
Shelve in:
Programming Languages/General

User Level:
Advanced www.apress.com

Gam
e Developm

ent Tool Essentials
B
erinstein

A
d

v
a

n
c
e
d

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

9 781430 267003

55999
ISBN 978-1-4302-6700-3



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



v

Contents at a Glance

About the Authors���������������������������������������������������������������������������������������������������������������� xv

About the Technical Reviewers������������������������������������������������������������������������������������������ xix

Acknowledgments�������������������������������������������������������������������������������������������������������������� xxi

Introduction���������������������������������������������������������������������������������������������������������������������� xxiii

Part 1: Asset and Data Management■■ ������������������������������������������������������������� 1

Chapter 1: Plug-in–based Asset Compiler Architecture■■ �����������������������������������������������������3

Chapter 2: GFX Asset Data Management■■ ����������������������������������������������������������������������������7

Part 2: Geometry and Models■■ ���������������������������������������������������������������������� 17

Chapter 3: Geometry and Models: 3D Format Conversion (FBX, COLLADA)■■ ����������������������19

Chapter 4: Building Procedural Geometry Using MAXScript (Voronoi Polygons)■■ �������������39

�Chapter 5: A Uniform Geometry Workflow for Cutscenes and Animated  ■■
Feature Films��������������������������������������������������������������������������������������������������������������������55

�Chapter 6: Building a Rock-Solid Content Pipeline with the COLLADA  ■■
Conformance Test Suite����������������������������������������������������������������������������������������������������67

Chapter 7: Rendering COLLADA Assets on Mac OS X with Scene Kit■■ �������������������������������87

Chapter 8: COLLADA Exporter for Unity Developers in the Unity Asset Store■■ �������������������95

Part 3: Web Tools■■ ��������������������������������������������������������������������������������������� 103

�Chapter 9: Introduction to Utilizing HTML, CSS, and JavaScript to Create Rich  ■■
Debugging Information���������������������������������������������������������������������������������������������������105

�Chapter 10: Moving Tools to the Cloud: Control, Configure, Monitor, and View  ■■
Your Game with WebSocket��������������������������������������������������������������������������������������������117



■ Contents at a Glance

vi

Part 4: Programming■■ ��������������������������������������������������������������������������������� 129

Chapter 11: Programming: Decoupling Game Tool GUIs from Core Editing Operations■■ ��131

Chapter 12: Building A Game Prototyping Tool for Android Mobile Devices■■ ������������������149

Chapter 13: Engineering Domain-Specific Languages for Games■■ ����������������������������������173

Index����������������������������������������������������������������������������������������������������������������������������������189



xxiii

Introduction

The computer game industry isn’t what it used to be. Early on, which wasn’t all that long ago, developers focused on 
bringing the magic of arcade games to microcomputers, which was fun, but suffered from a computing environment 
that was technically and artistically limiting. However, as computing power exploded, so did developers’ technical 
options and creativity, culminating in the sophisticated AAA titles that became so popular in the aughts. These 
marvels required large development teams, with complex and proprietary platforms that themselves required 
dedicated teams of programmers, and game development grew up; boy, did it.

In the last few years there has been a massive explosion in the growth of mobile and casual gaming, which has 
dramatically changed the nature of game development. Many successful products are now developed by small teams 
that do not have the resources to build the kind of complex tool chains AAA teams use. These developers cannot 
afford the luxury of specializing in one small part of a complex system. To build a modern game, typically in a web or 
mobile environment, you must be familiar with a wide range of technologies and techniques, and you must be able to 
turn your hand to meet the immediate need, which may be just about anything: one day asset management, the next 
capturing usage statistics, the day after passing conformance tests.

This book was written with the needs of the new developer in mind. We offer strategies for solving a variety of 
technical problems, both well-known and unusual ones, that our experts have encountered. There’s quite a lot about 
COLLADA, as well as techniques for using the Web and the cloud in your pipeline, rapid prototyping, managing your 
files and assets, and optimizing your GUIs. We think there’s something for everyone here and hope you agree.

Code samples are written in Java, MAXScript, Objective-C, Python, HTML, JavaScript, JSON, C, C++, C#, 
AngelScript, Xtext, and domain-specific languages.

