
Blom Hansen
Lengstorf

Shelve in
 Web Development /PHP Programming

User level:
Beginning

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

PHP for Absolute Beginners
PHP is a server-side scripting language that enables you to develop dynamic sites
that engage users in ways that are simply not possible using only HTML and CSS.
PHP for Absolute Beginners takes a practical approach to teaching you how to
build dynamic content for your website using PHP. You’ll quickly get started with
practical PHP projects, learning how to build a dynamic image gallery. By the end
of the book you will have developed a personal blog complete with a password
protected admin module.

PHP for Absolute Beginners won’t swamp you with every detail of the full PHP
language up front – instead, you’ll be introduced to a small, versatile subset of PHP
and learn to use it creatively to develop dynamic web sites. In the process you will
learn to use variables, control structures, functions, and objects to your advantage.
You will learn how to plan and create databases and how to organize your PHP
scripts beautifully. At the end of the book, you will be a confident PHP user, ready to
take the next steps in creating great websites.

RELATED

9 781430 268154

53999
ISBN 978-1-4302-6815-4

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Authors ��� xv

About the Technical Reviewer �� xvii

Acknowledgments ��� xix

Introduction ��� xxi

Part I: PHP/MySQL Basics ■ ��� 1

Chapter 1: Setting Up a PHP Development Environment ■ ���3

Chapter 2: Understanding PHP: Language Basics ■ ���17

Chapter 3: Form Management ■ ���35

Chapter 4: Building a Dynamic Image Gallery with Image Upload ■ ����������������������������������53

Chapter 5: Spicing Up Your Image Gallery with JavaScript and CSS ■ �������������������������������69

Chapter 6: Working with Databases ■ ��83

Part II: A Blogging System ■ �� 109

Chapter 7: Building the Entry Manager ■ ���111

Chapter 8: Showing Blog Entries ■ ���127

Chapter 9: Deleting and Updating Entries ■ ��143

Chapter 10: Improving Your Blog with User Comments and Search ■ �����������������������������163

Chapter 11: Adding Images to Blog Entries ■ ���183

Chapter 12: Password Protection ■ ���207

Chapter 13: Going Public with Your Blog ■ ���221

Index ���225

xxi

Introduction

Modern web development relies on the successful integration of several technologies. Content is mostly formatted as
HTML. With server-side technologies, you can create highly dynamic web applications. PHP is the single most used
server-side scripting language for delivering browser-based web applications. PHP is the backbone of online giants
such as Facebook, Flickr, and Yahoo.

There are other server-side languages available for web application development, but PHP is the workhorse of
the Internet. For an absolute beginner, it should be comforting to know that PHP is a relatively easy language to learn.
You can do many things with a little PHP. Also, there is a thriving, friendly community supporting PHP. It will be easy
to get help with your own PHP projects.

Who Should Read This Book
This book is intended for those who know some HTML and CSS. It is for those who are ready to take their web developer
skills to the next level. You will learn to generate HTML and CSS dynamically, using PHP and MySQL. You will learn
the difference between client-side and server-side scripting through hands-on experience with PHP/MySQL and
JavaScript code projects. Emphasis will be on getting up and running with PHP, but you will also get to use some
MySQL and some JavaScript in your projects. By the end of the book, you will have created a number of PHP-driven
projects, including the following:

A personal portfolio site with dynamic navigation•	

A dynamic image gallery where users can upload images through an HTML form•	

A personal blogging system, complete with a login and an administration module•	

In the process, you will become acquainted with such topics as object-oriented programming, design patterns,
progressive enhancement, and database design. You will not get to learn everything there is to know about PHP, but
you will be off to a good start.

How to Read This Book
This book is divided into two main parts. Part I will quickly get you started writing PHP for small, dynamic projects.
You will be introduced to a relatively small subset of PHP–just enough for you to develop entry-level web applications.
Part I will also teach you the basic vocabulary of PHP.

