
Brimhall
Gennick
Sheffield

FOURTH
EDITION

Shelve in
Databases/MS SQL Server

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

SQL Server T-SQL Recipes
SQL Server T-SQL Recipes is an example-based guide to the Transact-SQL
language that is at the core of SQL Server. This edition has been lightly updated
for SQL Server 2014 and provides ready-to-implement solutions to common
programming and database administration tasks. Learn to create databases,
create in-memory tables and stored procedures, insert and update data, generate
reports, secure your data, and more. Tasks and their solutions are broken down
into a problem/solution format that is quick and easy to read so that you can get
the job done fast when the pressure is on.

Solutions in this book are divided into chapters by problem domain. Each
chapter is a collection of solutions around a single facet of the language such as
writing queries, managing indexes, query performance, error handling, and more.
Each solution is presented code-first, giving you a working code example to copy
from and implement immediately in your own environment. Following each example
is an in-depth description of how and why the given solution works. Tradeoffs and
alternative approaches are also discussed.

SQL Server T-SQL Recipes is all about solutions. Look up what you need to do.
Learn how to do it. Do it. This focus on solutions makes SQL Server T-SQL Recipes
the perfect book for the busy developer or database administrator who just needs
to get a job done and crossed-off the day’s to-do list.

9 781484 200629

54199
ISBN 978-1-4842-0062-9

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors ��lxxiii

About the Technical Reviewer ��lxxv

Acknowledgments ��lxxvii

Introduction ���lxxix

Chapter 1: Getting Started with SELECT ■ �� 1

Chapter 2: Elementary Programming ■ �� 27

Chapter 3: Working with NULLS ■ ��� 51

Chapter 4: Querying from Multiple Tables ■ ��� 67

Chapter 5: Aggregations and Grouping ■ ��� 91

Chapter 6: Advanced Select Techniques ■ �� 115

Chapter 7: Windowing Functions ■ ��� 141

Chapter 8: Inserting, Updating, Deleting ■ �� 173

Chapter 9: Working with Strings ■ ��� 213

Chapter 10: Working with Dates and Times ■ �� 233

Chapter 11: Working with Numbers ■ �� 255

Chapter 12: Transactions, Locking, Blocking, and Deadlocking ■ ������������������������ 279

Chapter 13: Managing Tables ■ �� 313

Chapter 14: Managing Views ■ ��� 347

Chapter 15: Managing Large Tables and Databases ■ �� 367

Chapter 16: Managing Indexes ■ �� 389

■ Contents at a GlanCe

vi

Chapter 17: Stored Procedures ■ ��� 417

Chapter 18: User-Defined Functions and Types ■ ��� 437

Chapter 19: In-Memory OLTP ■ ��� 473

Chapter 20: Triggers ■ �� 495

Chapter 21: Error Handling ■ �� 531

Chapter 22: Query Performance Tuning ■ ��� 551

Chapter 23: Hints ■ ��� 599

Chapter 24: Index Tuning and Statistics ■ �� 613

Chapter 25: XML ■ �� 639

Chapter 26: Files, Filegroups, and Integrity ■ �� 663

Chapter 27: Backup ■ ��� 703

Chapter 28: Recovery ■ �� 733

Chapter 29: Principals and Users ■ �� 761

Chapter 30: Securables, Permissions, and Auditing ■ �� 799

Chapter 31: Objects and Dependencies ■ ��� 859

Index ��� 873

lxxix

Introduction

Sometimes all one wants is a good example.
T-SQL is fundamental to working with SQL Server. Almost everything you do, from querying a table to

creating indexes to backing up and recovering, ultimately comes down to T-SQL statements being issued and
executed. Sometimes a utility executes statements on your behalf; other times you must write them yourself.

And when you have to write them yourself, you’re probably going to be in a hurry. Information
technology is like that. It’s a field full of stress and deadlines, and don’t we all just want to get home for
dinner with our families?

We sure do want to be home for dinner, and that brings us full circle to the example-based format
you’ll find in this book. If you have a job to do that’s covered in this book, you can count on a clear code
example and very few words to waste your time. We put the code first! And explain it afterward. We hope
our examples are clear enough that you can just crib from them and get on with your day, but the detailed
explanations are there if you need them.

We’ve missed a few dinners from working on this book. We hope it helps you avoid the same fate.

Who This Book Is For
SQL Server T-SQL Recipes is aimed at developers deploying applications against Microsoft SQL Server 2012
and 2014. The book also helps database administrators responsible for managing those databases. Any
developer or administrator valuing good code examples will find something of use in this book.

Conventions
Throughout the book, we’ve tried to keep to a consistent style for presenting SQL and results. Where a piece
of code, a SQL reserved word, or a fragment of SQL is presented in the text, it is presented in fixed-width
Courier font, such as this example:

SELECT * FROM HumanResources.Employee;

Where we discuss the syntax and options of SQL commands, we use a conversational style so you can
quickly reach an understanding of the command or technique. We have chosen not to duplicate complex
syntax diagrams that are best left to the official, vendor-supplied documentation. Instead, we take an
example-based approach that is easy to understand and adapt.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link can
be found on the book’s information page (www.apress.com/9781484200629) on the Source Code/Downloads
tab. This tab is located in the Related Titles section of the page.

www.apress.com
www.apress.com/9781484200629

1

Chapter 1

Getting Started with SELECT

by Jonathan Gennick
Transact-SQL is a proprietary implementation of the SQL language. It is often referred to simply as T-SQL,
and you’ll see us calling it by that shorter name throughout this book. The T-SQL language extends SQL by
adding procedural syntax that is useful in programming both application and business logic to run inside the
database server. There’s much to learn, and it all begins right here with SELECT.

Tip ■ You can find and download various editions of the Adventure Works example database from
http://msftdbprodsamples.codeplex.com/.

1-1. Connecting to a Database
Problem
You are working from the command line, or maybe you just prefer to work using commands, even from the
SQL Server Management Studio GUI, and you wish to connect to a specific database. For example, you wish
to connect to the example database used throughout this book.

Solution
Execute the USE statement and specify the name of your target database. The following example connects to
the Adventure Works example database used in this book:

USE AdventureWorks2014;

Command(s) completed successfully.

