
Juneau

 

US $ 59.99

Shelve in
Programming Languages/Java

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Java 8 Recipes
Java 8 Recipes offers solutions to common programming problems encountered 
while developing Java-based applications. Fully updated with the newest features 
and techniques available, Java 8 Recipes provides code examples involving 
Lambdas, embedded scripting with Nashorn, the new date-time API, stream 
support, functional interfaces, and much more. Special emphasis is given to 
features such as lambdas that are newly introduced in Java 8. Content is presented 
in the popular problem-solution format: Look up the programming problem that 
you want to solve. Read the solution. Apply the solution directly in your own code. 
Problem solved!

The problem-solution approach sets Java 8 Recipes apart. Java 8 Recipes 
is focused less on the language itself and more on what you can do with it that is 
useful. The book respects your time by always focusing on a task that you might want 
to perform using the language. Solutions come first. Explanations come later. You are 
free to crib from the book and apply the code examples directly to your own projects.

SECOND 
EDITION

RELATED

9 781430 268277

55999
ISBN 978-1-4302-6827-7



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



v

Contents at a Glance

About the Author�����������������������������������������������������������������������������������������������������������������xli

About the Technical Reviewers�����������������������������������������������������������������������������������������xliii

Acknowledgments�������������������������������������������������������������������������������������������������������������� xlv

Introduction���������������������������������������������������������������������������������������������������������������������� xlvii

Chapter 1: Getting Started with Java 8■■ ������������������������������������������������������������������������������1

Chapter 2: New Features of Java 8■■ �����������������������������������������������������������������������������������29

Chapter 3: Strings■■ ������������������������������������������������������������������������������������������������������������49

Chapter 4: Numbers and Dates■■ �����������������������������������������������������������������������������������������65

Chapter 5: Object-Oriented Java■■ ��������������������������������������������������������������������������������������97

Chapter 6: Lambda Expressions■■ �������������������������������������������������������������������������������������133

Chapter 7: Data Structures and Collections■■ �������������������������������������������������������������������153

Chapter 8: Input and Output■■ �������������������������������������������������������������������������������������������187

Chapter 9: Exceptions and Logging■■ ��������������������������������������������������������������������������������207

Chapter 10: Concurrency■■ ������������������������������������������������������������������������������������������������223

Chapter 11: Debugging and Unit Testing■■ ������������������������������������������������������������������������249

Chapter 12: Unicode, Internationalization, and Currency Codes■■ ������������������������������������263

Chapter 13: Working with Databases■■ �����������������������������������������������������������������������������283

Chapter 14: JavaFX Fundamentals■■ ���������������������������������������������������������������������������������331

Chapter 15: Graphics with JavaFX■■ ���������������������������������������������������������������������������������405

Chapter 16: Media with JavaFX■■ ��������������������������������������������������������������������������������������445



■ Contents at a Glance

vi

Chapter 17: JavaFX on the Web■■ ��������������������������������������������������������������������������������������473

Chapter 18: Nashorn and Scripting■■ ��������������������������������������������������������������������������������505

Chapter 19: E-mail■■ ����������������������������������������������������������������������������������������������������������527

Chapter 20: XML Processing■■ ������������������������������������������������������������������������������������������537

Chapter 21: Networking ■■ ������������������������������������������������������������������������������������������������553

Chapter 22: Security■■ �������������������������������������������������������������������������������������������������������571

Index����������������������������������������������������������������������������������������������������������������������������������579



xlvii

Introduction

The Java programming language was introduced in 1995 by Sun Microsystems. Derived from languages such as 
C and C++, Java was designed to be more intuitive and easier to use than older languages, specifically due to its 
simplistic object model and automated facilities such as memory management. At the time, Java drew the interest 
of developers because of its object oriented, concurrent architecture; its excellent security and scalability; and 
because applications developed in the Java language could run on any operating system that contained a Java Virtual 
Machine (JVM). Since its inception, Java has been described as a language that allows developers to “write once, run 
everywhere” as code is compiled into class files that contain bytecode, and the resulting class files can run on any 
compliant JVM. This concept made Java an immediate success for desktop development, which later branched off into 
different technological solutions over the years, including development of web-based applications and rich Internet 
applications (RIAs). Today, Java is deployed on a broad range of devices, including mobile phones, printers, medical 
devices, Blu-ray players, and so on.

The Java platform consists of a hierarchy of components, starting with the Java Development Kit (JDK), which 
is composed of the Java Runtime Environment (JRE), the Java programming language, and platform tools that are 
necessary to develop and run Java applications. The JRE contains the Java Virtual Machine (JVM), plus the Java 
application programming interfaces (APIs) and libraries that assist in the development of Java applications. The JVM 
is the base upon which compiled Java class files run and is responsible for interpreting compiled Java classes and 
executing the code. Every operating system that is capable of running Java code has its own version of the JVM. To that 
end, the JRE must be installed on any system that will be running local Java desktop or stand-alone Java applications. 
Oracle provides JRE implementations for most of the major operating systems. Each operating system can have its 
own flavor of the JRE. For instance, mobile devices can run a scaled down version of the full JRE that is optimized 
to run Java Mobile Edition (ME) and Java SE embedded applications. The Java platform APIs and libraries are a 
collection of predefined classes that are used by all Java applications. Any application that runs on the JVM makes 
uses the Java platform APIs and libraries. This allows applications to use the functionality that has been predefined 
and loaded into the JVM and leaves developers with more time to worry about the details of their specific application. 
The classes that comprise the Java platform APIs and libraries allow Java applications to use one set of classes in order 
to communicate with the underlying operating system. As such, the Java platform takes care of interpreting the set 
of instructions provided by a Java application into operating system commands that are required for the machine on 
which the application is being executed. This creates a facade for Java developers to write code against so that they can 
develop applications that can be written once and ran on every machine that contains a relevant JVM.