Part II is a long hands-on project. You will be guided through the development of the aforementioned personal
blogging system, starting from scratch. Part II will show you how to use your PHP vocabulary to design dynamic,
database-driven web applications.

Part i

PHP/MySQL Basics

You will learn how to set up a PHP/MySQL development environment, the basics of PHP and how to connect
PHP to a MySQL database.

3

Chapter 1

Setting Up a PHP Development
Environment

Getting a working development environment put together can be intimidating, especially for the absolute beginner.
To follow along with the project in this book, you’ll need to have access to a working installation of Apache, PHP, and
MySQL, preferably on your local machine. It’s always desirable to test locally, both for speed and security. Doing this
both shelters your work-in-progress from the open Internet and decreases the amount of time spent uploading files to
an FTP server and waiting for pages to reload.

Why You Need Apache, MySQL, and PHP
PHP is a powerful scripting language that can be run by itself in the command line of any computer with PHP
installed. However, PHP alone isn’t sufficient for building dynamic web sites. To use PHP on a web site, you need a
server that can process PHP scripts. Apache is a free web server that, once installed on a computer, allows developers
to test PHP scripts locally; this makes it an invaluable piece of your local development environment.

Additionally, web sites developed with PHP often rely on information stored in a database, so it can be modified
quickly and easily. This is a significant difference between a PHP site and an HTML site. This is where a relational
database management system such as MySQL comes into play. This book’s examples rely on MySQL. I chose this
database because PHP provides native support for it, and because MySQL is a free, open source project.

Note ■ An open source project is available for free to end users and ships with the code required to create that
software. Users are free to inspect, modify, and improve the code, albeit with certain conditions attached. The Open
Source Initiative lists ten key provisions that define open source software. You can view this list at www.opensource.org/
docs/osd.

PHP is a general-purpose scripting language that was originally conceived by Rasmus Lerdorf in 1995. Lerdorf
created PHP to satisfy the need for an easy way to process data when creating pages for the World Wide Web.

Note ■ PHP was born out of Rasmus Lerdorf’s desire to create a script that would keep track of how many visits his
online résumé received. Due to the wild popularity of the script he created, Lerdorf continued developing the language.
Over time, other developers joined him in creating the software. Today, PHP is one of the most popular scripting
languages in use on the Internet.

http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

4

PHP originally stood for Personal Home Page and was released as a free, open source project. Over time, the
language was reworked to meet the needs of its users. In 1997, PHP was renamedPHP: Hypertext Preprocessor, as it is
known currently. At the time I write this, PHP 5.5.7 is the current stable version. Older versions of PHP are still in use
on many servers.

How PHP Works
PHP is generally used as a server-side scripting language; it is especially well-suited for creating dynamic web pages.
The scripting language features integrated support for interfacing with databases, such as MySQL, which makes it
a prime candidate for building all manner of web applications, from simple personal web sites to complex
enterprise-level applications.

HTML is parsed by a browser when a page loads. Browsers cannot process PHP at all. PHP is processed by
the machine that serves the document (this machine is referred to as a server). All PHP code in the document is
processed by the server before the document is sent to the visitor’s browser. Because PHP is processed by a server, it is
a server-side scripting language.

With PHP, you can create dynamic web pages—web pages that can change according to conditions. For example:
When I log in to my Facebook account, I see my content. When you log in to your Facebook account, you see your
content. We would be loading the same resource (www.facebook.com), but we would be served different content
dynamically. This would be impossible with HTML web documents, because they are static, meaning they can’t
change. Every user would see exactly the same HTML page. The rest of this book explores some of the things you can
achieve with dynamic web pages.

PHP is an interpreted language, which is another great advantage for PHP programmers. Many programming
languages require that you compile files into machine code before they can be run, which is a time-consuming
process. Bypassing the need to compile means you’re able to edit and test code much more quickly.

Because PHP is a server-side language, running PHP scripts requires a server. To develop PHP projects on your
local machine means installing a server on your local machine. The examples in this book rely on the Apache Web
Server to deliver your web pages.