The success message indicates a successful connection. You may now execute queries against tables
and views in the database without having to qualify those object names by specifying the database name
each time.

http://msftdbprodsamples.codeplex.com/

ChApter 1 ■ GettinG StArted With SeLeCt

2

How It Works
When you first launch SQL Server Management Studio you are connected to a default database that your
administrator has associated with your login. By default, that default database is the so-called master
database. Being connected to the master is usually not convenient, and you shouldn’t be storing your data in
that database. Executing a USE statement lets you more easily access tables and views in the database you’re
intending to use, and there is the added benefit of your being less likely to mistakenly create objects in the
master database.

1-2. Checking the Database Server Version
Problem
You’ve connected to a database instance and have no idea whether that instance represents SQL Server
2014, SQL Server 2012, or something even more ancient from the Prekatmai or Precambrian eras.

Solution
Query the instance for its version information. Do that by invoking the @@VERSION function. For example:

SELECT @@VERSION;

--
Microsoft SQL Server 2014 - 12.0.2000.8 (X64)
...

How It Works
There’s no getting around it. You can see that we’re running Community Technolgy Preview 2 (CTP2)
while revising the book. That’s because we want the book to be done shortly after the production
release. We write against CTP2, and we test a second time against the Release to Manufacturing (RTM)
just prior to publication. We then run every example again after the RTM is released to be sure nothing
has changed.

1-3. Checking the Database Name
Problem
You want to determine via a query which database you are connected to. You can look up at the title bar
when running SQL Server Management Studio, but today you happen to be running sqlcmd from the
Windows command prompt. You want to be reminded of which database you specified in your most
recent USE command.

ChApter 1 ■ GettinG StArted With SeLeCt

3

Solution
Query for the name of the database currently being used. For example:

select DB_NAME();

master

How It Works
I surprised myself when generating the solution example in this recipe. I had thought I was using the Adventure
Works database. I came in this morning and woke my PC from sleep, remembering that I had been in
Adventure Works yesterday evening. Management Studio threw up a Connect to Server dialog, and I reflexively
hit the Connect button while still in that first-cup-of-coffee state of mind. Mentally, I was still set in Adventure
Works. But in reality, I had just connected to the master database by default. The sleep/wake cycle had broken
my connection from yesterday, and I was genuinely surprised at seeing the result from this recipe’s example.

So be careful!
Keep track of what database you are using as your default. Keep an eye on the title bar when executing

queries from SQL Server Management Studio. Query as shown in this recipe if you’re ever not sure and are
executing from the command line. It’s not fun to unleash a SQL statement against the wrong database, and
it’s especially not fun when said statement actually executes.

Note ■ You’ll learn more about sqlcmd in Chapter 2. it’s a utility that’s useful for executing t-SQL in batch mode.

1-4. Checking Your Username
Problem
You want to access your current username from SQL, either to remind yourself of who you are logged in as,
or to record the name as part of a logging solution.

Solution
There are actually three names to be concerned about. There is your login name that you used when
authenticating to SQL Server. There is your database username that you are associated with upon
successfully logging in. Lastly, there is the username providing the credentials under which any queries
are executed. Query for the names by invoking the ORIGINAL_LOGIN(), CURRENT_USER, and SYSTEM_USER
functions respectively, as follows:

SELECT ORIGINAL_LOGIN(), CURRENT_USER, SYSTEM_USER;

--------------------------- -------- ---------------------------

GennickT410\JonathanGennick dbo GennickT410\JonathanGennick

http://dx.doi.org/10.1007/9781484200629_2

ChApter 1 ■ GettinG StArted With SeLeCt

4

How It Works
The example shows that I authenticated to SQL Server using the name GennickT410\JonathanGennick.
That’s my Windows login, made up from my PC name followed by my Windows username. The path-like
syntax is typical of what you will see when Windows authentication is used. Otherwise, if you see just a
simple name having no path-like syntax, you can be reasonably certain that SQL Server authentication
was used, and that the login name and password were authenticated, not by Windows, but by the
database engine.

After authenticating to SQL Server, you are then associated with a database username. This is the
username that matters for object permissions. In the example, my database username is given as dbo.

Database administrators sometimes impersonate other users when testing queries. When doing that, the
SYSTEM_USER function returns the name of the user being impersonated. However, the call to ORIGINAL_LOGIN()
always returns the name used when first authenticating to the instance.

Caution ■ Use of t-SQL’s EXECUTE AS syntax to impersonate another user will cause SYSTEM_USER and
CURRENT_USER to return the login name and database name of the user who is being impersonated.
that is done by design, and is something to be aware of.

1-5. Querying a Table
Problem
You have a table or a view. You wish to retrieve data from specific columns.

Solution
Write a SELECT statement. List the columns you wish returned following the SELECT keyword. For example:

SELECT NationalIDNumber,
 LoginID,
 JobTitle
FROM HumanResources.Employee;

NationalIDNumber LoginID JobTitle
---------------- ------------------------- -----------------------------
295847284 adventure-works\ken0 Chief Executive Officer
245797967 adventure-works\terri0 Vice President of Engineering
509647174 adventure-works\roberto0 Engineering Manager
...

ChApter 1 ■ GettinG StArted With SeLeCt

5

Specify an asterisk (*) instead of a list to return all of the columns. Here’s an example showing that syntax:

SELECT *
FROM HumanResources.Employee;

BusinessEntityID NationalIDNumber LoginID OrganizationNode ...
---------------- ---------------- ----------------------- ---------------- ...
1 295847284 adventure-works\ken0 0x ...
2 245797967 adventure-works\terri0 0x58 ...
3 509647174 adventure-works\roberto0 0x5AC0 ...
...

How It Works
The FROM clause names the table to be queried. Data is returned from that table. The comma-delimited list
following the SELECT keyword specifies the columns to be returned. Whitespace doesn‘t matter. You can list
the columns one per line as in the example, or you can list them all on the same line.

