-9. Using auto with a class

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass
{
};

int main()
{
 auto variable = MyClass();
 cout << "Type of variable: " << typeid(variable).name() << endl;

 return 0;
}

This program will print out the name MyClass as you can see in Figure 2-3.

Unfortunately there are times where the auto keyword can produce less than desirable results. You
will definitely come unstuck if you try to combine the auto keyword with uniform initialization. Listing 2-10
shows the use of the auto keyword with uniform initialization.

Listing 2-10. Using auto with Uniform Initialization

#include <iostream>
#include <typeinfo>

using namespace std;

class MyClass
{
};

int main()
{
 auto variable{ 1 };
 cout << "Type of variable: " << typeid(variable).name() << endl;

Figure 2-3. Using auto with MyClass

ChapTer 2 ■ Modern C++

25

 auto variable2{ MyClass{} };
 cout << "Type of variable: " << typeid(variable2).name() << endl;

 return 0;
}

You might expect that the code in Listing 2-10 will produce a variable of type int and a variable of type
MyClass however this is not the case. Figure 2-4 shows the output generated by the program.

A quick look at Figure 2-4 shows the immediate problem encountered when using the auto keyword along
with uniform initialization. The C++ uniform initialization feature automatically creates an initializer_list
variable that contains the value of the type we want, not the type and value itself. This leads to a relatively
simple piece of advice, do not use uniform initialization when defining variables using auto. I’d recommend
not using auto even if the type you want is actually an initializer_list as the code is much easier to
understand and much less error prone if you don’t mix and match you variable initialization styles. There’s a
final piece of advice to bear in mind, use auto for local variables as much as possible. It’s impossible to declare
an auto variable and not define it therefore it’s impossible to have an undefined local auto variable. You can
use this piece of knowledge to cut down on one potential source of bugs in your programs.

Recipe 2-4. Using auto with Functions
Problem
You would like to create more generic functions using type deduction to increase code maintainability.

Solution
Modern C++ allows you to use type deduction for function parameters and for return types.

How It Works
C++ allows you to utilize type deduction when working with function using two methods. Types can be
deduced for function parameters by creating a template function and calling that function without explicit
specializers. The return type can be deduced for a function using the auto keyword in place of its return type.
Listing 2-11 shows the use of auto to deduce the return type for a function.

Figure 2-4. Output Generated When using auto with Uniform Initialization

ChapTer 2 ■ Modern C++

26

Listing 2-11. Deducing a Function’s Return Type Using auto

#include <iostream>

using namespace std;

auto AutoFunctionFromReturn(int parameter)
{
 return parameter;
}

int main()
{
 auto value = AutoFunctionFromReturn(1);
 cout << value << endl;

 return 0;
}

The AutoFunctionFromReturn function’s return type in Listing 2-11 is automatically deduced. The
compiler inspects the type of the variable returned from the function and uses that to deduce the type to be
returned. This all works properly because the compiler has everything it needs inside the function to be able
to deduce the type. The parameter variable is being returned therefore the compiler can use its type as the
return type for the function.

Things get a bit more complicated when you need to build with a C++11 compiler. Building Listing 2-11
using C++11 results in the following error.

main.cpp:5:1: error: 'auto' return without trailing return type
auto AutoFunctionFromReturn(int parameter)

Listing 2-12 includes a function with automatic return type deduction that works in C++11.

Listing 2-12. Return Type Deduction in C++11

#include <iostream>

using namespace std;

auto AutoFunctionFromReturn(int parameter) -> int
{
 return parameter;
}

int main()
{
 auto value = AutoFunctionFromReturn(1);
 cout << value << endl;

 return 0;
}