The JVM and the Java platform APIs and libraries play key roles in the lifecycle of every Java application. Entire 
books have been written that explore the platform and JVM. This book focuses on the Java language itself, which is 
used to develop Java applications, although the JVM and Java platform APIs and libraries are referenced as needed. 
The Java language is a robust, secure, and modern object oriented language that can be used to develop applications 
to run on the JVM. The Java programming language has been refined over several iterations and it becomes more 
powerful, secure, and modern with each new release. This book covers many features of the Java programming 
language from those that were introduced in Java 1.0 through those that made their way to the language in Java 8.  
In 2014, Oracle Corporation released Java 8, which was another milestone release for the Java ecosystem. Not only was 
Java already the most modern, statically typed, object oriented language available for development, but Java 8 adds 
important new enhancements to the language, such as lambda expressions, streams processing, and default methods. 
JavaFX 8 was also released at the same time, advancing desktop Java applications more than ever. JavaFX 8 can be 
used for developing rich desktop and Internet applications using the Java language, or any other language that runs 



■ Introduction

xlviii

on the JVM. It provides a rich set of graphical and media user interfaces to develop extraordinary visual applications. 
This release is another nice update to the JavaFX platform, adding in features such as the Swing node and the  
Print API. 

This book covers the fundamentals of Java development, such as installing the JDK, writing classes, and running 
applications. It delves into essential topics such as the development of object oriented constructs, exception handling, 
unit testing, and localization. The book also provides solutions for desktop application development using the JavaFX, 
and some web-based and database solutions. It covers JavaFX 8 in depth and is an essential guide for developers 
beginning to use JavaFX 8. This book can be used as a guide for solving problems that ordinary Java developers may 
encounter at some point. A broad range of topics is discussed, and the solutions to the problems that are covered 
in this book are concise and to the point. If you are a novice Java developer, we hope that this book will help you get 
started on your journey to working with one of the most advanced and widely used programming languages available 
today. For those of you who have used the Java language for some time, we hope that this book will provide you with 
updated material that is new to Java 8 and JavaFX 2.0 so that you can further refine your Java development skills. 
We ensure that advanced Java application developers will also learn a thing or two regarding the new features of the 
language and perhaps even stumble upon some techniques that were not used in the past. Whatever your skill level, 
this book is good to have close at hand as a reference for solutions to those problems that you encounter in your daily 
programming.

Who This Book Is For
This book is intended for all those who are interested in learning the Java programming language and/or already know 
the language but would like some information regarding the new features included in Java SE 8 and JavaFX 8. Those 
who have not yet programmed in the Java language can read this book, and it will allow them to start from scratch 
to get up and running quickly. Intermediate and advanced Java developers who are looking to update their arsenal 
with the latest features that Java SE 8 and JavaFX 8 make available to them can also read the book to quickly update 
and refresh their skill set. Java desktop programmers will find this book useful for its content on developing desktop 
applications using the JavaFX API. There are, of course, a myriad of other essential topics that will be useful to Java 
developers of any type.

How This Book Is Structured
This book is structured so that it does not have to be read from cover to cover. In fact, it is structured so that developers 
can chose which topics they want to read about and jump right to them. Each recipe contains a problem to solve, 
one or more solutions to solve that problem, and a detailed explanation of how the solution works. Although some 
recipes may build upon concepts that have been discussed in other recipes, they contain the appropriate references 
so that the developer can find other related recipes that are beneficial to the solution. The book is designed to allow 
developers to get up and running quickly with a solution so that they can be home in time for dinner. 



1

Chapter 1

Getting Started with Java 8

In this chapter we present a handful of recipes to help programmers who are new to the Java language, as well as 
those having experience in other languages, become accustomed to Java 8. You will learn to install Java 8, and also 
install an Interactive Development Environment (IDE) from which you’ll develop applications and experiment with 
the solutions provided in this book. You will learn basics of Java such as how to create a class and how to accept 
keyboard input. Documentation is often overlooked, but in this chapter you will quickly learn how to create great 
documentation for your Java code.

Note■■   Java 8 Recipes is not intended as a complete tutorial. Rather, it covers key concepts of the Java language. 
If you are truly new to Java, we recommend buying and reading one of the many Beginning Java books that are also 
published by Apress.

1-1. Creating a Development Environment
Problem
You want to install Java and experiment with the language. You’d also like a reasonable IDE to use with it.

Solution
Install Java Development Kit 8 (JDK). That gives you the language and a compiler. Then install the NetBeans IDE to 
provide a more productive working environment.

Java Standard Edition (Java SE) is sufficient for most recipes in this book. To download the release, visit the 
following page on the Oracle Technology Network (OTN):
 
http://www.oracle.com/technetwork/java/javase/overview/index.html
 

Figure 1-1 shows the Downloads tab, and you can see the Java Platform download link and image prominently 
on the page. Next to that link is an image for the NetBeans IDE, which provides the option of downloading the JDK 
and NetBeans together. Choose the option that you prefer, download the release for your platform, and run the setup 
wizard to install.

http://www.oracle.com/technetwork/java/javase/overview/index.html


Chapter 1 ■ Getting Started with Java 8

2

Note■■   If you chose to only install the Java Platform (JDK) and not NetBeans, you can download NetBeans at a later 
time by visiting netbeans.org.

How It Works
The name Java™  is a trademark owned by Oracle Corporation. The language itself is open source, and its evolution is 
controlled by a process known as the Java Community Process SM (JCP SM). You can read more about that process at  
www.jcp.org.

There are many editions of Java, such as the Mobile Edition (ME) and the Enterprise Edition (EE). Java SE 
is the Standard Edition and represents the heart of the language. We’ve built the recipes in this book for Java SE 
programmers. Those interested in the development of mobile or embedded applications may be interested in 
learning more about Java ME. Similarly, those interested in developing web applications and working with enterprise 
solutions may be interested in learning more about Java EE.

Note■■  E nterprise Edition programmers may want to buy and read a copy of Java EE 7 Recipes (Apress, 2013).

There are several good websites that you can visit to learn more about Java and keep up-to-date with the latest on 
the platform. A good place to begin for all things Java is the following page on the Oracle Technology Network:
 
http://www.oracle.com/technetwork/java/index.html 

The wealth of resources available from this page can be overwhelming at first, but it’s worth your time to look 
around and get passingly familiar with the many links that are available.

One of the links will be to Java SE, which takes you to the page shown earlier in Figure 1-1. It is from there that 
you can download Java SE and the NetBeans IDE. Also from there you have access to the official documentation, 
to community resources such as forums and newsletters, and to training resources designed to help you build 
knowledge in Java and become certified in the language.

Figure 1-1.  Java SE Downloads page on the Oracle Technology Network 

http://www.jcp.org/
http://www.oracle.com/technetwork/java/index.html


Chapter 1 ■ Getting Started with Java 8

3

1-2. Getting to “Hello, World”
Problem
You’ve installed Java SE 8 and the NetBeans IDE. Now you want to run a simple Java program to verify that your 
installation is working properly. 