Specifying an asterisk (*) instead of a column list returns all columns of the table you are querying.
Using that syntax is handy when writing ad-hoc queries and executing them from Management Studio.
Don‘t use it from program code though. Doing so can put your program at risk of failure due to future
column additions to the table, and even due to a simple rearranging of the existing columns. You‘re also
likely to negatively impact performance by returning more data over the network than is needed. Protect
yourself from both problems by listing only those columns that are really needed by the program you‘re
writing. Don‘t return anything unnecessary.

1-6. Returning Specific Rows
Problem
You want to restrict query results to a subset of rows in the table that interest you.

Solution
Specify a WHERE clause that gives the conditions that rows must meet in order to be returned. For example,
the following query returns only rows in which the person’s title is “Ms.”

SELECT Title, FirstName, LastName
FROM Person.Person
WHERE Title = 'Ms.';

Title FirstName LastName
-------- ----------- -----------
Ms. Gail Erickson
Ms. Janice Galvin
Ms. Jill Williams
...

ChApter 1 ■ GettinG StArted With SeLeCt

6

You may combine multiple conditions in one clause through the use of the logical operators AND and OR.
The following query looks specifically for Ms. Antrim’s data:

SELECT Title, FirstName, LastName
FROM Person.Person
WHERE Title = 'Ms.' AND LastName = 'Antrim';

Title FirstName LastName
-------- ----------- -----------
Ms. Ramona Antrim

How It Works
The WHERE clause provides search conditions that determine the rows to be returned by the query. Search
conditions are written as predicates, which are expressions that evaluate to TRUE, FALSE, or UNKNOWN. Only
rows for which the final evaluation of the WHERE clause is TRUE are returned. Table 1-1 lists some of the
commonly used comparison operators that are available.

Don’t think of a WHERE clause as going out and retrieving rows that match the conditions. Think of it as a
fish net or a sieve. All the possible rows are dropped into the net. Unwanted rows fall through. When a query
is done executing, the rows remaining in the net are those that match the predicates you listed. Database
engines will optimize execution, but the fish-net metaphor is a useful one when initially crafting a query.

You may combine multiple search conditions by utilizing the AND and OR logical operators. The AND
logical operator joins two or more search conditions and returns rows only when each of the search
conditions is TRUE. The OR logical operator joins two or more search conditions and returns rows when
any one of the conditions are true. The second solution example shows the following AND operation. Both
search conditions must be true for a row to be returned in the result set. Thus, only the row for Ms. Antrim is
returned.

WHERE Title = 'Ms.' AND LastName = 'Antrim'

Table 1-1. Operators

Operator Description

!= Tests two expressions not being equal to each other.

!> Tests that the left condition is not greater than the expression to the right.

!< Tests that the right condition is not less than the expression to the right.

< Tests the left condition as less than the right condition.

<= Tests the left condition as less than or equal to the right condition.

<> Tests two expressions not being equal to each other.

= Tests equality between two expressions.

> Tests the left condition being greater than the expression to the right.

>= Tests the left condition being greater than or equal to the expression to the right.

ChApter 1 ■ GettinG StArted With SeLeCt

7

Use the OR operator to specify alternate choices. Use parentheses to clarify the order of operations.
The following example shows an OR expression involving two LastName values. It is the result from that
OR expression that is passed to the AND expression.

WHERE Title = 'Ms.' AND
 (LastName = 'Antrim' OR LastName = 'Galvin')

UNKNOWN values can make their appearance when NULL data is accessed in the search condition. A NULL
value doesn’t mean that the value is blank or zero—only that the value is unknown. Recipe 1-15 later in this
chapter shows how to identify rows either having or not having NULL values.

1-7. Listing the Available Tables
Problem
You want to programmatically list the names of available tables in a schema. You can see the tables from
Management Studio, but you want them from T-SQL as well.

Solution
One approach is to query the information schema views. This is an ISO standard approach. For example,
execute the following query to see a list of all the tables and views in the HumanResources schema:

SELECT table_name, table_type
FROM information_schema.tables
WHERE table_schema = 'HumanResources';

TABLE_NAME TABLE_TYPE
------------------------------ ----------
Shift BASE TABLE
Department BASE TABLE
...
vJobCandidate VIEW
vJobCandidateEmployment VIEW

You may also choose to forget about following ISO standard, and query the system catalog instead. The

relevant views are sys.tables for tables and sys.views for views. For example

SELECT name
FROM sys.tables
WHERE SCHEMA_NAME(schema_id)='HumanResources';

name

Shift
Department
Employee
...

ChApter 1 ■ GettinG StArted With SeLeCt

8

How It Works
The information schema views are designed to be friendly toward interactive querying. They also have the
advantage of conforming to the ISO standard. There are a number of such views. The one queried in the
example is information_schema.tables. It returns information about tables, and also about views.

There are also system catalog views. These are more detailed than the information schema views, and
they can be a bit less friendly to query. For example, the sys.tables view doesn‘t return a schema name
in friendly text form as information_schema.tables does. Instead, you get a schema ID number. That’s
why the second solution example had to invoke the function SCHEMA_NAME(..) in the WHERE clause, so as to
translate the ID into a readable name:

where schema_name(schema_id)='HumanResources'

The information schema treats a view as a subtype of a table. The term base table refers to what in SQL
Server is a table, and a view is a stored query referencing the base tables, and possibly other views. SQL
Server’s system catalog returns information about views and tables through separate catalog views. The first
solution example returns table and view names, whereas the second returns only table names.

Why might you wish for programmatic access to metadata? One use of such access is to write SQL
statements that create groups of news statements to be executed. Say, for example, that you wish to drop all
the tables in the human resources schema. You can choose to create all the DROP statements through a query:

SELECT 'DROP ' + table_schema + '.' + table_name + ';'
FROM information_schema.tables
WHERE table_schema = 'HumanResources'
 AND table_type = 'BASE TABLE';

DROP HumanResources.Shift;
DROP HumanResources.Department;
...

Then you can copy the results, paste them in as the next query batch, and hit execute, and your tables are gone.
Using PowerShell might sometimes be a better way to get the job when needing to operate on groups

of objects all in one go, in a set-oriented manner. However, the quick-and-dirty technique of using SQL to
write SQL can be handy too.

1-8. Naming the Output Columns
Problem
You don’t like the column names returned by a query. You wish to change the names for clarity in reporting,
or to be compatible with an already-written program that is consuming the results from the query.