We’ve divided the book into four parts:

Asset and Data Management•	

Geometry and Models•	

Web Tools•	

Programming•	

Asset and Data Management covers the critical issue of managing your assets in the game development pipeline. 
Two different aspects are described; both will help developers reduce their workload in the always daunting process 
of not only organizing original assets, but also tracking changes and versions. For example, Chris Ronchi’s “Where Is 
It” chapter explains why it’s important to follow a consistent and thought-through naming strategy and demonstrates 
how to create one. This basic but useful chapter attacks an area that involves no programming and no expenditure, 
but can help you save time and money just by using a basic “convention over configuration” approach.

The second section, Geometry and Models, focuses heavily on the COLLADA document format, describing how 
it can be used to bridge the gap between proprietary high-end tools and the requirements of small developers.

The Web Tools section offers hints on moving game development tools to the cloud as well as some particularly 
interesting ways in which readily available open source web development tools may be used. By adopting software 
like Django, for example, it’s possible to build a comprehensive web-based gameplay monitoring and tracking system. 

Finally, the Programming section offers help for developers who want to create their own flexible workflows. 
The emphasis here is on employing programming techniques that were originally developed to solve more 
general problems, such as the Command Pattern and the use of domain-specific languages (DSLs), to simplify the 



■ Introduction

xxiv

programming task. Each programming chapter describes not only the use, but the concepts behind the particular 
technique, so you can identify a variety of use cases and build up your armory of skills.

Just a quick word about the development of this book. Unlike almost every game development volume out there, 
this one was originally published independently by a group of experimenters—people with something to say who 
came together to try something new; it was titled Game Tool Gems. We self-published the book in both hard copy and 
ebook formats and sold it through Amazon. But it was a bit bare bones: no index, tech reviewed only by each other, 
laid out by editor Paula B. rather than by a fancy designer. But people liked it, including Apress’s editors, and that’s 
how this book with its new title, Game Development Tool Essentials, was born. Apress took the basic material, tech 
reviewed it six ways from Sunday, added that missing index, and expanded and updated all the chapters. And for that, 
we are most grateful.

We feel that it’s critical to share information about the tools we use to create games. The better our knowledge, the 
faster and more efficiently we can work, and the more cool things we can do. That’s why we wrote this book pooling 
the knowledge and experience of working developers. That fragile pipeline has plagued us long enough. Let’s show it 
who’s boss.



Part 1

Asset and Data Management



3

Chapter 1

Plug-in–based Asset Compiler 
Architecture

Nicuşor Nedelcu
From the beginning of the game creation process to the end, developers have two things to worry about: code and 
data (game art and other type of assets). In the past, data was formatted specifically for the one platform the game 
was about to run on. Now we have to format the same data for many different platforms. In order to satisfy this new 
requirement, we need access to source assets that can be compiled into a variety of targets. We also have more work to 
do, since special care has to be taken for each format.

However, there are ways to reduce the pain involved in this more complex pipeline. To make this process as 
streamlined as possible, I propose a plug-in–based asset compiler that can load converter plug-ins for the given asset 
types. The plug-in–based nature of the compiler can also help developers create their own plug-ins for any other 
special asset types they need. In this chapter, I describe how to set up and code such a compiler using an example of a 
texture converter/compiler plug-in. The platform you are going to use is Windows and the language is C++; with few 
modifications regarding the OS specifics, the code should work on other environments and can even be adapted to 
other languages.

Design
The underlying plug-in loading system can be a “traditional” dynamic-link library (DLL1) loading and querying for 
the proper interfaces. You will be using the Windows DLL API, but the code is almost the same for other operating 
systems. The DLL can export a special function that will return an instance of the converter interface (see Listing 1-1). 
The same goes for other platforms (OS/X, Linux), using their specific dynamic link library API implementations.

Listing 1-1.  Creating the Asset Converter Instance Using the Exported DLL Function

DLL_EXPORT AssetConverter* createAssetConverter();
 

The interface of the asset converter looks like Listing 1-2.