Apache and What It Does
Apache is the most popular web server software on the Web; it hosts nearly half of all web sites that exist today. Apache
is an open source project that runs on virtually all available operating systems. Apache is a community-driven
project, with many developers contributing to its progress. Apache’s open source roots also means that the software
is available free of charge, which probably contributes heavily to Apache’s overwhelming popularity relative to its
competitors, including Microsoft’s IIS and Google’s GWS, among others.

On the Apache HTTP Server Project web site (http://httpd.apache.org), Apache HTTP Server is described
as “an effort to develop and maintain an open-source HTTP server for modern operating systems including UNIX
and Windows NT. The goal of this project is to provide a secure, efficient, and extensible server that provides HTTP
services in sync with the current HTTP standards.”

As with all web servers, Apache accepts an HTTP request and serves an HTTP response. The World Wide Web
is founded on web servers, and every web site you visit demonstrates the functionality of web servers. I’ve already
mentioned that while HTML can be processed by a web browser, server-side scripting languages such as PHP have to be
handled by a web server. Due to its overwhelming popularity, Apache is used for testing purposes throughout this book.

Storing Info with MySQL
MySQL is a relational database management system (RDBMS). Essentially, this means that MySQL allows users
to store information in a table-based structure, using rows and columns to organize different pieces of data. There
are many other relational database management systems. The examples in this book rely on MySQL to store the
information you’ll use in your PHP scripts, from blog entries to administrator information. This approach has great
advantages, which we will explore in detail.

http://www.facebook.com/
http://httpd.apache.org/

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

5

Note ■ Blog is short for weblog, which is an online journal produced by an individual or a business.

Installing PHP, Apache, and MySQL
One of the biggest hurdles for new programmers is starting. Before you can write your first line of PHP, you must
download Apache and PHP, and usually MySQL, and then fight through installation instructions that are full of
technical jargon you might not understand yet. This experience can leave many developers feeling unsure of
themselves, doubting whether they’ve installed the required software correctly.

In my own case, this hurdle kept me from learning programming for months, even though I desperately wanted
to move beyond plain ole HTML. I unsuccessfully attempted to install PHP on my local machine not once, but three
different times before I was able to run my first PHP command successfully.

Fortunately, the development community has responded to the frustration of beginning developers with several
options that take all the pain out of setting up your development environment, whether you create applications for
Windows, Mac, or Linux machines. These options include all-in-one solutions for setting up Apache, MySQL, and
PHP installations.

The most common all-in-one solution is a program called XAMPP (www.apachefriends.org/en/xampp.html),
which rolls Apache, MySQL, PHP, and a few other useful tools together into one easy installer. XAMPP is free and
available for Windows, Mac, and Linux. This book assumes that you will use it as your development environment.

Note ■ most Linux distributions ship with one flavor or another of the LAmP stack (Linux-specific software that
functions similarly to XAmPP) bundled in by default. Certain versions of mac OS X also have PHP and Apache installed
by default.

Installing XAMPP
Enough background. You’re now ready to install XAMPP on your development machine. This process should take
about five minutes and is completely painless.

Step 1: Download XAMPP
Your first task is to obtain a copy of the XAMPP software. Head over to the XAMPP site (www.apachefriends.org/en/
xampp.html) and download the latest version (1.8.3 at publication time).

Step 2: Open the Installer and Follow the Instructions
After downloading XAMPP, find the newly downloaded installer and run it. You should be greeted with a screen
similar to the one shown in Figure 1-1.

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

6

Note ■ All screenshots used in this book were taken on a computer running mac OS X 10.6.8. Your installation might
differ slightly, if you use a different operating system. XAmPP for Windows offers additional options, such as the ability to
install Apache, mySQL, and Filezilla (an FTP server) as services. This is unnecessary and will consume computer
resources, even when they are not being used, so it’s probably best to leave these services off. Additionally, Windows
users should keep the c:\xampp install directory for the sake of following this book’s examples more easily.