Solution
Designate what are called column aliases. Use the AS clause for that purpose. For example:

SELECT BusinessEntityID AS "Employee ID",
 VacationHours AS "Vacation",
 SickLeaveHours AS "Sick Time"
FROM HumanResources.Employee;

ChApter 1 ■ GettinG StArted With SeLeCt

9

Employee ID Vacation Sick Time
----------- -------- ---------
 1 99 69
 2 1 20
 3 2 21

How It Works
Each column in a result set is given a name. The name appears in the column heading when you
execute a query ad-hoc using Management Studio. The name is also the name by which any program
code must reference the column when consuming the results from a query. You can specify any name
you like for a column via the AS clause. Such a name is termed a column alias.

There are some syntax alternatives to be aware of, which you might encounter when looking over
existing code written by others. The following lines show these variations, and all have the same effect:

BusinessEntityID AS "Employee ID"
BusinessEntityID "Employee ID"
BusinessEntityID AS [Employee ID]

The first two lines show ISO standard syntax. The third is syntax specific to SQL Server. The first line
shows the use of the AS clause, which represents the latest thinking in the standard, and thus we recommend
that approach.

Note ■ You can omit the enclosing quotes around a column alias when there are no spaces involved.

1-9. Providing Shorthand Names for Tables
Problem
You are writing a complicated WHERE clause, or a SELECT list, mixing column names from many tables, and it
is becoming tedious to properly qualify each column name with its associated table and schema name.

Solution
Specify a table alias for each table in your query. Use the AS keyword to do that. For example:

SELECT E.BusinessEntityID AS "Employee ID",
 E.VacationHours AS "Vacation",
 E.SickLeaveHours AS "Sick Time"
FROM HumanResources.Employee AS E
WHERE E.VacationHours > 40;

ChApter 1 ■ GettinG StArted With SeLeCt

10

How It Works
Specify table aliases using the AS clause. Place an AS clause immediately following each table name
in the query’s FROM clause. The solution example provides the alias, or alternate name, E for the table
HumanResources.Employee. As far as the rest of the query is concerned, the table is now named E. By
extension, you must now yourself refer to the table only as E.

Table aliases make it easy to qualify column names in a query. It is much easier to type

E.BusinessEntityID

than it is to type

HumanResources.Employee.BusinessEntityID

In real-life use, and especially in large queries, it is helpful to make your aliases more readable than the
ones in our example. For example, specify Emp instead of E as the alias for the Employee table. It is easier to
remember later what Emp means than to struggle over the single letter E.

Table aliases work much like column aliases, so be sure to read Recipe 1-8 as well. The syntax
alternatives described in that recipe also apply when designating table aliases.

1-10. Computing New Columns from Existing Data
Problem
You are querying a table that lacks the precise bit of information you need. However, you are able to write an
expression to generate the result that you are after. For example, you want to report on total time off available
to employees. Your database design divides time off into separate buckets for vacation time and sick time.
You however, wish to report a single value.

Solution
Write an expression involving the existing columns in the table, and then place the expression into your
SELECT list. Place it there as you would any other column. Provide a column alias by which the program
executing the query can reference the computed column. For example:

SELECT BusinessEntityID AS "EmployeeID",
 VacationHours + SickLeaveHours AS "AvailableTimeOff"
FROM HumanResources.Employee;

 EmployeeID AvailableTimeOff
----------- ----------------
 1 168
 2 21
 3 23
...

ChApter 1 ■ GettinG StArted With SeLeCt

11

How It Works
You can specify any expression you like in the SELECT list, and the value of that expression will be returned
as a column in the query results. Most of the time you’ll be referring to at least one table column from such
an expression, but there are actually useful expressions that can be written that stand alone, that do not take
other columns as input.

Recipe 1-8 introduces column aliases. It‘s especially important to provide them for computed columns.
That‘s because if you don’t provide an alias for a computed column, one is not created for you, and thus
there is no name by which to refer to the column, nor is there a name to place in the output heading when
executing the query ad-hoc from Management Studio.

1-11. Negating a Search Condition
Problem
You are finding it easier to describe those rows that you do not want rather than those that you do want.

Solution
Describe the rows that you do not want. Then use the NOT operator to essentially reverse the description
so that you get those rows that you do want. The NOT logical operator negates the expression that follows it.
For example, you can retrieve all employees having a title of anything but “Ms.” by executing the
following query:

SELECT Title, FirstName, LastName
FROM Person.Person
WHERE NOT Title = 'Ms.';

Title FirstName LastName
-------- ----------- -----------
Mr. Jossef Goldberg
Mr. Hung-Fu Ting
...
Sr. Humberto Acevedo
Sra. Pilar Ackerman
...

How It Works
NOT specifies the reverse of a search condition, in this case specifying that only rows that don’t have the
Title equal to “Ms.” be returned. You can apply the NOT operator to individual expressions in a WHERE clause.
You can also apply it to a group of expressions. For example:

WHERE NOT (Title = 'Ms.' OR Title = 'Mr.')

Think in terms of finding all the rows having “Ms.” or “Mr.” and then returning everything else except
those rows. The parentheses force evaluation of the OR condition first. Then all rows not meeting that
condition are returned by the query.

ChApter 1 ■ GettinG StArted With SeLeCt

12

1-12. Keeping the WHERE Clause Unambiguous
Problem
You are writing several expressions in a WHERE clause that are linked together using AND and OR, and sometimes
 NOT. You worry that future maintainers of your query will misconstrue your intentions.

Solution
Enclose expressions in parentheses to make clear your intent. For example:

SELECT Title, FirstName, LastName
FROM Person.Person
WHERE Title = 'Ms.' AND
 (FirstName = 'Catherine' OR
 LastName = 'Adams');

How It Works
You can write multiple operators (AND, OR, NOT) in a single WHERE clause, but it is important to make
your intentions clear by properly embedding your ANDs and ORs in parentheses. The NOT operator takes
precedence (is evaluated first) over AND. The AND operator takes precedence over the OR operator. Using both
AND and OR operators in the same WHERE clause without parentheses can return unexpected results.