1Wikipedia. “Dynamic Link Library.” http://en.wikipedia.org/wiki/Dynamic-link_library.

http://en.wikipedia.org/wiki/Dynamic-link_library


Chapter 1 ■ Plug-in–based Asset Compiler Architecture

4

Listing 1-2.  The Asset Converter Interface

class AssetConverter
{
public:
  enum EType
  {
    eType_Unknown = 0,
    eType_Compiler = 0>>1,
    eType_Importer = 1>>1,
    eType_ImporterCompiler
                       = (eType_Compiler | eType_Importer)
  };
 
  AssetConverter(){}
  virtual ~AssetConverter(){};
  virtual bool convert(const char* pSrcFilename, const char* pDestPath, const Args& rArgs) = 0; // 
Args class is a command line argument parser, not shown here. Basically holds a list of arguments 
and their values
  virtual const char* supportedExtensions() const = 0;
  virtual EType type() const = 0;
};
 

The asset converter has a type that represents what the converter does with the given input file: compiles or 
converts. You make this distinction between compilers and converters because you would like to use compilers to 
compile data from your intermediate format to the final platform-optimized format, and converters to convert from 
third party formats to your intermediate format. An example of a compiler is cube.json (the intermediate format) to 
cube.mesh (final optimized format); of a converter, cube.fbx to cube.json.

You can also have a compiler and a converter in one implementation (flag eType_ImporterCompiler) that can 
handle third party and intermediate formats (for example, a TextureConverter that converts third party JPG/PNGs 
and compiles to a custom format like .TEX).

The convert method is the one called by the asset compiler executable when the given command-line arguments 
are passed to it, and they match the file extensions returned by the supportedExtensions() method. This function 
should return something like a file mask such as *.jpg, *.tga, *.png, or *.texture, so even a simple substring 
matching test can select the right converter(s). The command line arguments are shared for all the converters; each 
one can pick up its own arguments and their values.

By convention, the converters will be called first on the given assets, and after that you will call the compilers. 
Since you (probably) generated/converted assets from the previous step, now you can compile those intermediate 
formats into final binary optimized ones for specific platforms.

The main asset compiler executable will load all plug-in DLLs from either a specific folder or the same folder as 
the executable. You can use any kind of plug-in loading scheme. For example, you can have those DLLs with their 
extensions named .plugin, .converter, etc. In this way, you dynamically load only the eligible ones, skipping the 
unsupported/unknown DLLs.

Once a plug-in is loaded, you retrieve the address of the DLL exported createAssetConverter() function and 
instantiate the converter. Then, with all plug-ins loaded, you match each input asset filename with the return string 
of the supportedExtensions() of each converter. If the match is true, then you call the converter to take care of that 
file type. After that, you can continue to pass the filename to be handled by other matching converters, or you could 
come up with a stop Boolean return value so the file will be handled only once by a single converter and not by further 
matching converters if the return value is false. Even further, you could have some sort of dependency tree dictating 
when converters would be called after others have finished converting assets.



Chapter 1 ■ Plug-in–based Asset Compiler Architecture

5

Obviously, another thing that speeds up the compilation/conversion process is multithreading.2 In a first 
phase, you can schedule groups of files to be converted on separate threads. Then, when you convert a few files, the 
converters could spawn several threads to take care of a single asset. You must be sure, however, that the available 
cores are used/spread evenly, whether on a CPU or GPU.

Multithreading asset compilation can be a little tricky when dependencies are involved, so for this process to be 
safe, and to avoid problems arising from two threads concurrently modifying the same resource, you should build a 
dependency tree and put each main branch and its sub-branches and/or leaves on their own thread. Various methods 
for thread synchronization can be used, like mutexes and semaphores, each operating system having its own API for 
that. The main compiler class would look like Listing 1-3.

Listing 1-3.  The Asset Compiler Class

class AssetCompiler
{
public:
  AssetCompiler();
  virtual ~AssetCompiler();
 
  bool compile(const Args& rArgs);
  void compileFolder(
    AssetConverter::EType aConverterType,
    const char* pMask,
    const char* pExcludeMask,
    const char* pCompileFolder,
    const char* pDestFolder);
protected:
  vector<AssetCompilerWorker> m_workerThreads;
      .......................
};
 

The main asset compiler class has the compile(...) method (synchronous call; it will wait until every asset 
compile thread finishes), which will take the actual command-line arguments. The compileFolder(...) method 
(asynchronous call; it will just start the threads) will process a given folder for a specific converter type, with a 
filename mask, an excluding mask, the actual compile folder, and destination folder for the output files. The class also 
has some worker threads for multithreaded processing of the input assets.