Click the Next button to move to the next screen (see Figure 1-2), where you can choose which components
to install. Just go with the default selection. The XAMPP installer will guide you through the installation process.
Figures 1-3 through 1-5 show the remaining steps.

Figure 1-1. The introductory screen for the XAMPP installer on Mac OS X

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

7

Figure 1-2. Select components to install

Figure 1-3. XAMPP installation directory

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

8

Figure 1-4. You don’t have to learn more about BitNami at this point

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

9

Installation requires a minute or two to complete, whereupon the installer displays the final screen (see Figure 1-6),
which confirms that the installation was successful.

Figure 1-5. When you’re ready to install, click Next

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

10

Step 3: Test XAMPP to Ensure Proper Installation
So far, you’ve used the XAMPP wizard to install Apache, PHP, and MySQL. The next step is to activate Apache, so you
can write some PHP.

Open the XAMPP Control Panel
You can activate the just-installed applications by navigating to the newly installed XAMPP folder and opening the
XAMPP manager (see Figure 1-7).

Figure 1-6. Installation is complete

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

11

Note ■ When opening the XAmPP control panel, you may be prompted for your password. This has no effect on the
services themselves and should not affect the projects covered in this book.

Activating Apache, PHP, and MySQL on your development machine is as simple as clicking the Start button
next to Apache in the XAMPP manager. You might be prompted to confirm that the server is allowed to run on your
computer, and you might be required to enter your system password. After you do this, the Status should indicate that
Apache is running, as shown in Figure 1-7.

Note ■ There is an FTP (file transfer protocol) option available in XAmPP. FTP provides a method for moving files
between networks. The examples in this book don’t require this option, so there is no need to activate it in the XAmPP
control panel. The first few chapters don’t even require a mySQL database.

What If Apache Isn’t Running?
Sometimes, XAMPP Apache Server doesn’t run, even if you try to start it. The most common problem is that it
conflicts with some other service using the same port on your computer. Check if you have Skype or Messenger or
some similar networking service running. Shut Skype completely down, and if you’re lucky, your Apache can run.

Figure 1-7. The XAMPP manager shows that the local Apache Web Server is running

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

12

If it still doesn’t run, you could turn to the Internet for help. The XAMPP online community is extremely
helpful, and most installation issues have been addressed in the Apache Friends forum at https://community.
apachefriends.org/f/viewforum.php?f=34. You could also turn to search or ask at http://stackoverflow.com/.

Verify That Apache and PHP Are Running
It’s a simple matter to check whether Apache is running properly on your development machine. Simply open a
browser and go to the following address: http://localhost. If everything has gone correctly, you’ll be redirected to
http://localhost/xampp/splash.php (see Figure 1-8).

Figure 1-8. Check in your browser that your Apache Web Server is running

If this screen loads, you’ve installed Apache and PHP on your development machine successfully! The address,
http://localhost, is an alias for the current computer you’re working on. When using XAMPP, navigating to
http://localhost in a browser tells the server to open the root web directory. This is the htdocs folder contained in
the XAMPP install directory. Another way to use your server to access the root web directory on your local machine is
to navigate to the IP address—a numerical identifier assigned to any device connected to a computer network—that
serves as the “home” address for all HTTP servers: http://127.0.0.1.

Choosing a PHP Editor
Your development machine is now running all the necessary programs for programming with PHP. The next step is to
decide how you’re going to write your scripts. PHP scripts are text-based, so you have myriad options, ranging from
the simple Notepad.exe and text-edit programs to highly specialized integrated development environments (IDEs).

Most experienced PHP developers use an IDE, because they offer many benefits. Many beginners have some
difficulties using an IDE, perhaps because IDEs have so many features that beginners are simply left confused.