Consider the solution query and pretend for a moment that there are no parentheses. Is the intention
to return results for all rows with a Title of “Ms.,” and of those rows, only include those with a FirstName of
Catherine or a LastName of Adams? Or did the query author wish to search for all people titled “Ms.” with a
FirstName of Catherine, as well as anyone with a LastName of Adams? The parentheses make the author’s
intentions crystal clear.

It is good practice to use parentheses to clarify exactly what rows should be returned. Even if you
are fully conversant with the rules of operator precedence, those who come after you may not be. Make
judicious use of parentheses to remove all doubt as to your intentions.

1-13. Testing for Existence
Problem
You want to know whether something is true, but you don’t really care to see the data that proves it. For
example, you want to know the answer to the following business question: “Are there really employees
having more than 80 hours of sick time?”

Solution
One solution is to execute a query to return one row in the event that what you care about is true, and to
return no rows otherwise. The following example returns the value 1 in the event of any employee having
more than 80 hours of sick time:

SELECT TOP(1) 1
FROM HumanResources.Employee
WHERE SickLeaveHours > 80;

ChApter 1 ■ GettinG StArted With SeLeCt

13

(0 row(s) affected)

Another approach is to write an EXISTS predicate. For example, and testing for 40 hours this time:

SELECT 1
WHERE EXISTS (
 SELECT *
 FROM HumanResources.Employee
 WHERE SickLeaveHours > 40
);

 1

(1 row(s) affected)

How It Works
The first solution makes use of T-SQL’s TOP(n) syntax to end the query when the first row is found matching
the condition. No rows were found in the example. You will find one though, if you lower the hour threshold
to 40. There are employees having more than 40 hours of sick time, but none that have more than 80 hours.

The second solution achieves the same result, but through an EXISTS predicate. The outer query returns
the value 1 as a single row and column to indicate that rows exist for the query listed in the EXISTS predicate.
Otherwise, the outer query returns no row at all.

Avoid an ORDER BY clause when testing for existence like this recipe shows. You want query execution to
stop as soon as possible. You can solve a different type of problem by using ORDER BY in conjunction with TOP.

1-14. Specifying a Range of Values
Problem
You wish to specify a range of values as a search condition. For example, you are querying a table having a
date column. You wish to return rows having dates only in a specified range of interest.

Solution
Write a predicate involving the BETWEEN operator. That operator allows you to specify a range of values, in
this case date values. For example, to find sales orders placed between the dates 7/23/2005 and 7/24/2005:

SELECT SalesOrderID, ShipDate
FROM Sales.SalesOrderHeader
WHERE ShipDate BETWEEN '2005-07-23 00:00:00.0' AND '2005-07-24 23:59:59.0';

ChApter 1 ■ GettinG StArted With SeLeCt

14

SalesOrderID ShipDate
------------ -----------------------
 43758 2005-07-23 00:00:00.000
 43759 2005-07-23 00:00:00.000
 43760 2005-07-23 00:00:00.000
 ...

How It Works
This recipe demonstrates the BETWEEN operator, which tests whether a column’s value falls between two
values that you specify. The value range is inclusive of the two endpoints.

Notice that we designated the specific time in hours, minutes, and seconds as well. The time-of-day
defaults to 00:00:00, which is midnight at the start of a date. In this example, we wanted to include all of
7/24/2005. Thus, we specified the last possible second of that day.

However, there is an issue you must be aware of when using BETWEEN with date-time values: What if the
shipment date is 2005-07-23 23:59:59.456? A safer approach is to test for dates being greater than or equal to
the starting point, and less than the earliest time just after the end point. For example:

SELECT SalesOrderID, ShipDate
FROM Sales.SalesOrderHeader
WHERE ShipDate >= '2005-07-23' AND ShipDate < '2005-07-25';

This solution is safer, because it’s trivial to specify the earliest possible time on the 25th, and then to test
for ShipDate being less than that. It is not so easy to know the maximum possible fractional seconds value
to specify for the BETWEEN approach. Should those be 59.997? 59.9999? 59.999999? How many nines? Don’t
waste time trying to figure that out. Just take the safer approach unless you are certain that your data never
includes fractional seconds.

Caution ■ You encounter the same issue with decimal digits when using BETWEEN with decimal and
floating-point values as with date-time values.

1-15. Checking for Null Values
Problem
Some of the values in a column might be NULL. You wish to identify rows having or not having NULL values.

Solution
Make use of the IS NULL and IS NOT NULL tests to identify rows having or not having NULL values in a given
column. For example, the following query returns any rows for which the value of the product’s weight is
unknown:

SELECT ProductID, Name, Weight
FROM Production.Product
WHERE Weight IS NULL;

ChApter 1 ■ GettinG StArted With SeLeCt

15

 ProductID Name Weight
----------- -------------------- ------
 1 Adjustable Race NULL
 2 Bearing Ball NULL
 3 BB Ball Bearing NULL
 4 Headset Ball Bearings NULL
...

How It Works
NULL values cannot be identified using operators such as = and <> that are designed to compare two values
and return a TRUE or FALSE result. NULL actually indicates the absence of a value. For that reason, neither of
the following predicates can be used to detect a NULL value:

Weight = NULL yields the value UNKNOWN, which is neither TRUE nor FALSE

Weight <> NULL also yields UNKNOWN

IS NULL, however, is specifically designed to return TRUE when a value is NULL. Likewise, the expression
IS NOT NULL returns TRUE when a value is not NULL. Predicates involving IS NULL and IS NOT NULL enable
you to filter for rows having or not having NULL values in one or more columns.

Caution ■ improper handling of nulls is one of the most prevalent sources of query mistakes. See Chapter 3
for guidance and techniques that can help you avoid trouble and get the results you want.

1-16. Writing an IN-List
Problem
You are searching for matches to a specific list of values. You could write a string of predicates joined by
OR operators, but you prefer a more easily readable and maintainable solution.

