
Pande

Shelve in
Web Development /JavaScript

User level:
Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

jQuery 2 Recipes
jQuery is often referred to as the ‘write less, do more’ JavaScript library. It allows a few clear
lines of elegant, well-tested, code to replace many pages of complex hand-coded script,
speeding development times and providing substantial cost savings.

You will find jQuery 2 Recipes’ problem-solution approach to be an excellent value and
a feature-packed resource as you begin to include jQuery in your own projects. This book
is bursting with fully-worked example recipes showing the core jQuery frameworks (jQuery,
jQuery Mobile, jQuery UI) in action. Starting with fundamental principles and progressing to
more advanced topics, you’ll be shown how to make the very best use of jQuery every step
of the way.

Early on, you’ll learn to work confidently with dynamic data and to handle the jQuery
events that form the foundation of your application. We’ll then build on this foundation to
demonstrate how fully-working, user-interface animations and AJAX-based communication
can be constructed within jQuery. We’ll show how add-on libraries like jqWidgets can be
deployed to create professional quality apps for both the web and mobile with minimal
coding. Finally, a full set of debugging and error-handling recipes is included to help you
track down bugs and ensure your code is as robust as it can be.

In this book, you’ll learn:

• A comprehensive collection of recipes that will help you solve a wide
range of jQuery 2.0 problems

• Working examples of the main features of all three core jQuery
frameworks (jQuery, jQuery UI and jQuery Mobile) in action

• To integrate jqWidgets into your application effectively
• Techniques to create and implement custom animations and effects

using jQuery methods
• Tried-and-tested debugging recipes to streamline your applications

9 781430 264330

54499
ISBN 978-1-4302-6433-0

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��� xxxv

About the Technical Reviewer��� xxxvii

Acknowledgments�� xxxix

Chapter 1: Introduction■■ ��1

Chapter 2: jQuery Fundamentals■■ ��21

Chapter 3: jQuery Selectors■■ ��45

Chapter 4: jQuery Selectors Filtering and Expansion■■ ���99

Chapter 5: DOM Traversing■■ ���131

Chapter 6: DOM Manipulation■■ ���161

Chapter 7: Event Handling■■ ��229

Chapter 8: jQuery Effects and Animation■■ ���253

Chapter 9: jQuery AJAX■■ ��283

Chapter 10: jQuery UI■■ ���323

Chapter 11: jQuery Mobile■■ ��389

Chapter 12: jqWidgets Framework■■ ���473

Appendix A: Basic HTML5 and CSS3■■ ���543

Appendix B: Appendix B – Web Console■■ ���557

Appendix C: Deploy Web Application■■ ��563

Appendix D: Logging, Error Handling, and Debugging■■ ��569

Index��585

1

Chapter 1

Introduction

1-1. About jQuery 2.0
jQuery is a multi-browser, lightweight, and extensible open source JavaScript library that can be used to simplify
client-side and client-to-server communication scripting. It simplifies coding by replacing many lines of JavaScript
code with fewer lines by using jQuery built-in methods. Some of the main features of jQuery include:

Dynamic HTML creation and manipulation•	

HTML events handling•	

Effects and animations•	

Client to server communication•	

In addition to core jQuery, this book also covers jQuery UI and jQueryMobile, which are built on the core.
As of writing of this book, the latest version of jQuery is 2.1.0. This version has the same API as the previous

version 1.x, but it isn’t supported on older browsers like Internet Explorer 8 and older. The main reason for this release
is to eliminate the code required to support older browsers. This has made smaller jQuery files possible and hence
produced an improvement in performance. If your user base is still using Internet Explorer 8 or older, you should use
the latest version of the jQuery 1.x series.

jQuery can be downloaded from http://jquery.com/download/.
jQuery 2 is compatible with jQuery 1.9. All features of jQuery 1.9 have been included in jQuery 2.

1-2. Migration Plan
If you are using a version older than jQuery 1.9, upgrade it to jQuery 1.9+ first by using the jQuery migration plug-in.
As of the writing of this book, the latest version of the jQuery 1 series is 1.10.2 and latest version of the jQuery 2 series
is 2.1.0.

You can use migration plug-in by replacing your current reference to jQuery library by the following:
 
<script src="http://code.jquery.com/jquery-1.10.2.js"></script>
<script src="http://code.jquery.com/jquery-migrate-1.2.1.js"></script>
 

If you want to use a local copy of the jQuery and the jQuery migration plug-in, download it from the
following locations:

jQuery 1.10.2 (Development version): http://code.jquery.com/jquery-1.10.2.js
jQuery Migrate 1.2.1: http://code.jquery.com/jquery-migrate-1.2.1.js

http://jquery.com/download/
http://code.jquery.com/jquery-1.10.2.js
http://code.jquery.com/jquery-migrate-1.2.1.js
http://code.jquery.com/jquery-1.10.2.js
http://code.jquery.com/jquery-migrate-1.2.1.js

Chapter 1 ■ Introduction

2

Use the following path to use them (assuming you have saved the downloaded files under the scripts folder
under your website’s root folder).
 