Solution
Begin by opening the NetBeans IDE. You should see a workspace resembling the one in Figure 1-2. You may see some 
projects in the left-hand pane if you’ve already been working on projects within the IDE.

Figure 1-2.  Opening the NetBeans IDE



Chapter 1 ■ Getting Started with Java 8

4

Go to the File menu and select New Project. You’ll see the dialog in Figure 1-3. Choose the Java category, and 
then Java Application. Click Next to advance to the dialog shown in Figure 1-4.

Figure 1-3.  Creating a new Java SE project



Chapter 1 ■ Getting Started with Java 8

5

Give your project a name. For the project related to this book, use the name Java8Recipes. Enter that name into 
the Project Name text box at the top of the dialog in Figure 1-4.

Then specify the name of your main class in the Create Main Class text box. Give the following name:
 
org.java8recipes.chapter01.recipe1_02.HelloWorld
 

Be sure to that you’ve entered the project name and class name just as we provide them here, because the code 
to follow depends upon your doing so. Make sure the Project Name text box specifies Java8Recipes. Make sure the 
Create Main Class text box specifies org.java8recipes.chapter01.recipe1_02.HelloWorld.

Tip■■  P ay attention to case, Java is case-sensitive.

Press Finish to complete the wizard and create a skeleton project. You should now be looking at a Java source file. 
Skeleton code is generated for you, and your NetBeans IDE window should resemble the one in Figure 1-5.

Figure 1-4.  Naming the project



Chapter 1 ■ Getting Started with Java 8

6

Place your cursor anywhere in the source code pane. Press CTRL-A to select all the skeleton code. Then press 
Delete to get rid of it. Replace the deleted code with that from Listing 1-1.

Listing 1-1.  A “Hello, World” Example

package org.java8recipes.chapter01.recipe1_02;
 
/* An object of this class will hold the message. */
class HelloMessage {
    private String message = "";
    
    public HelloMessage() {
        this.message = "Default Message";
    }
         

Figure 1-5.  Viewing the skeleton code generated by NetBeans



Chapter 1 ■ Getting Started with Java 8

7

    public void setMessage (String m) {
        this.message = m;
    }
    
    public String getMessage () {
        return this.message.toUpperCase();
    }
     
}
 
/* The main program begins in this class */
public class HelloWorld {
 
    public static void main(String[] args) {
         
        HelloMessage hm;
        hm = new HelloMessage();
         
        System.out.println(hm.getMessage());
         
        hm.setMessage("Hello, World");
         
        System.out.println(hm.getMessage());
    }
     
}
 

You can find the code in Listing 1-1 as part of our example download for the book. It’s in the file HelloWorld.java, 
and you’ll find that file within the NetBeans source package named org.java8recipes.chapter01.recipe1_02.  
All recipe solutions of substance throughout this book are in that example download. 

Make sure you have pasted (or typed) the code from Listing 1-1. Compile and run the program, and you should 
see the following output:
 
run:
DEFAULT MESSAGE
HELLO, WORLD
BUILD SUCCESSFUL (total time: 1 second)
 

This output will appear in a new pane named “Output” that is opened by NetBeans at the bottom of the  
IDE window.

How It Works
You can run almost all the solutions in this chapter using the same general technique shown in this recipe. We’ve 
been painstakingly detailed for that reason, showing the step-by-step screenshots just this one time.



Chapter 1 ■ Getting Started with Java 8

8

Packages
The solution example begins by creating a Java package:
 
package org.java8recipes.chapter01.recipe1_02;
 

Packages are a way of grouping related classes together into a shared namespace. The idea is to achieve universal 
uniqueness by working your way down your organization’s domain name in reverse order. It is also customary to  
write package names in all lowercase.

NetBeans will create a directory structure to mimic your package path. In this case, NetBeans created the 
following directory path:
 
C:\Users\JonathanGennick\Documents\NetBeansProjects\
Java8Recipes\src\org\java8recipes\chapter01\recipe1_02
 

Following are some things to notice about this path:

The front part is •	 C:\Users\...\NetBeansProjects. NetBeans creates all projects under a 
NetbeansProject directory unless you specify otherwise, which you can do from the dialog in 
Figure 1-4. Many developers specify shorter paths.

Next is the first occurrence of •	 Java8Recipes. This occurrence corresponds to the project name 
you gave when you filled in the Project Name text box from Figure 1-4.

Any source files you create go into the •	 src directory. NetBeans creates other directories at this 
level. For example, NetBeans creates a build directory, and then underneath it is a classes 
subdirectory to hold your compiled class files.

Last are the directories mirroring the package path that you specify, in this case  •	
org\java8recipes\chapter01\recipe1_02. When you compile your code, an identical 
structure is created under the build\classes directory. Note that if using another IDE,  
you may see differences in the directories that are created.

You do not need to explicitly create a package. If you do not create one, the Java compiler will create one for you, 
and give it a name that is hidden from you. We prefer to be explicit, and you should too. Being thoughtful and explicit 
about Java package names is de rigueur in the professional setting. Organization, as well as judiciously chosen naming 
conventions, is important when developing any significant application.

JavaBeans-Style Classes
Next in the solution example you see a class definition following the JavaBeans pattern. The definition of 
HelloMessage follows a pattern that you’ll encounter often in Java programming, and we include it for that reason. 
The class is a simple one, capable of holding a single, string value named greeting.

Three methods are defined on the class:

HelloMessage(). This method, also known as the constructor, is named the same as the 
class. In this case, it takes no arguments. It’s automatically invoked whenever you create a 
new object of the class. Note that this is known as a “no-arg” constructor because it is typed 
out within the class, and it takes no arguments. If you do not supply a constructor, the JVM 
will supply a default constructor (also takes no arguments) automatically.

setMessage(String). This accessor method begins with the word set. It takes one 
parameter. It specifies the message to be returned by the corresponding get method.

getMessage(). This accessor method returns the currently-defined message. In our 
example, we choose to uppercase the message.



Chapter 1 ■ Getting Started with Java 8

9

Note■■   Accessor methods are used in JavaBeans classes to access any privately declared class members. In this case, 
the private variable identified as message can be accessed using these methods. Accessor methods are more commonly 
referred to as “getters” and “setters.”

Methods beginning with set and get are termed as setter and getter methods. The variable message is private to 
the class, which means you have no direct access to message from outside of the class.