Solution
Create a predicate involving the IN operator, which allows you to specify an arbitrary list of values. For
example, the IN operator in the following query tests the equality of the Color column to a list of expressions:

SELECT ProductID, Name, Color
FROM Production.Product
WHERE Color IN ('Silver', 'Black', 'Red');

http://dx.doi.org/10.1007/9781484200629_3

ChApter 1 ■ GettinG StArted With SeLeCt

16

 ProductID Name Color
----------- ----------------- ---------
 317 LL Crankarm Black
 318 ML Crankarm Black
 319 HL Crankarm Black
 320 Chainring Bolts Silver
 321 Chainring Nut Silver
...

How It Works
Use the IN operator any time you have a specific list of values. You can think of IN as shorthand for multiple
OR expressions. For example, the following two WHERE clauses are semantically equivalent:

WHERE Color IN ('Silver', 'Black', 'Red')

WHERE Color = 'Silver' OR Color = 'Black' OR Color = 'Red'

You can see that an IN-list becomes less cumbersome than a string of OR’d-together expressions.
This is especially true as the number of values grows. You can also write NOT IN to find rows having values
other than those in your list.

Caution ■ take care when writing NOT IN. if just one value in the in-list is null, your NOT IN expression will
always return UNKNOWN, and no rows will be selected. You won’t have that problem when writing an in-list of
literal values, such as in the example, but the problem can occur easily when your in-list is made up of
variables or table columns.

1-17. Performing Wildcard Searches
Problem
You don’t have a specific value or list of values to find. What you do have is a general pattern, and you want
to find all values that match that pattern.

Solution
Make use of the LIKE predicate, which provides a set of basic pattern-matching capabilities. Create a string
using so-called wildcards to serve as a search expression. Table 1-2 shows the wildcards available in SQL
Server 2014.

ChApter 1 ■ GettinG StArted With SeLeCt

17

Table 1-2. Wildcards for the LIKE predicate

Wildcard Usage

% The percent sign. Represents a string of zero or more characters

_ The underscore. Represents a single character

[...] A list of characters enclosed within square brackets. Represents a single character from
among any in the list.

[^...] A list of characters enclosed within square brackets and preceded by a caret. Represents a
single character from among any not in the list.

The following example demonstrates using the LIKE operation with the % wildcard, searching for any
product with a name beginning with the letter B:

SELECT ProductID, Name
FROM Production.Product
WHERE Name LIKE 'B%';

This query returns the following results:

 ProductID Name
----------- ----------------------
 3 BB Ball Bearing
 2 Bearing Ball
 877 Bike Wash - Dissolver
 316 Blade

How It Works
Wildcards allow you to search for patterns in character-based columns. In the example from this recipe,
the % sign is used to represent a string of zero or more characters:

WHERE Name LIKE 'B%'

If searching for a literal that would otherwise be interpreted by SQL Server as a wildcard, you can use
the ESCAPE clause. For example, you can search for a literal percentage sign in the Name column:

WHERE Name LIKE '%/%%' ESCAPE '/'

A slash embedded in single quotes is put after the ESCAPE clause in this example. This designates the
slash symbol as the escape character for the associated expression string. Any wildcard preceded by a slash
is then treated as just a regular character.

Tip ■ if you ever find yourself making extensive use of LIKE, especially in finding words or phrases within
large text columns, be sure to become familiar with SQL Server’s full-text search feature. Pro Full-Text Search
in SQL Server 2008 by hilary Cotter and Michael Coles is a good resource on that feature and its use.

ChApter 1 ■ GettinG StArted With SeLeCt

18

1-18. Sorting Your Results
Problem
You are executing a query, and you wish the results to come back in a specific order.

Solution
Write an ORDER BY clause into your query. Specify the columns on which to sort. Place the clause at the very
end of your query. For example:

SELECT p.Name, h.EndDate, h.ListPrice
FROM Production.Product p
INNER JOIN Production.ProductListPriceHistory h ON
 p.ProductID = h.ProductID
ORDER BY p.Name, h.EndDate;

This query returns results as follows:

Name EndDate ListPrice
----------------------- ----------------------- ---------
All-Purpose Bike Stand NULL 159.00
AWC Logo Cap NULL 8.99
AWC Logo Cap 2006-06-30 00:00:00.000 8.6442
AWC Logo Cap 2007-06-30 00:00:00.000 8.6442
Bike Wash - Dissolver NULL 7.95
Cable Lock 2007-06-30 00:00:00.000 25.00
...

Notice the results are first sorted by Name. Within Name, they are sorted by EndDate.

How It Works
Although queries sometimes appear to return data properly without an ORDER BY clause, you should never
depend upon any ordering that is accidental. You must write an ORDER BY into your query if the order of the
result set is critical. You can designate one or more columns in your ORDER BY clause, so long as the columns
do not exceed 8,060 bytes in total.

We can’t stress enough the importance of ORDER BY when order matters. Grouping operations and
indexing sometimes make it seem that ORDER BY is superfluous. It isn’t. Trust us: there are enough corner
cases that sooner or later you’ll be caught out. If the sort order matters, then say so explicitly in your query by
writing an ORDER BY clause.

Note ■ the solution query implements what is known as a join between two tables. there’s a lot to be said
about joins, and you’ll learn more about them in Chapter 4.

http://dx.doi.org/10.1007/9781484200629_4

ChApter 1 ■ GettinG StArted With SeLeCt

19

The default sort order is an ascending sort. You can specify ascending or descending explicitly by
writing either ASC and DESC, as follows:

ORDER BY p.Name ASC, h.EndDate DESC

NULL values are considered lower than everything else. They sort to the top in an ascending sort. They
sort to the bottom in a descending sort.

You need not return a column in order to sort by it. For example, you can group results by color to help
break any ties:

ORDER BY p.Name, h.EndDate, p.Color

It doesn’t matter that Color is not returned by the query. SQL Server can sort on the column without
returning it.

1-19. Specifying the Case-Sensitivity of a Sort
Problem
You want to specify whether a sort is performed in a binary manner, or whether it is case-sensitive or
case-insensitive.

Solution
Add a COLLATE clause to each column specification in your ORDER BY clause that you are concerned about.
Following is a repeat of the query from Recipe 1-18, but this time a binary sort is specified for the p.Name
column.