<script src="scripts/jquery-1.10.2.js"></script>
<script src="scripts/jquery-migrate-1.2.1.js"></script>
 

This migration tool will help you identify features/APIs that are deprecated in older versions of jQuery and
removed in jQuery 1.9+. The development version of the migration plug-in will display a warning in the broswer’s
console. Be sure to use browsers that support console interface. The browser console is an interface where developers
and users can view information like network requests, JavaScript code, CSS, warnings, errors, and messages logged
by JavaScript. Newer versions of Internet Explorer, Firefox, Chrome, Safari, and Opera have built-in consoles. Refer to
Appendix B to learn about how to open the web console in different browsers.

1-3. Objects–Basic Concept
Objects are the key to understanding object-oriented technology. Each object has a state (attributes or properties)
and a behavior (methods). In object-oriented terms, objects don’t have to be seen or touched. Some examples of
objects are cars, bank accounts, and rectangles. A car has attributes (or properties), such as the manufacturer, model,
category, color, and so on, and it has methods, such as start the car, stop the car, put it in park, apply the hand brake,
and so on. A bank account has attributes, such as account holder’s name, account number, account type, current
balance. It has methods such as withdraw money, deposit money, transfer money, and so on. A rectangle has
attributes such as length and width and has methods such as determine its area, parameter, and so on.

A class is a general specification from which individual objects are created (instantiated).
Table 1-1 displays examples of classes and objects.

Chapter 1 ■ Introduction

3

1-4. Introduction to JavaScript
JavaScript is an object-oriented scripting language that is commonly used to create interactive effects and to
dynamically create web page content. JavaScript language is case sensitive. JavaScript code is executed within the web
browser, on the client side. It is used to retrieve and manipulate web page data objects (DOM) for interactivity and
dynamic creation of presentation.

JavaScript code can be included on the same page as the HTML code or in a separate file, which is then included
in the HTML file.

Table 1-1.  Examples of classes and objects

Class Object

Class Name: Car Object Name: myCar

 Attributes Attributes Value

 Manufacturer Manufacturer Lexus

 Model Model ES 350

 Category Category Sedan

 Color Color White

Object Name: rentalCar

 Attributes Value

 Manufacturer Chverlot

 Model Impala

 Category Sedan

 Color Blue

Class Name: Account Object Name: customer1Account

 Attributes Attributes Value

 AccountHolderName AccountHolderName John Smith

 AccountNumber AccountNumber 7823712924

 AccountType AccountType Checking

 CurrentBalance CurrentBalance $1,560.78

Object Name: customer2Account

 Attributes Value

 AccountHolderName Jane Smith

 AccountNumber 89127312

 AccountType Saving

 CurrentBalance $14,590.80

Chapter 1 ■ Introduction

4

The following is the syntax for the internal JavaScript code:
 
<script>
// JavaScript Code
</script>
 

The following is the syntax for including external JavaScript code:
 
<script src="myJavaScript.js"></script>
 

Note: In myJavaScript.js, the <script> and </script> tags are not needed.

1-4-1. Data Types
JavaScript has dynamic types. The DataType of the variable is based on its value. Same variables can be used as
different types. If no value is assigned to the variable, the default value of null is assigned.

•	 Strings – Used to hold texts and are declared as follows:

Syntax: var <variableName> = "<value>";

Example: var firstName = "John";

•	 Numbers – Used to hold numbers (integers and decimals):

Syntax: var <variableName> = "<value>";

Example: var monthlySalary = 5450;

•	 Booleans – Used to hold two values—true or false. Booleans are used to check for certain
conditions:

Syntax: var <variableName> = "<value>";

Example: var isContractor = true;

•	 Arrays – Used to hold one or more than one value. They can be of the same data type of
different types:

Syntax: var <variableName> = new Array();

Example: Arrays can be declared and set using any of the following three methods:

var departments = new Array();
 departments[0]= "Sales";
 departments[1]= "Marketing";
 departments[2]= "Technology";
 
 var departments = new Array("Sales", "Marketing", "Technology");
 var departments = ["Sales", "Marketing", "Technology"];
 

It is not necessary that all the elements of an array are of the same data type.
The following is the syntax to access elements in an array –

 
 arrayName[indexNumber];
 

where, indexNumber is the element number in the array and it is 0 based.
For example, document.write(departments[2]) displays “Technology”.

Chapter 1 ■ Introduction

5

•	 Objects – A variable can be defined as a built-in object (like Date, Image, Array, and String)
or as a custom (user-defined) object.