Example
The code in Listing 1-4 shows an example—a texture converter/compiler plug-in. 

Listing 1-4.  The Texture Converter and Compiler

class TextureConverter : public AssetConverter
{
public:
  TextureConverter();
  ~TextureConverter();
 

2“Multithreading.” http://en.wikipedia.org/wiki/Multithreading_(computer_architecture).

http://en.wikipedia.org/wiki/Multithreading_(computer_architecture


Chapter 1 ■ Plug-in–based Asset Compiler Architecture

6

  bool convert(const char* pSrcFilename, const char* pDestPath, const Args& rArgs);
  const char* supportedExtensions() const
{
     return "*.jpg *.png *.psd *.tex";
}
  EType type() const
{
   return eType_ImporterCompiler;
}
};
 

As you can see, the texture converter plug-in class will return all supported file extensions and their types, so the 
main compiler class will select it when appropriate.

Inside the convert method, the code will check the input filename and dispatch the logic to the specific image 
format handler.

This class can reside in a DLL, and you can have a single converter per DLL, but you can also have as many 
converter classes in a DLL as you want. In that case, the query function will just have to change to support multiple 
classes. See Listing 1-5.

Listing 1-5.  A Plug-in with Multiple Converter Classes Inside a Single DLL

// this class must be implemented by the plug-ins
class AssetCompilerPlugin
{
virtual int getClassCount() = 0;
virtual AssetConverter* newClassInstance(int aIndex) = 0;
}
DLL_EXPORT AssetCompilerPlugin* createPluginInstance();
 

The exported createPluginInstance() will create the plug-in’s class instance, which will take care of 
instantiating converter classes.

Other converter plug-in examples include an FBX converter, mesh compiler, prefab compiler, shader compiler, 
MP3/OGG/WAV converter, level compiler, etc. The plug-in system can be developed further with class descriptors, so 
you can have information about the converter classes without having to instantiate them unless they are needed.

Conclusion
Making the asset compiler modularized can yield huge benefits: shorter development time, the ability to extend and 
debug the tool, and happy third party developers who will use the tools since they can implement new converters/
compilers for their custom data file formats.

Keep in mind optimizations like multithreading; dependency trees; CUDA/GPGPU operations to speed things; a 
CRC-based last-modified file info database so you can skip assets that haven’t changed; and even safely running many 
compiler executables on the same data folders.

The solution can be implemented in various ways. The converter ecosystem can be detailed as needed so it will 
fit perfectly into the game engine’s pipeline.



7

Chapter 2

GFX Asset Data Management

Christian Ronchi
Working in a software house is primarily about collaborating with other people, so the first thing to do when you 
start a new project is set up a pipeline that facilitates the flow of assets and information. Ignoring this important 
preparation can create confusion and waste time during production, so you want to make sure you do it right.

One of the most important considerations in setting up such a pipeline is keeping track of your assets. You don’t 
want programmers and artists making changes to the wrong version, or losing the best version, or not being able to 
find that great character variation to show the director who needs to see it right now. Fortunately, it’s not difficult to 
create a system that will keep these kinds of disasters from happening. What you need is

One place for everything. Assets and project information should be stored centrally to keep •	
them consistent. You might want to use a wiki or set up a common space (sometimes we 
use Microsoft SharePoint in our studio) where information can be constantly updated and 
available.

Easy-to-understand file names and organization. Asset naming conventions, folder structures, •	
and file organization must be simple, efficient, and intuitive.

This chapter focuses on the second element of that system: file organization and naming conventions.

Folder Structure
Folder structures, file names, and their internal organization must be designed to be clearly interpretable by any 
person who needs to work with the project’s assets. Figure 2-1 shows an example of bad organization of the directory 
structure/files applied to a common type of Autodesk 3ds Max project. Next to it, in Figure 2-2, you can see the same 
project with a simple, well-organized structure. In this example, we’re using a train station with a palm tree.