SELECT p.Name, h.EndDate, h.ListPrice
FROM Production.Product p
INNER JOIN Production.ProductListPriceHistory h ON
 p.ProductID = h.ProductID
ORDER BY p.Name COLLATE Latin1_General_BIN ASC,
 h.EndDate DESC;

We’ve tampered with one of the product names in our copy of the Adventure Works database in order to
demonstrate the effect of this query and its collation. Look at where frame size 42 occurs in the following output.

...
HL Headset 2007-06-30 00:00:00.000 124.73
HL MOUNTAIN FRAME - BLACK, 42 2007-06-30 00:00:00.000 1226.9091
HL MOUNTAIN FRAME - BLACK, 42 2006-06-30 00:00:00.000 1191.1739
HL MOUNTAIN FRAME - BLACK, 42 NULL 1349.60
HL Mountain Frame - Black, 38 2007-06-30 00:00:00.000 1226.9091
HL Mountain Frame - Black, 38 2006-06-30 00:00:00.000 1191.1739
HL Mountain Frame - Black, 38 NULL 1349.60
HL Mountain Frame - Black, 44 2006-06-30 00:00:00.000 1349.60
...

ChApter 1 ■ GettinG StArted With SeLeCt

20

The default collation in the example database produces a different result:

...
HL Headset 2007-06-30 00:00:00.000 124.73
HL Mountain Frame - Black, 38 2007-06-30 00:00:00.000 1226.9091
HL Mountain Frame - Black, 38 2006-06-30 00:00:00.000 1191.1739
HL Mountain Frame - Black, 38 NULL 1349.60
HL MOUNTAIN FRAME - BLACK, 42 2007-06-30 00:00:00.000 1226.9091
HL MOUNTAIN FRAME - BLACK, 42 2006-06-30 00:00:00.000 1191.1739
HL MOUNTAIN FRAME - BLACK, 42 NULL 1349.60
HL Mountain Frame - Black, 44 2006-06-30 00:00:00.000 1349.60
...

How It Works
You have the option to specify a non-default collation for each column listed in an ORDER BY clause. You can
of course explicitly specify the default collation too, but typically you would add a COLLATE clause because
you want something other than the default.

SQL Server supports thousands of collations, each providing a different set of sorting rules. You can
obtain a complete list by executing the following query:

SELECT Name, Description
FROM fn_helpcollations();

The list is long. It helps to narrow your search. You can get an idea as to the languages that are
supported by executing the following query:

SELECT DISTINCT SUBSTRING(Name, 1, CHARINDEX('_', Name)-1)
FROM fn_helpcollations();

Then you can list the collations for just one language. For example, here is how to list collations for
Ukrainian:

SELECT Name, Description
FROM fn_helpcollations()
WHERE Name LIKE 'Ukrainian%';

Each language’s collation set generally provides the ability for you to choose whether any of the
following matter when sorting rows: case, accents, kanatype, and character width. Kanatype matters for
Japanese text. Character width comes into play in some situations in which Unicode provides the same
character in, for example, single-byte or double-byte form.

A binary collation such as the Latin1_General_BIN used in the example is what you need in order to
return a case-sensitive sort in the way that many programmers think of such as sort as being done. There is
also a Latin1_General_CS_AS collation that is described as being case-sensitive and accent-sensitive. And
that is true! But the sorting is done according to Unicode rules, and the results sometimes appear to match
those from the insensitive Latin1_General_CI_AI.

Unicode sorting rules view uppercase as being greater than lowercase. Thus, “BLUE” sorts after
“blue” when a case-sensitive sort is being performed. However “BLUE” will sort prior to “red” in either
case, because Unicode rules only look at the case when it is needed in order to break a tie. If your column
contains all distinct values such as “BLUE” and “Red,” then they will sort the same no matter whether you

ChApter 1 ■ GettinG StArted With SeLeCt

21

use Latin1_General_CS_AS or Latin1_General_CI_AI, and that can be disconcerting at first. It is when you
have values such as “reD,” “Red,” and “RED” that you will see a difference in results between case-sensitive
and case-insensitive sorts done under Unicode sorting rules.

Note ■ Visit http://www.unicode.org/reports/tr10/ to read about Unicode’s collation algorithm in
extreme detail.

1-20. Sorting Nulls High or Low
Problem
You are a refugee from Oracle Database, and you miss the ability to specify NULLS FIRST and NULLS LAST
when writing ORDER BY clauses.

Solution
Add a semaphore expression to your ORDER BY clause for the column in question. Then specify ASC or DSC
to make the nulls sort first or last as desired. The following example adds such an expression for the Weight
column in order to sort that column with nulls last.

SELECT ProductID, Name, Weight
FROM Production.Product
ORDER BY ISNULL(Weight, 1) DESC, Weight;

 ProductID Name Weight
----------- --------------------- -------
 826 LL Road Rear Wheel 1050.00
 827 ML Road Rear Wheel 1000.00
 818 LL Road Front Wheel 900.00
...
 504 Cup-Shaped Race NULL
 505 Cone-Shaped Race NULL
 506 Reflector NULL

(504 row(s) affected)

How It Works
SQL Server doesn‘t implement syntax for you to use in specifying whether nulls sort first or last. The solution
works around that omission by evaluating the following expression during the sort:

ISNULL(Weight, 1)

http://www.unicode.org/reports/tr10/

ChApter 1 ■ GettinG StArted With SeLeCt

22

A null weight yields a result of 1. Otherwise, the expression is itself null. Those are the only two possible
results: 1 or null. It‘s a simple matter to then append ASC or DESC to specify whether the rows returning 1 sort
last or first.

If you find it confusing to evaluate ISNULL in your head, then you can get the same effect through the
IIF function:

SELECT ProductID, Name, Weight
FROM Production.Product
ORDER BY IIF(Weight IS NULL, 1, 0), Weight;

The result from IIF in this example is 1 for null and zero otherwise. The normal sort order is ascending.
Rows causing the expression to evaluate to zero have non-null weights and are sorted first. The null weights
trigger IIF to return a 1, and they sort last.

1-21. Forcing Unusual Sort Orders
Problem
You wish to force a sort order not directly supported by the data. For example, you wish to retrieve only the
colored products, and you further wish to force the color red to sort first.