You’ll see the keyword this used in the class. It is a special keyword in Java used to reference the current object. 
Its use is redundant in Listing 1-1, but would be needed if any of the methods happened to create variables of their 
own that were also named message.

It is common in Java to mediate access to class variables through setter and getter methods like those in our 
example. Those methods represent a contract of sorts with other classes and your main program. Their benefit is 
that you can change the storage implementation of HelloMessage however you like. Other code that depends upon 
HelloMessage will continue to work properly so long as you maintain the external behavior of setMessage() and 
getMessage().

The Main Program
The incantation public static void main(...) is used from within a public class to denote the beginning point of a 
Java program. That declaration begins an executable method named main. You must specify one parameter that is an 
array of strings, and typically that parameter is defined as String[] args.

When you execute the currently selected class, NetBeans compiles the code to a set of binary files, and then 
transfers control to the main() method. That method, in turn, does the following:

	 1.	 Executes HelloMessage hm to create a variable named hm that is capable of holding an 
instance of the class HelloMessage. The variable hm is empty at this point.

	 2.	 Invokes new HelloMessage() to create an object of the class by that name. The no-arg 
constructor will be executed, and "Default Message" is now the greeting text. The new 
object is now stored in the variable hm.

	 3.	 Makes a call to System.out.println() to show that the object’s no-arg constructor 
has indeed executed as expected. The greeting "DEFAULT MESSAGE" is displayed in the 
“Output” pane.

	 4.	 Sets the message to be the traditional text "Hello, World".

	 5.	 Makes another call to System.out.println() to output the new message that has just 
been set. Now you see the greeting "hello, world" added to the “Output” pane.

The pattern in the solution is common in Java programming. The main() method is where execution begins. 
Variables are defined, and objects are created using the new operator. Object variables are often set and retrieved using 
setter and getter methods.

Tip■■   Command-line apps are passé. System administrators and programmers sometimes write them as utilities, or 
to batch-process large amounts of data. But in the main, today’s applications are GUI applications. JavaFX is the way 
forward in writing those applications, and you can learn about it in Chapters 14 through 17. Recipe 14-1 provides what is 
essentially a “Hello, World” application in GUI form.



Chapter 1 ■ Getting Started with Java 8

10

1-3. Compiling and Executing from the Command-line Interpreter
Problem
You aren’t able to install an IDE, or you don’t want to do so. You want to compile and execute your Java programs from 
the command-line. 

Solution
Compile your programs using the javac command. Then execute them via the java command.

Begin by making sure you have your JDK’s bin directory in your execution path. You might need to execute a 
command such as one of the following.

Windows:
 
path %path%C:\Program Files\Java\jdk1.8.0\bin
 

OS X:
 
export PATH=/Library/Java/JavaVirtualMachines/jdk1.8.0.jdk/Contents/Home/bin
 

Then make sure your CLASSPATH environment variable includes the directory containing your Java code. The 
following is an example of setting the environment variable under Windows:
 
set CLASSPATH=<<path-to-my-Java>>
 

Now change your current working directory to be the one corresponding to your project. Recipe 1-2 had you 
create a project named Java8Recipes. Change to that project’s directory on a Windows system as follows:
 
cd <path-to-project>\Java8Recipes
 

Descend one level into the src subdirectory:
 
cd src
 

From here, you can issue javac commands to compile any classes in your project. Prepend the appropriate 
package name as part of your path leading to each source file to be compiled. Be sure to include the .java extension 
after your file name. For example, issue the following command to compile the HelloWorld class from Recipe 1-2.

Windows:
 
javac org\java8recipes\chapter01\recipe1_02\HelloWorld.java
 

OS X:
 
javac org/java8recipes/chapter01/recipe1_02/HelloWorld.java
 

You should now have a .class file in the same directory as your .java file. For example:
 
dir org\java8recipes\chapter01\recipe1_02 /B
 
HelloMessage.class
HelloWorld.class
HelloWorld.java
 



Chapter 1 ■ Getting Started with Java 8

11

Compilation produces two files. One is for HelloMessage, and the other is for the class named HelloWorld 
implementing the main() method. 

Execute the main() method by issuing the java command to invoke the Java Virtual Machine (JVM). Pass the 
fully-qualified class name as a parameter to the command. Qualify the class name by prepending the package name, 
but this time use the same dot-notation as used in your source file. For example:
 
java org.java8recipes.chapter1.recipe1_02.HelloWorld
 

Do not specify .class at the end of the command. You are referencing HelloWorld now as a class name, and not 
as a file name. You should see the same output as from Recipe 1-2.

Tip■■   One compiles source code. Source code is kept in files, so your operating-system’s file and directory-path  
notation is appropriate. One executes a class. A class is an abstract concept in the language, so the language’s  
dot-notation becomes appropriate. Keep this distinction in mind to help yourself remember when to use which notation.

How It Works
The first two solution steps are housekeeping steps. You must have the Java compiler and the virtual machine in your 
execution path. It’s also necessary for any classes used by your program to be found somewhere along what is termed 
the class path. One way to specify the class path is through the CLASSPATH environment variable.

The command java with no c at the end is for executing compiled code. Pass as a parameter the qualified 
name of the class containing your main method. The JVM will interpret and execute the byte-code within that class, 
beginning from the main method. The JVM will search along the class path for any additionally required classes such 
as HelloMessage.

The compiler’s default behavior is to place each generated class file into the same directory as holds the 
corresponding source file. You can override that behavior through the -d option. For example:
 
javac -d "<specify-different-location>" "<path-to-project>
\Java8Recipes\src\org\java8recipes\chapter1\recipe1_02\HelloWorld.java"
 

The -d option in this command specifies the same directory as NetBeans is using in our own environment as the 
target for holding generated class files. The command also specifies the full path and file name of the source file. Thus, 
the command can be executed with the same result regardless of the current working directory.

Tip■■   Configure your system so that your command-line environment has the execution path and class path set  
correctly by default. The typical approach in Linux is to put appropriate commands into your .profile or .bash_profile 
files. Under Windows you can specify environment variable defaults from the Control Panel applet named System, by 
clicking on the Advanced system settings link, and then on the Environment Variables button.

There may be times when you need to specify a custom class path for a specific execution of the JVM. You can do 
that through the -cp parameter, as follows:
 
java -cp ".;<path-to-project>\Java8Recipes\build\classes\org\java8recipes\chapter1\recipe1_02"
org.java8recipes.chapter1.recipe1_02.HelloWorld
 



Chapter 1 ■ Getting Started with Java 8

12

This execution will search first in the current working directory (the leading dot in the class path), and then under 
the specified package directory corresponding to where NetBeans would place the compiled classes.