Chapter 2 ■ GFX Asset Data Management

8

Figure 2-1.  (left). A badly organized structure 

At first glance, the structure on the left (Figure 2-1) might seem the best solution, since it is definitely faster 
(everything resides in a single directory), but in practice, it is surely the most discouraging and inconvenient setup for 
a person who has no previous experience with the project. Grouping all the palm tree files into one folder and listing 
them alphabetically doesn’t impose any logical structure on the information. Because files used for different purposes 
are thrown together, the user must go through a process of trial and error, scanning every name and guessing at each 
file’s purpose. Imagine doing that all day.

The structure on the right (Figure 2-2) makes it easy to understand where to find all the files needed for the 
project, and their purpose. Files are grouped together by how they will be used and arranged hierarchically. Just 
like your object-oriented code, this kind of file structure is logical and depends on the relationships among assets. 
It takes a bit of extra thought to set up your structure this way, but the investment is worth it in time saved and 
frustration avoided. Even someone unfamiliar with the project could pinpoint a specific file in no time with this kind 
of organization.

Figure 2-3 shows the basic structure I usually use. The elements are

Root: The root of your project•	

Map name: The name of the layer where you’ll put the models and textures for your objects•	

Obj name: The name of the 3D object•	

FBX: 3D model export in FBX format•	

MAX: Source file of the 3D model•	

PSD: Source files used for this model•	

TGA: Exported texture files in TGA format used for the 3D model•	

Figure 2-2.  (right). A clearly organized structure



Chapter 2 ■ GFX Asset Data Management

9

You can expand on this scheme, of course. For example, if you have video files, Adobe After Effects projects,  
and sequences rendered from 3ds Max, you can add folders, as shown in Figure 2-4.

root

map name

obj name

FBX

MAX

PSD

TGA

Figure 2-3.  A basic folder structure for a common 3D project

root

map name

obj name

AEP

FBX

MAX

PSD

REF

REN

TGA

Figure 2-4.  The basic folder structure expanded to a more “render-oriented” setup

Sometimes you will have items such as textures or render sequences of images that are shared by multiple 
projects. In this case, you should use a common folder (see Figure 2-5) to store your shared content. Or, opt for the 
most expensive choice (in terms of space) but more convenient because it creates fewer dependencies: duplicate your 
content in the folders of the projects where they are used. For example, if the object STA01_palmTree03 shares one or 
more textures with the object STA01_oakTree01, the textures would be found in the folders of both objects.



Chapter 2 ■ GFX Asset Data Management

10

Avoid using linked references to other projects, as this practice usually creates confusion, even though it might 
save on disk space (which really isn’t a big problem anymore).

Naming Conventions
When naming files, I usually use a system that includes the name of the asset and a prefix indicating the name of the 
map to which it belongs. You can choose the number of characters to use; my advice is do not overdo it and be as brief 
as possible without having too many restrictions. Since most projects contain a vast amount of assets, in order to avoid 
a “wall of text” effect, it’s very important to maintain a very short, easy-to-read naming convention. A prefix with a 
length of 3-5 characters is ideal.

root

common

obj name

obj name

obj name

FBX

FBX

FBX

MAX

MAX

MAX

PSD

PSD

PSD

TGA

TGA

TGA

map name

Figure 2-5.  The complete folder structure of the project, also with the common tree



Chapter 2 ■ GFX Asset Data Management

11

3D Models
When you are working with 3D models, always save both source files and exports; never keep only the export because 
it may contain only a reduced version of your model. For example, some scripts, rigs, or animation content might not 
be saved in the export file.

However, in either case, the naming conventions are the same. Suppose that you’re working on a map that has a 
setting for a train station. The suffix might look something like this:
 
STA01_palmTree03
 

This sample suffix is organized as

<map name>_<object name><incremental number>, where•	

<map name> is the name of the map that shows the location of the object (•	 STA01).

<object name> is the name chosen for the object (•	 palmTree).

<incremental number> is the number of the object version (for example day/night state or •	
split into two chapters) (03).

You may also need to add a category for the object. My suggestion is to keep it short (three characters are enough 
in most cases), as in
 
STA01_VEG_palmTree03
 

As you can see, most of the suffix is the same as before, but I have inserted the category after the map name.
This suffix breaks down as follows:

<map name>_<category>_<object name><incremental number>, where•	

<map name> is the name of the map where the object is (•	 STA01).

<category> is the category of the object, in this case the abbreviation of vegetation (•	 VEG).