Solution
Write an expression to translate values in the data to values that will give the sort order you are after. Then
order your query results by that expression. Following is one approach to the problem of retrieving colored
parts and listing the red ones first:

SELECT p.ProductID, p.Name, p.Color
FROM Production.Product AS p
WHERE p.Color IS NOT NULL
ORDER BY CASE p.Color
WHEN 'Red' THEN NULL ELSE p.COLOR END;

 ProductID Name Color
----------- ----------------------------- -----
 706 HL Road Frame - Red, 58 Red
 707 Sport-100 Helmet, Red Red
 725 LL Road Frame - Red, 44 Red
...
 790 Road-250 Red, 48 Red
 791 Road-250 Red, 52 Red
 792 Road-250 Red, 58 Red
 793 Road-250 Black, 44 Black
 794 Road-250 Black, 48 Black
 795 Road-250 Black, 52 Black

ChApter 1 ■ GettinG StArted With SeLeCt

23

How It Works
The solution takes advantage of the fact that SQL Server sorts nulls first. The CASE expression returns NULL
for red-colored items, thus forcing those first. Other colors are returned unchanged. The result is all the red
items appear first in the list, and then red is followed by other colors in their natural sort order.

You don’t have to rely upon nulls sorting first. You can translate “Red” to any value you like, such as, for
example, to a single space character. Then that space character would sort before all the spelled-out color names.

1-22. Paging Through a Result Set
Problem
You wish to present an ordered result set to an application user N rows at a time.

Solution
Make use of the query-paging feature that was introduced in SQL Server 2012. Do this by adding OFFSET and
FETCH clauses to your query’s ORDER BY clause. For example, the following query uses OFFSET and FETCH to
retrieve the first ten rows of results:

SELECT ProductID, Name
FROM Production.Product
ORDER BY Name
OFFSET 0 ROWS FETCH NEXT 10 ROWS ONLY;

Results from this query will be the first ten rows, as ordered by product name:

 ProductID Name
----------- ------------------------
 1 Adjustable Race
 879 All-Purpose Bike Stand
 712 AWC Logo Cap
 3 BB Ball Bearing
 2 Bearing Ball
 877 Bike Wash - Dissolver
 316 Blade
 843 Cable Lock
 952 Chain
 324 Chain Stays

Changing the offset from 0 to 8 will fetch another ten rows. The offset will skip the first eight rows.

There will be a two-row overlap with the preceding result set. Here is the query:

SELECT ProductID, Name
FROM Production.Product
ORDER BY Name
OFFSET 8 ROWS FETCH NEXT 10 ROWS ONLY;

ChApter 1 ■ GettinG StArted With SeLeCt

24

And here are the results:

 ProductID Name
----------- --------------------
 952 Chain
 324 Chain Stays
 322 Chainring
 320 Chainring Bolts
 321 Chainring Nut
 866 Classic Vest, L
 865 Classic Vest, M
 864 Classic Vest, S
 505 Cone-Shaped Race
 323 Crown Race

Continue modifying the offset each time, paging through the result until the user is finished.

How It Works
OFFSET and FETCH turn a SELECT statement into a query fetching a specific window of rows from those that
are possible. Use OFFSET to specify how many rows to skip from the beginning of the possible result set. Use
FETCH to set the number of rows to return. You can change either value as you wish from one execution to
the next.

Be sure to specify a deterministic set of sort columns in your ORDER BY clause. Each SELECT to get the
next page of results is a separate query and a separate sort operation. Make sure that your data sorts the
same way each time. Do not leave ambiguity.

Note ■ the word deterministic means that the same inputs always give the same outputs. Specify your sort
such that the same set of input rows will always yield the same ordering in the query output.

Each execution of a paging query is a separate execution from the others. Consider executing sequences
of paging queries from within a transaction providing snapshot or serializable isolation. Chapter 12
discusses such transactions in detail. However, you can begin and end such a transaction as follows:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
BEGIN TRANSACTION;
 /* Queries go here */
COMMIT;
/* Return to default */
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

Anomalies are possible without isolation. For example:

You might see a row twice. In the solution example, if another user inserted eight •	
new rows with names sorting earlier than “Adjustable Race,” then the second query
results would be the same as the first.

You might miss rows. If another user quickly deleted the first eight rows, then the •	
second solution query would miss everything from “Chainring” to “Crown Race.”

http://dx.doi.org/10.1007/9781484200629_12

ChApter 1 ■ GettinG StArted With SeLeCt

25

You may decide to risk the default isolation level. If your target table is read-only, or if it is updated in
batch-mode only at night, then you might be justified in leaving the isolation level at its default because
the risk of change during the day is low to non-existent. Possibly you might choose not to worry about the
issue at all. However, make sure that whatever you do is the result of thinking things through and making a
conscious choice.

Note ■ it may seem rash for us to even hint at not allowing the possibility of inconsistent results.
We advocate making careful and conscious decisions. Some applications—Facebook is a well-known
example—trade away some consistency in favor of performance. (We routinely see minor inconsistencies on
our Facebook walls). We are not saying you should do the same. We simply acknowledge the possibility of
such a choice.

1-23. Sampling a Subset of Rows
Problem
You are getting familiar with a table, and you want to review a representative sampling of the data.

Solution
Query the table and limit the results using the TABLESAMPLE clause. You can specify an approximate
percentage of rows to retrieve:

SELECT *
FROM Purchasing.PurchaseOrderHeader
TABLESAMPLE (5 PERCENT);

Or you can specify an approximate quantity of rows:

SELECT *
FROM Purchasing.PurchaseOrderHeader
TABLESAMPLE (200 ROWS);

How It Works
The TABLESAMPLE clause is available from SQL Server 2008 R2 forward. Use it to get an idea of what the data
looks like in a table without having to page through all of the table’s data.

The values specified for rows and percentages should be thought of as approximate values. If you
specify a low enough value for rows, such as 20 rows in the example queries, you might not get any data
back at all. That’s because at some point during processing, the number or percentage of rows you specify
is translated into some integer number of data pages relative to all the pages that are allocated to the table.
That number of pages is randomly chosen from among all the pages, and all rows that happen to be on the
selected pages are returned. The actual distribution of rows across the pages can affect the results, as can the
rounding to an integer number of pages.