You can probably write PHP code using whichever program you have used for writing HTML and CSS. There are
some features you should expect from a good editor.

https://community.apachefriends.org/f/viewforum.php?f=34
https://community.apachefriends.org/f/viewforum.php?f=34
http://stackoverflow.com/

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

13

•	 Syntax highlighting: This is the ability to recognize certain words in a programming language,
such as variables, control structures, and various other special text. This special text is
highlighted or otherwise differentiated to make scanning your code much easier.

•	 Built-in function references: When you enter the name of a function or an object method, this
feature displays available parameters, as well as the file that declares the function, a short
description of what the function does, and a more in-depth breakdown of parameters and
return values. This feature proves invaluable when dealing with large libraries, and it can save
you trips to the PHP manual to check the order of parameters or acceptable arguments
for a function.

•	 Auto-complete features: This feature adds available PHP keywords to a drop-down list,
allowing you to select the intended keyword from the list quickly and easily, saving you the
effort of remembering and typing it out every time. When it comes to productivity, every
second counts, and this feature is a great way to contribute to saved time.

•	 Code folding: This feature lets you collapse snippets of code, making your workspace
clutter-free and your code easy to navigate.

•	 Auto-indent: This automatically indents the code you write in a consistent manner. Such
indented code is vastly easier to read for human readers, because indentation indicates
relationships between code blocks.

•	 Built-in ftp: You need ftp to upload your PHP files to an online web server when you want to
publish your project on the World Wide Web. You can use a stand-alone ftp program, but if it is
built into your IDE, you can upload an entire project with a single click.

You have many good IDEs and editors to choose from. NetBeans and Eclipse PDT are both excellent, free IDEs.
Try one or both, if you want to get used to the tools professional developers often gravitate to. Beginners may find it
easier to start with a simpler editor. I really like Komodo Edit: It is as easy to use as any editor, and it provides most of
the features just listed out of the box, including excellent auto-complete for PHP and many other languages. Following
are the download links for the three PHP editors just mentioned:

Get NetBeans from •	 https://netbeans.org/downloads/.

Get Eclipse PDT from •	 http://projects.eclipse.org/projects/tools.pdt.

Get Komodo Edit from •	 www.activestate.com/komodo-edit/downloads.

I will use Komodo Edit for the examples in this book. You should have no difficulties following the examples with
any other editor. If you decide to use an IDE, you will have to consult online documentation to learn how to set up a
new project in your chosen IDE.

Creating Your First PHP File
With everything set up and running as it should, it is time to take the plunge and write your first PHP script. As a
server-side scripting language, PHP requires a web server such as Apache to run. You have just installed Apache on
your local computer, so your system is ready.

Apache will interpret any PHP files saved inside a folder called htdocs. You can find it inside your XAMPP
installation in XAMPP/xamppfiles/htdocs.

You’ll be making many PHP files soon, so it is a good idea to keep them organized. Create a new folder inside
htdocs and call it ch1.

https://netbeans.org/downloads/
http://projects.eclipse.org/projects/tools.pdt
http://www.activestate.com/komodo-edit/downloads

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

14

Now open Komodo Edit, or whichever editor or IDE you have decided to use. From Komodo Edit, you can select
File ➤ New ➤ New File from the main menu. In the new file you write the following:

<?php

echo "Hello from PHP";

In Komodo Edit, select File ➤ Save to see the file saving dialog box (Figure 1-9). Save the new file as test.php, in
htdocs/ch1; set format to All Files; and then click Save.

Figure 1-9. The Save As dialog box from Komodo Edit

Running Your First PHP Script
The next step is to get Apache to process your PHP script. That happens automatically, if you request the script
through a browser. So, open a web browser and navigate to http://localhost/ch1/test.php and marvel at the
PHP-generated output you should see in your browser (Figure 1-10). You have successfully created and executed
your first PHP script!

CHAPTeR 1 ■ SeTTIng UP A PHP DeveLOPmenT envIROnmenT

15

Summary
In this chapter, you learned a little bit about PHP, MySQL, and Apache. You found out what they are and what role
they play in the development of dynamic web sites. You also learned a quick and easy way to install a fully functional
development environment on your local computer, by installing XAMPP and Komodo Edit.