Note■■   See Recipe 1-10 for more on configuring your class path.

1-4. Declaring Simple Variables
Problem
You want to create some variables and manipulate data within your program. 

Solution
Java implements eight primitive data types. There is also special support for the String class type. Listing 1-2 shows 
an example declaration of each. Draw from the example to declare the variables needed in your own application. 

Listing 1-2.  Declarations for Primitive and String Types

package org.java8recipes.chapter01.recipe1_04;
 
public class DeclarationsExample {
    public static void main (String[] args) {
        boolean BooleanVal = true;  /* Default is false */
         
        char charval = 'G';     /* Unicode UTF-16 */
        charval = '\u0490';     /* Ukrainian letter Ghe(Ґ) */
 
        byte byteval;       /*  8 bits, -127 to 127 */
        short shortval;     /* 16 bits, -32,768 to 32,768 */
        int intval;         /* 32 bits, -2147483648 to 2147483647 */
        long longval;       /* 64 bits, -(2^64) to 2^64 - 1 */
 
        float   floatval = 10.123456F; /* 32-bit IEEE 754 */
        double doubleval = 10.12345678987654; /* 64-bit IEEE 754 */
 
        String message = "Darken the corner where you are!";
        message = message.replace("Darken", "Brighten");
    }
}
 

Variables are subject to the concept of visibility. Those created in Listing 1-2 are visible from the main() method 
after they have been created, and they are deallocated when the main() method ends. They have no “life” beyond the 
main() method, and are not accessible from outside of main().

Variables created at the class level are a different story. Such variables can be termed as fields, as in fields of 
the class. Use of a field can be restricted to objects of the class in which it is declared, to the package in which it is 
declared, or it can be accessible from any class in any package. Listing 1-3 shows some of how to control visibility via 
the private and public keywords.



Chapter 1 ■ Getting Started with Java 8

13

Listing 1-3.  Visibility and the Concept of Fields

package org.java8recipes.chapter01.recipe1_04;
 
class TestClass {
    private long visibleOnlyInThisClass;
    double visibleFromEntirePackage;
     
    void setLong (long val) {
        visibleOnlyInThisClass = val;
    }
     
    long getLong () {
       return visibleOnlyInThisClass;
    }
}
 
public class VisibilityExample {
    public static void main(String[] args) {
        TestClass tc = new TestClass();
        tc.setLong(32768);
        tc.visibleFromEntirePackage = 3.1415926535;
        System.out.println(tc.getLong());
        System.out.println(tc.visibleFromEntirePackage);
    }
}
 

Output:
 
32768
3.1415926535
 

Fields are typically tied to an object of a class. Each object of a class holds an instance of each field in the class. 
However, you can define so-called static fields that occur just once, and with a single value shared by all objects of the 
given class. Listing 1-4 illustrates the difference.

Listing 1-4.  Static Fields

package org.java8recipes.chapter01.recipe1_04;
 
class StaticDemo {
    public static boolean oneValueForAllObjects = false;
}
 
public class StaticFieldsExample {
    public static void main (String[] args) {
        StaticDemo sd1 = new StaticDemo();
        StaticDemo sd2 = new StaticDemo();
        System.out.println(sd1.oneValueForAllObjects);
        System.out.println(sd2.oneValueForAllObjects);
        sd1.oneValueForAllObjects = true;



Chapter 1 ■ Getting Started with Java 8

14

        System.out.println(sd1.oneValueForAllObjects);
        System.out.println(sd2.oneValueForAllObjects);
    }
     
}
 

Listing 1-4 produces the following output:
 
false
false
true
true
 

The field oneValueForAllObjects was set to true only for the class instance named sd1. Yet it is true for instance 
sd2 also. This is because of the keyword static used in declaring that field. Static fields occur one time for all objects 
of their class.

How It Works
Listing 1-2 illustrates the basic format of a variable declaration:
 
type variable;
 

It’s common to initialize variables when declaring them, so you’ll often see:
 
type variable = initialValue;
 

Field declarations can be preceded by modifiers. For example:
 
public static variable = initialValue;
private variable;
 

It’s common to put the visibility modifier — public or private — first, but you are free to list the modifiers in any 
order you like. Be aware that there are additional modifiers that you will encounter and need to learn about as you get 
deeper into the language.

The String type is special in Java. It’s really a class type, but syntactically you can treat it as a primitive type.  
Java automatically creates a String object whenever you enclose a string of characters within double-quotes ("..."). 
You aren’t required to invoke a constructor, nor to specify the new keyword. Yet String is a class, and there are methods 
in that class that are available to you. One such method is the replace() method shown at the end of Listing 1-2.

Strings are composed of characters. Java’s char type is a two-byte construct for storing a single character in 
Unicode-s UTF-16 encoding. You can generate literals of the char type in two ways:

If a character is easy to type, then enclose it within single quotes (e.g.: •	 'G').

Otherwise, specify the four-digit UTF-16 •	 code point value prefaced by \u (e.g.: '\u0490').

Some Unicode code points require five digits. These cannot be represented in a single char value. See Chapter 10 
if you need more information on Unicode and internationalization.

Avoid using any of the primitive types for monetary values. Especially avoid either of the floating-point types for 
that purpose. Refer instead to Chapter 4 and its recipe on using BigDecimal to calculate monetary amounts (Recipe 4-7). 
BigDecimal is also useful anytime you need accurate, fixed-decimal arithmetic.



Chapter 1 ■ Getting Started with Java 8

15

If you are new to Java, you may be unfamiliar with the String[] array notation, as demonstrated in the examples. 
Please see Chapter 7 for more information on arrays. It covers enumerations, arrays, and also generic data types. Also 
in that chapter are examples showing how to write iterative code to work with collections of values such as an array.

Note■■   If you’re curious about the Ukrainian letter in Listing 1-2, it is the Cyrillic letter Ghe with upturn. You can read 
about its history at: http://en.wikipedia.org/wiki/Ghe_with_upturn. You can find its code point value in the chart at 
http://www.unicode.org/charts/PDF/U0400.pdf. And the URL http://www.unicode.org/charts/ is a good place to 
start whenever you need to find the code point corresponding to a given character.

1-5. Converting to and from a String
Problem
You have a value in a primitive data type, and you want to represent that value as a human-readable string. Or, you 
want to go in the other direction by converting a human-readable string into a primitive data type. 