<object name> is the name chosen for the object (•	 palmTree).

<incremental number> is the number of the object variation (•	 03).

In addition to constructing solid file naming conventions, you should create a clean and well-organized internal 
structure of your .max file.

In Figure 2-6, in addition to the 3D model, there is a mini-rig to procedurally control certain properties, like the 
three measurements of the table (height, width, and depth) and the color of the glass material. Layers are used to 
define which visual objects are part of the mesh, and which are control objects to help the mini-rig.



Chapter 2 ■ GFX Asset Data Management

12

The naming convention here is slightly different from what I’ve described above, but the goal is the same:  
to immediately understand the purpose of the objects in the scene.

Textures
For textures as with 3D models, you must always maintain the source files together with the exports. Image file names 
and folders need to be as clear, simple, and well organized as those for 3D models.

Texture naming conventions are based on the characteristics of the textures. Names include the kind of object, 
the type of material, and a suffix that indicates the channel type in which they will be applied.

I use the following abbreviations (see Figure 2-7):

_D: diffuse map•	

_S: specular map•	

_NM: normal map•	

_HM: height map or displacement map•	

Figure 2-6.  An example of a naming convention for a model with rig, inside 3ds Max



Chapter 2 ■ GFX Asset Data Management

13

In Figure 2-8, you can see that some folders are used to divide the layers according to their channel usage when 
exported, in order to group the parts that require a combination of multiple layers and layer colors in order to help the 
division within the folders.

Figure 2-7.  From a single .psd file, you will create the textures for all the channels (diffuse, specular, normal map,  
and height map)



Chapter 2 ■ GFX Asset Data Management

14

You might also want to categorize by Smart Object, which introduces the concept of instances inside Adobe 
Photoshop. Modifying one Smart Object updates all the linked instances, which means that you can use that feature 
to easily change all the buttons of your ingame menu, or apply nondestructive transformations to some layers without 
losing your original image data. For more information about the Smart Object feature, see http://help.adobe.com/
en_US/photoshop/cs/using/WSB3154840-1191-47b7-BA5B-2BD8371C31D8a.html#WSCCBCA4AB-7821-4986-BC03-
4D1045EF2A57a.

Trying to maintain multiple versions of the file you’re working on, or incremental variations of the file name, is 
often a cause of chaos. At best you can lose time searching for a particular version; at worst you can make intricate 
changes to the wrong file, hold everyone up, and miss deadlines.

Figure 2-8.  An example of organization within a Photoshop file. The folder and the different colors help the reading of 
the file

http://help.adobe.com/en_US/photoshop/cs/using/WSB3154840-1191-47b7-BA5B-2BD8371C31D8a.html#WSCCBCA4AB-7821-4986-BC03-4D1045EF2A57a
http://help.adobe.com/en_US/photoshop/cs/using/WSB3154840-1191-47b7-BA5B-2BD8371C31D8a.html#WSCCBCA4AB-7821-4986-BC03-4D1045EF2A57a
http://help.adobe.com/en_US/photoshop/cs/using/WSB3154840-1191-47b7-BA5B-2BD8371C31D8a.html#WSCCBCA4AB-7821-4986-BC03-4D1045EF2A57a


Chapter 2 ■ GFX Asset Data Management

15

To solve this problem, you need a versioning system, such as Perforce, which will give you a revision history.  
With such a system in place, you can always roll back to a previous version, and you will solve three problems:

	 1.	 You always have the latest version of the file available.

	 2.	 You can return to any version you want at any time.

	 3.	 You will have a consistent backup of your data.

Of course, an infrastructure with Perforce is not for everyone. A good alternative I use every day is a cloud system 
like Dropbox or SugarSync, which provides enough functionality for most situations. GitHub is another popular 
version control system.

Conclusion
In this chapter, I wanted to show the organization system that I most frequently use for my projects. However, this is 
not the only way; it’s just one possibility. The most important thing is clarity; without it, the quality of the work will 
undoubtedly suffer.

Some small rules that should be never forgotten:

Always write in English, so anyone can understand.•	

Spend the required amount of time to organize your work and your data.•	

Making your work easy and clear will help not only you, but also anyone who takes over the •	
project.



Part 2

Geometry and Models