In the next chapter, you’ll learn a small but potent subset of PHP, including variables, objects, and some
native language constructs and statements. Nearly everything you learn will be tested in your new development
environment, so keep XAMPP’s Apache Server open and running.

Figure 1-10. Seeing the output from test.php in the Chrome web browser

17

Chapter 2

Understanding PHP: Language Basics

So far, you’ve bypassed the old, cumbersome method of creating a development environment, and you’re now ready
to start writing code.

But where do you start? In this chapter, I’ll cover the steps you need to follow to start using PHP in the creation of
powerful, dynamic web applications. You’ll also begin to develop the basic skills you need to create your blog.
In addition, you’ll learn how to accomplish several tasks, including how to do the following:

Embed PHP in web pages•	

Send data as output to the browser•	

Add comments in your code•	

Use variables•	

Work with PHP errors•	

Create an HTML5 template•	

Use objects•	

Concatenate strings•	

Access URL variables with the •	 $_GET superglobal

Declare a class definition•	

Embed dynamic CSS•	

By the end of this chapter, you will have seen some basic PHP that will allow you to create, store, manipulate, and
output data. You will have used those skills to develop a bare-bones version of a personal portfolio web site.

Note ■ This chapter discusses basic aspects of the PHP language, but not in complete detail. For clarification, more
examples, or for concept reinforcement, visit the PHP manual at www.php.net/manual/en/ and search the function in the
field where it says “search for _______ in the function list.” Alternatively, you can access information about many PHP
functions by navigating to http://php.net/function_name. Don’t forget to read the comments, because many of your
fellow programmers offer insight, tips, and even additional functions in their commentary.

http://www.php.net/manual/en/
http://php.net/function_name

CHAPTer 2 ■ UnDersTAnDing PHP: LAngUAge BAsiCs

18

Embedding PHP Scripts
In Chapter 1, when I talked about Apache and web servers in general, I mentioned how a server will process PHP in a
file before sending that file to the browser. But you might be curious as to how the server knows where to look for PHP.

By default, servers look for PHP only in files that end with the .php extension. But a .php file can contain
elements that aren’t part of your PHP script, and searching the entire file for potential scripts is confusing and
resource-intensive. To solve this issue, all PHP scripts need to be contained with PHP delimiters. To begin a PHP
script, you include the opening delimiter <?php and start coding. To finish, you simply add ?> to the end of the script.
Anything outside of these delimiters will be treated as HTML or plain text.

You can see this in action. Start by creating a new folder ch2 in /xampp/htdocs/. Next, create a new file, test.php,
with Komodo Edit. Write the following code:

<p>Static Text</p>
<?php
echo "<p>This text was generated by PHP!</p>";
?>
<p>This text was not.</p>

Save the file, navigate to http://localhost/ch2/test.php in your browser, and you should see the following
output in your browser:

Static Text
This text was generated by PHP!
This text was not.

As you can see, the text inside the PHP delimiters , was handled as a script, but the text outside was rendered

as regular HTML. There is no limit to how many blocks of PHP you can include in a page, so the following snippet is
completely valid:

<?php
echo "<p>This is some text.</p>";
?>
<p>Some of this text is static, <?php echo "but this sure isn't!"; ?></p>
<?php echo "<p>"; ?>
This text is enclosed in paragraph tags that were generated by PHP.
<?php echo "</p>"; ?>

The preceding code snippet outputs the following to the browser:

This is some text.
Some of this text is static, but this sure isn't!
This text is enclosed in paragraph tags that were generated by PHP.

If you write a PHP script that holds nothing but PHP, you don’t have to end the PHP delimiter. You only have to

mark the ending of a PHP code block, if you are going to write something that is not PHP in the file.