Solution
Follow one of the patterns from Listing 1-5. The listing shows conversion from a string to a double-precision  
floating-point value, and shows two methods for getting back to a string again.

Listing 1-5.  General Pattern for String Conversions

package org.java8recipes.chapter01.recipe1_05;
 
public class StringConversion {
     
    public static void main (String[] args) {
        double pi;
        String strval;
 
        pi = Double.parseDouble("3.14");
        System.out.println(strval = String.valueOf(pi));
        System.out.println(Double.toString(pi));
    }
     
}

How It Works
The solution illustrates some conversion patterns that work for all the primitive types. First, there is the conversion of 
a floating-point number from its human-readable representation into the IEEE 754 format used by the Java language 
for floating-point arithmetic:
 
pi = Double.parseDouble("3.14");
 

http://en.wikipedia.org/wiki/Ghe_with_upturn
http://www.unicode.org/charts/PDF/U0400.pdf
http://www.unicode.org/charts/


Chapter 1 ■ Getting Started with Java 8

16

Notice the pattern. You can replace Double with Float, or by Long, or by whatever other type is your target data 
type. Each primitive type has a corresponding wrapper class by the same name but with the initial letter uppercase. 
The primitive type here is double, and the corresponding wrapper is Double. The wrapper classes implement helper 
methods such as Double.parseDouble(), Long.parseLong(), Boolean.parseBoolean(), and so forth. These parse 
methods convert human-readable representations into values of the respective types.

Going the other way, it is often easiest to invoke String.valueOf(). The String class implements this method, 
and it is overloaded for each of the primitive data types. Alternatively, the wrapper classes also implement toString() 
methods that you can invoke to convert values of the underlying type into their human-readable forms. It’s your own 
preference as to which approach to take.

Conversions targeting the numeric types require some exception handling to be practical. You generally need to 
gracefully accommodate a case in which a character-string value is expected to be a valid numeric representation, but 
it’s not. Chapter 9 covers exception-handling in detail, and the upcoming Recipe 1-7 provides a simple example to get 
you started.

Caution■■   Literals for the Boolean type are "true" and "false". They are case-sensitive. Any value other than  
these two is silently interpreted as false when converting from a String using the Boolean parseBoolean()  
conversion method.

1-6. Passing Arguments via Command-Line Execution
Problem
You want to pass values into a Java application via the command-line.

Solution
Run the application using the java command, and specify the arguments that you want to pass into it after the 
application name. If you’re passing more than one argument, each should be separated by a space. For example, 
suppose you want to pass the arguments to the class created in Listing 1-6. 

Listing 1-6.  Example of Accessing Command-Line Arguments

package org.java8recipes.chapter01.recipe1_06;
 
public class PassingArguments {
    public static void main(String[] args){
        if(args.length > 0){
            System.out.println("Arguments that were passed to the program: ");
            for (String arg:args){
                System.out.println(arg);
            }
        } else {
            System.out.println("No arguments passed to the program.");
        }
    }
}
 



Chapter 1 ■ Getting Started with Java 8

17

First, make sure to compile the program so that you have a .class file to execute. You can do that from within 
NetBeans by right-clicking the file and choosing the “Compile File” option from the context menu.

Next, open a Command Prompt or terminal window and traverse into the build\classes directory for your project. 
(See Recipe 1-3 for an extensive discussion of executing from the command-line). For example:
 
cd <path-to-project>\Java8Recipes\build\classes
 

Now issue a java command to execute the class, and type some arguments on the command-line following the 
class name. The following example passes two arguments:
 
java org.java8recipes.chapter01.recipe1_06.PassingArguments Upper Peninsula
 

You should see the following output:
 
Arguments that were passed to the program:
Upper
Penninsula
 

Spaces separate arguments. Enclose strings in double quotes when you want to pass an argument containing 
spaces or other special characters. For example:
 
java org.java8recipes.chapter01.recipe1_06.PassingArguments "Upper Peninsula"
 

The output now shows just one argument:
 
Arguments that were passed to the program:
Upper Penninsula
 

The double quotes translate the string "Upper Peninsula" into a single argument.

How It Works
All Java classes that are executable from the command-line or terminal contain a main() method. If you look at the 
signature for the main() method, you can see that it accepts a String[] argument. In other words, you can pass an 
array of String objects into the main() method. Command-line interpreters such as the Windows Command Prompt 
and the various Linux and Unix shells build an array of strings out of your command-line arguments, and pass that 
array to the main() method on your behalf.

The main() method in the example displays each argument that is passed. First, the length of the array named 
args is tested to see whether it is greater than zero. If it is, the method will loop through each of the arguments in the 
array by executing a for loop, displaying each argument along the way. If there are no arguments passed, the length 
of the args array will be zero, and a message indicating such will be printed. Otherwise, you see a different message 
followed by a list of arguments.

Command-line interpreters recognize spaces and sometimes other characters as delimiters. It’s generally safe 
to pass numeric values as arguments delimited by spaces without bothering to enclose each value within quotes. 
However, you should get into the habit of enclosing character-string arguments in double quotes, as shown in the final 
solution example. Do that to eliminate any ambiguity over where each argument begins and ends.

Note■■   All arguments are seen by Java as character strings. If you pass numeric values as parameters, they enter 
Java as character strings in human-readable form. You can convert them into their appropriate numeric types using the 
conversion methods shown in Recipe 1-5.



Chapter 1 ■ Getting Started with Java 8

18

1-7. Accepting Input from the Keyboard
Problem
You are interested in writing a command-line or terminal application that will accept user input from the keyboard. 

Solution
Make use of the java.io.BufferedReader and java.io.InputStreamReader classes to read keyboard entry and store 
it into local variables. Listing 1-7 shows a program that will keep prompting for input until you enter some characters 
that represent a valid value of type long.