CHAPTer 2 ■ UnDersTAnDing PHP: LAngUAge BAsiCs

19

Using echo
Take an extra look at the use of echo in the preceeding code examples. PHP’s echo is a so-called language construct—
the basic syntactic units PHP is made of. The echo statement is probably the most common approach for outputting
text from PHP to the browser. That is all echo does. It sends output to the browser.

Notice that the output strings are delimited with double quotes in the preceding code example. The initial
double quote indicates the beginning of a string of characters. The second double quote marks the end of the string to
output. In PHP, you must delimit any strings you are using in your code. The string delimiters tell PHP when a string of
characters begin and end, something PHP needs to know in order to process your code.

Note ■ String is a geeky word for “text.” Because computers are not human, they don’t really see texts, much less
words. They see strings of characters.

What Is a Variable?
A variable is a keyword or phrase that acts as an identifier for a value stored in a system’s memory. This is useful,
because it allows us to write programs that will perform a set of actions on a variable value, which means you can
change the output of the program simply by changing the variable, rather than changing the program itself.

Storing Values in a Variable
It is quite straightforward to store a value in a variable. In one single line, you can declare a new variable and assign a
value to it:

<?php
$myName = "Thomas";
$friendsName = "Brennan";
echo "<p>I am $myName and I have a friend called $friendsName.</p>";

If you type the preceding lines into your test.php file and load it in your browser, you should see an output such
as the following:

I am Thomas and I have a friend called Brennan.

Perhaps you will notice that the preceding code holds nothing but PHP. Consequently, there is no need to mark

the end of the PHP block with a PHP delimiter. You can add ?> at the end, if you like; it’ll make no difference.

A Variable Is a Placeholder
Variables are used extensively in programming. It is a basic concept you must come to understand. There is an
important lesson to be learned from the example preceding. When you read the PHP code, you see variable names:

echo "<p>I am $myName and I have a friend called $friendsName.</p>";

You can see the output from PHP in the browser. You can see that PHP replaces the variable names with string
values. For example, when you see $myName, PHP sees Thomas. When you see $friendsName, PHP sees Brennan.

CHAPTer 2 ■ UnDersTAnDing PHP: LAngUAge BAsiCs

20

A variable is a placeholder for a specific value. PHP doesn’t even notice the variable; it sees the value stored
inside. Metaphorically, you could understand a variable as a container—a cup, for example. I have a cup right next to
my computer, and I can put all sorts of things inside it: coffee, a pencil, or some loose change. PHP variables are like
that. PHP sees what is contained, not the container.

Note ■ in technical terms, PHP variables are passed by value, as opposed to passed by reference.

Valid PHP Variable Names
In PHP, all variables must begin with a dollar sign character ($). There are some further restrictions on valid variable
names, but if you simply use alphabetical characters only, you will encounter no problems with invalid variable
names. So, avoid whitespace characters, numbers, and special characters such as !”#€%&/.

Note ■ You can actually use numbers in variable names but not in initial positions. so, $1a is an invalid variable name,
whereas $a1 is perfectly valid.

Displaying PHP Errors
On your journey toward learning PHP, you are bound to produce some errors. It is easy to think that you have done
something bad when you have written some erroneous PHP. In a sense, it is, of course, bad. You would probably
prefer to write perfect PHP from the very start.

In another sense, errors are a very good thing. Many such errors present a learning opportunity. If you really
understand the cause of an error, you are less likely to repeat it, and even if you do repeat it, you can easily correct the
error if you understand it.

PHP error messages are not always displayed—it depends on how your development environment is set up.
If you write the following two lines of PHP at the beginning of your scripts, all error messages will be displayed.
Let’s produce an error:

<?php
//these two lines tell PHP to show errors in the browser
error_reporting(E_ALL);
ini_set("display_errors", 1);

//here comes the error
echo "This string never ends;

Do you see the error? There is only one string delimiter. To write valid PHP, you must wrap your strings in string
delimiters, for example, double quotes. In the preceding example, the end delimiter is missing, so PHP cannot see
where the output ends. If you run the code, you will see an error message in your browser, as follows:

Parse error: syntax error, unexpected $end, expecting T_VARIABLE or T_DOLLAR_OPEN_CURLY_BRACES or
T_CURLY_OPEN in/Applications/XAMPP/xamppfiles/htdocs/ch2/test.php on line 4

CHAPTer 2 ■ UnDersTAnDing PHP: LAngUAge BAsiCs

21

Error messages are friendly but not always as precise as you might prefer. When PHP is unable to process your
code, an error is triggered. PHP will make an educated guess about what the problem might be. In the preceding
example, PHP has encountered an “unexpected end” on line 4. There is a “bug” in your script. Please debug the script
by adding the missing double quote.

I recommend you make a habit of forcing error messages to display and try to read all error messages you come
across. If you encounter an error message you don’t understand, you can always search the Internet for an explanation.
A site such as www.stackoverflow.com is very likely to have an explanation for your particular error message.

Creating an HTML5 Page with PHP
PHP is a wonderful language for creating dynamic HTML pages. With a tiny bit of PHP, you can create a valid HTML5
page with variable content in memory and have PHP output the created page to the browser. Let’s make a bare-bones
skeleton for a personal portfolio site. Create a new PHP file called index.php in XAMPP/htdocs/ch2:

<?php
error_reporting(E_ALL);
ini_set("display_errors", 1);

$title = "Test title";
$content = "<h1>Hello World</h1>";
$page = "
<!DOCTYPE html>
<html>
<head>
<title>$title</title>
<meta http-equiv='Content-Type' content='text/html;charset=utf-8'/>
</head>
<body>
$content
</body>
</html>";
echo $page;

If you save and load http://localhost/ch2/index.php in your browser, you should see a well-formed HTML5
page with a title and a heading. It’s a good habit to inspect the source code of your PHP-generated HTML pages.
Do it, and you should see that the variables have been replaced by their corresponding values by PHP. The HTML
source code should look like the following:

<!DOCTYPE html>
<html>
<head>
<title>Test title</title>
<meta http-equiv='Content-Type' content='text/html;charset=utf-8' />
</head>
<body>
Hello World</h1>
</body>
</html>

http://www.stackoverflow.com/

CHAPTer 2 ■ UnDersTAnDing PHP: LAngUAge BAsiCs

22

Including a Simple Page Template
Creating a valid HTML5 page with PHP is a very, very common task. You should have few problems understanding
the preceding code. Let’s try to create the same output in a way that’s easier to reuse in other projects. If you can reuse
your code in other projects, you can develop solutions faster and more efficient. Let’s keep the HTML5 page template
in a separate file.

Create a new folder called templates in your existing PHP project. Create a new PHP file called page.php in the
templates folder, as follows:

<?php
return "<!DOCTYPE html>
<html>
<head>
<title>$title</title>
<meta http-equiv='Content-Type' content='text/html;charset=utf-8'/>
</head>
<body>
$content
</body>
</html>";

Returning Values
The return statement in PHP is very useful. It simply stops execution of the script. Any value indicated immediately
after the return statement will be returned. In the preceding example, a valid HTML5 page will be returned.

Including the Template
To use the template from your index, you will have to load the script into PHP’s memory. You can do that with another
PHP statement: include_once. Update your index.php file, as follows:

<?php
//complete code for index.php
error_reporting(E_ALL);
ini_set("display_errors", 1);
$title = "Test title";
$content = "<h1>Hello World</h1>";
//indicate the relative path to the file to include
$page = include_once "templates/page.php";
echo $page;

The output of the preceding code will be identical to that you had when you first created the page. There are no
functional changes, but there are some aesthetic changes in code architecture. A reusable page template is now kept
in a separate file. The template is included into index.php, when needed. We’re really splitting different parts of the
code into different files. The result is that more of the code becomes readily reusable in other projects. This process of
separating different parts is also known as separation of concerns.