Listing 1-7.  Keyboard Input and Exception Handling

package org.java8recipes.chapter01.recipe1_07;
 
import java.io.*;
 
public class AcceptingInput {
    public static void main(String[] args){
        BufferedReader readIn = new BufferedReader(
                new InputStreamReader(System.in)
        );
        String numberAsString = "";
        long numberAsLong = 0;
         
        boolean numberIsValid = false;
        do {
            /* Ask the user for a number. */
            System.out.println("Please enter a number: ");
            try {
                numberAsString = readIn.readLine();
                System.out.println("You entered " + numberAsString);
            } catch (IOException ex){
                System.out.println(ex);
            }
 
            /* Convert the number into binary form. */
            try {
                numberAsLong = Long.parseLong(numberAsString);
                numberIsValid = true;
            } catch (NumberFormatException nfe) {
                System.out.println ("Not a number!");
            }
        } while (numberIsValid == false);
    }
}
 



Chapter 1 ■ Getting Started with Java 8

19

Following is an example run of this program:
 
Please enter a number:
No
You entered No
Not a number!
Please enter a number:
Yes
You entered Yes
Not a number!
Please enter a number:
42
You entered 42
BUILD SUCCESSFUL (total time: 11 seconds)
 

The first two inputs did not represent valid values in the long data type. The third value was valid, and the  
run ended.

How It Works
Quite often our applications need to accept user input of some kind. Granted, most applications are not used from 
the command-line or terminal nowadays, but having the ability to create an application that reads input from the 
command-line or terminal helps to lay a good foundation, and may be useful in some applications. Terminal input 
can also be useful in developing administrative applications that you or a system administrator may use. 

Two helper classes were used in the solution to this recipe. They are java.io.BufferedReader and  
java.io.InputStreamReader. The early portion of the code that’s using those classes is especially important to 
understand:
 
BufferedReader readIn = new BufferedReader(
        new InputStreamReader(System.in)
);
 

The innermost object in this statement is System.in. It represents the keyboard. You do not need to declare 
System.in. Java’s runtime environment creates the object for you. It is simply “there” to be used.

System.in provides access to raw bytes of data from the input device, which is the keyboard in our example. It is 
the job of the InputStreamReader class to take those bytes and convert them into characters in your current character 
set. System.in is passed to the InputStreamReader() constructor to create an InputStreamReader object.

InputStreamReader knows about characters, but not about lines. It is the BufferedReader class’s job to detect 
line breaks in the input stream, and to enable you to conveniently read a line at a time. BufferedReader also aids 
efficiency by allowing physical reads from the input device to be done in different-size chunks than by which your 
application consumes the data. This aspect can make a difference when the input stream is a large file rather than the 
keyboard.

Following is how the program in Listing 1-7 makes use of an instance (named readIn) of the BufferedReader 
class to read a line of input from the keyboard:
 
numberAsString = readIn.readLine();
 

Executing this statement triggers the following sequence:

	 1.	 System.in returns a sequence of bytes.

	 2.	 InputStreamReader converts those bytes into characters.



Chapter 1 ■ Getting Started with Java 8

20

	 3.	 BufferedReader breaks the character stream into lines of input.

	 4.	 readLine() returns one line of input to the application.

I/O calls must be wrapped in try...catch blocks. These blocks catch any exceptions that may occur. The try part 
in the example will fail in the event a conversion is unsuccessful. A failure prevents the numberIsValid flag from being 
set to true, which causes the do loop to make another iteration so that the user can try again at entering a valid value.

The following statement at the top of Listing 1-7 deserves some mention:
 
import java.io.*;
 

This statement makes available the classes and methods defined in the java.io package. These include 
InputStreamReader and BufferedReader. Also included is the IOException class used in the first try...catch block.

1-8. Documenting Your Code
Problem
You want to document some of your Java classes to assist in future maintenance.

Solution
Use Javadoc to place comments before any class, method, or field that you want to document. To begin such a 
comment, write the characters /**. Then begin each subsequent line with an asterisk (*). Lastly, close the comment 
with the characters */ on a line by themselves at the end. Listing 1-8 shows a method commented with Javadoc.

Listing 1-8.  Comments Made in Javadoc Form

package org.java8recipes.chapter01.recipe1_08;
 
import java.math.BigInteger;
 
public class JavadocExample {
     /**
     * Accepts an unlimited number of values and
     * returns the sum.
     *
     * @param nums Must be an array of BigInteger values.
     * @return Sum of all numbers in the array.
     */
     public static BigInteger addNumbers(BigInteger[] nums) {
         BigInteger result = new BigInteger("0");
         for (BigInteger num:nums){
             result = result.add(num);
         }
 
         return result;
     }
     /**
     Test the addNumbers method.
     * @param args not used
     */



Chapter 1 ■ Getting Started with Java 8

21

     public static void main (String[] args) {
         BigInteger[] someValues = {BigInteger.TEN, BigInteger.ONE};
         System.out.println(addNumbers(someValues));
     }
}
 

Comments can be added to the beginning of classes and fields in the same way. The comments are helpful to 
you and other programmers maintaining the code, and their specific format enables easy generation of an HTML 
reference to your code.

Generate the HTML reference by invoking the tool named Javadoc. This is a command-line tool that parses a 
named Java source file and formulates HTML documentation based upon the defined class elements and Javadoc 
comments. For example:
 
javadoc JavadocExample.java
 

This command will produce several HTML files containing the documentation for the class, methods, and fields. 
If no Javadoc comments exist within the source, some default documentation will still be produced. To view the 
documentation, load the following file into your browser:
 
index.html
 

The file will be in the same directory as the class or package that you are documenting. There will also be an 
index-all.html file giving a strict alphabetical listing of documented entities.

Keep in mind that the same rules apply when using the Javadoc tool as when using javac. You must reside within 
the same directory as the source file, or prepend the name of the file with the path to where the file is located. 

How It Works
Generating documentation for applications from scratch can be quite tedious. Maintaining documentation can be even 
more troublesome. The JDK comes packaged with an extensive system for documentation known as Javadoc. Placing 
some special comments throughout your code source and running a simple command-line tool makes it easy to generate 
useful documentation and keep it current. Moreover, even if some of the classes, methods, or fields in an application are 
not commented specifically for the Javadoc utility, default documentation will still be produced for such elements.

Formatting the Documentation
To create a Javadoc comment, begin with the characters /**. Although optional since Java 1.4, a common practice is to 
include an asterisk as the first character of every subsequent line within the comment. Another good practice is to indent 
the comment so that it aligns with the code that is being documented. Lastly, close the comment with the characters */. 

Javadoc comments should begin with a short description of the class or method. Fields are rarely commented 
using Javadoc, unless they are declared public static final (constants), in which case it is a good idea to supply a 
comment. A comment can be several lines in length, and can even contain more than one paragraph. If you want to 
break comments into paragraphs, then separate those paragraphs using the <p> tag. Comments can include several 
tags that indicate various details regarding the method or class that is being commented. Javadoc tags begin with an 
ampersand (@), and some of the common tags are as follows:
 
@param: Name and description of a parameter
@return: What is returned from the method
@see: Reference to another piece of code
 



Chapter 1 ■ Getting Started with Java 8

22

You may also include inline links within Javadoc to reference URLs. To include an inline link, use the tag  
{@link My Link}, where link is the actual URL that you want to point at and My Link is the text that you want to have 
appear. There are also many other tags that can be used within Javadoc comments, including {@literal}, {@code},  
{@value org}, and many others. For a complete listing, see the Javadoc reference on the Oracle Technology  
Network website.

Executing the Tool
The Javadoc tool can also be run against entire packages or source. Simply pass a package name to the Javadoc tool 
rather than individual source file names. For instance, if an application includes a package named org.juneau.beans, 
all source files within that package can be documented by running the tool as follows:
 
javadoc org.juneau.beans
 

To generate Javadoc for more than one package at a time, separate the package names with spaces as follows:
 
javadoc org.juneau.beans org.juneau.entity
 

Another option is to specify the path to the source files using the –sourcepath flag. For example:
 
javadoc –sourcepath /java/src
 

By default, the Javadoc tool will generate HTML and place it into the same package as the code being documented. 
That result can become a cluttered nightmare if you like to have source files separate from documentation. You can 
instead set up a destination for the generated documentation by passing the –d flag to the Javadoc tool.

1-9. Organizing Code with Packages
Problem
Your application consists of a set of Java classes, interfaces, and other types. You want to organize these source files to 
make them easier to maintain and avoid potential class-naming conflicts.

Solution
Create Java packages and place source files within them much like a filing system. Java packages can be used to 
organize logical groups of source files within an application. Packages can help to organize code, reduce naming 
conflicts among different classes and other Java type files, and provide access control. To create a package, simply 
create a directory within the root of your application source folder and name it. Packages are usually nested 
within each other and conform to a standard naming convention. For the purposes of this recipe, assume that the 
organization is named Juneau and that the organization makes widgets. To organize all the code for the widget 
application, create a group of nested packages conforming to the following directory structure:
 
/org/juneau
 

Any source files that are placed within a package must contain the package statement as the first line in the 
source. The package statement lists the name of the package in which the source file is contained. For instance, 
suppose that the main class for the widget application is named JuneauWidgets.java. To place this class into a 



Chapter 1 ■ Getting Started with Java 8

23

package named org.juneau, physically move the source file into a directory named juneau, which resides within  
the org directory, which in turn resides within the root of the source folder for the application. The directory structure 
should look like the following:
 
/org/juneau/JuneauWidgets.java
 

The source for JuneauWidgets.java is as follows:
 
package org.juneau;
 
/**
 * The main class for the Juneau Widgets application.
 * @author juneau
 */
public class JuneauWidgets {
    public static void main(String[] args){
        System.out println("Welcome to my app!");
    }
}
 

The first line in the source contains the package statement, which lists the name of the package that the source file 
is located within. The entire package path is listed in the statement, and the names in the path are separated by dots.

Note■■   A package statement must be the first statement listed within the Java source. However, there may be a  
comment or Javadoc comment written before the package statement.

An application can consist of any number of packages. If the widget application contains a few classes that 
represent widget objects, they could be placed within the org.juneau.widget package. The application may have 
interfaces that can be used to interact with the widget objects. In this case, a package named org.juneau.interfaces 
may also exist to contain any such interfaces.

How It Works
Java packages are useful for organizing source files, controlling access to different classes, and ensuring that there are 
no naming conflicts. Packages are represented by a series of physical directories on a file system, and they can contain 
any number of Java source files. Each source file must contain a package statement before any other statements in the 
file. This package statement lists the name of the package in which the source file resides. In the solution to this recipe, 
the source included the following package statement:
 
package org.juneau;
 

This package statement indicates that the source file resides within a directory named juneau, and that directory 
resides within another directory named org. Package-naming conventions can vary by company or organization. 
However, it is important that words are in lowercase so they do not conflict with any Java class file names. Many 
companies or organizations will use the reverse of their domain name for package naming. However, if a domain 
name includes hyphens, underscores should be used instead.



Chapter 1 ■ Getting Started with Java 8

24

Note■■  W hen a class resides within a Java package, it is no longer referenced by only the class name, but instead the 
package name is prepended to the class name, which is known as the fully qualified name. For instance, because the 
class that resides within the file JuneauWidgets.java is contained within the org.juneau package, the class is  
referenced using org.juneau.JuneauWidgets, not simply JuneauWidgets. An identically named class can reside within 
a different package (for instance, org.java8recipes.JuneauWidgets).

Packages are very useful for establishing levels of security as well as organization. By default, different classes 
that reside within the same package have access to each other. If a source file resides within a different package than 
another file that it needs to use, an import statement must be declared at the top of the source file (underneath the 
package statement) to import that other file for use; otherwise, the fully qualified package.class name must be used 
within the code. Classes may be imported separately, as demonstrated in the following import statement:
 
import org.juneau.JuneauWidgets;
 

However, it is often likely that all classes and type files that reside within a package need to be used. A single 
import statement utilizing a wildcard character (*) can import all files within a named package as follows:
 
import org.juneau.*;
 

Although it is possible to import all files, it is not recommended unless absolutely necessary. As a matter of fact,  
it is considered a poor programming practice to include many import statements that use the wildcard. Instead, 
classes and type files should be imported individually.

Organizing classes within packages can prove to be very helpful. Suppose that the widget application that was 
described in the solution to this recipe includes different Java classes for each different widget object. Each of the 
widget classes could be grouped into a single package named org.juneau.widgets. Similarly, each of the widgets 
could extend some Java type or interface. All such interfaces could be organized into a package named  
org.juneau.interfaces.

Any substantial Java application will include packages. Any Java library or Application Programming Interface 
(API) that you use includes packages. When you import classes or types from those libraries and APIs, you are really 
importing packages.

1-10. Configuring the CLASSPATH
Problem
You want to execute a Java program, or include an external Java library in the application you are executing. 

Solution
Set the CLASSPATH variable equal to the directory location of the user-defined Java classes or Java Archive (JAR) files 
that you need to have access to for executing your application. Let’s say that you have a directory named JAVA_DEV 
located at the root of your OS drive, and all the files your applications needs to access are located in this directory.  
If this is the case, then you would execute a command such as the following:
 
set CLASSPATH=C:\JAVA_DEV\some-jar.jar
 