Syntax: var <variableName> = new ObjectName();

Examples:

•	 var syst emDate = new Date(); // for current date

•	 // parameters- yr_num, mo_num, day_num

 // optional - hr_num, min_num, sec_num, ms_num

 var dateOfBirth – new Date(1972, 11, 30);

•	 // parameter – dateString

var joiningDate = new Date(“10/10/2004");

•	 var logoImage = new Image(“images/logo.jpg");

•	 var firstName = new String(“John");

•	 var employee = {firstName: “John", lastName: “Smith", monthlySalary: 5450};

An example of an array of objects:
 
 var employees = new Array(
 {firstName:"John", lastName:"Smith", monthlySalary:5000},
 {firstName:"Jane", lastName:"Smith", monthlySalary:5450});
 

To access the firstName of the employee object, you can use employee.firstName.

1-4-2. Commonly Used JavaScript Objects and Events
When a DOM element is created using a tag in HTML code, a JavaScript object is created. This object’s attributes can
be accessed (get) and set using JavaScript code. Alternatively, JavaScript can be used to create DOM elements.
Listing 1-1 demonstrates an example of creating DOM elements.

Listing 1-1.  DOM elements creation

<!DOCTYPE html>
<html lang=en>
<head>
 <title>HTML5 Anchor</title>
 <meta charset=utf-8>
</head>
<body>
 News
</body>
</html>
 

When the code in the listing 1-1 is executed in a browser and the user clicks on the News link, a page will
be displayed from msnbc.com. Due to the line MSNBCNews, a
JavaScript object called Anchor is created that can be referenced and manipulated using the JavaScript code.
Listing 1-2 demonstrates an example to access and set a DOM element.

Chapter 1 ■ Introduction

6

Listing 1-2.  Access and manipulate a DOM element

<!DOCTYPE html>
<html lang=en>
<head>
<title>HTML5 Anchor</title>
<meta charset=utf-8>
<script>
 function changeNewsLink() {
 var objAnchor = document.getElementById("newsLink");
 alert(objAnchor.href);
 objAnchor.href = "http://cnn.com";
 }
</script>
</head>
<body onload="changeNewsLink();">
 News
</body>
</html>
 

Here’s a detailed explanation of this code:

•	 onload="changeNewsLink();"

calls the JavaScript function changeNewsLink when all the elements in the body of
the HTML page are loaded (i.e., the DOM elements are created). It is advisable to call
functions that access DOM elements using this method.

•	 var objAnchor = document.getElementById("newsLink");

looks for an element with the ID as newsLink and then reference that element by using the
JavaScript variable objAnchor.

•	 alert(objAnchor.href);

displays the current href value of the Anchor object.

•	 objAnchor.href = "http://cnn.com";

changes the href attribute of the Anchor object to http://cnn.com. Now, when the user
clicks the News link on the web page, a page from cnn.com will be displayed instead.

The following is the list of commonly used JavaScript statements:

•	 for. This is used to create a loop to iterate through a list of elements or perform repetitive
operations for a range of values.

Syntax:
 
for (var i=initialValue; condition while true; incrementOrDecrementTheCount)
 

Listing 1-3 demonstrates an example to use for statement to display multiplication table of number 4.

Chapter 1 ■ Introduction

7

Listing 1-3.  Using for statement to display multiplication table

<!DOCTYPE html>
<html lang=en>
<head>
<title>Multiplication Table</title>
<meta charset=utf-8>
<script>
 for (var i=1; i <= 10; i++) {
 document.write(4 + " x " + i + " = " + (4*i) +"
");
 }
</script>
</head>
<body>
</body>
</html>
 

Listing 1-4 demonstrates an example to use for statement to iterate through an array to objects and display FirstName.

Listing 1-4.  Using for statement to iterate through an array

<!DOCTYPE html>
<html lang=en>
<head>
<title>Iterate Through Objects</title>
<meta charset=utf-8>
<script>
var employees = new Array(
 {"FirstName":"John", "LastName":"Smith", "MonthlySalary": 5000},
 {"FirstName":"Jane", "LastName":"Smith", "MonthlySalary":5450});
  
 for (var i=0; i < employees.length; i++) {
 document.write(employees[i].FirstName +"
");
 }
</script>
</head>
<body>
</body>
</html>
 

In the above code, the short form of this line
 
 for (var i=0; i < employees.length; i++)
 

can be written as
 
 for (var i in employees)
 

if … else ... This is used to execute lines of code (logic) when certain conditions are true and •	
execute different logic when conditions are not true.

Chapter 1 ■ Introduction

8

Syntax:
 
 if (condition is true) {
 // JavaScript Code
 } else {
 // JavaScript Code
}
 

Listing 1-5 demonstrates an example to display the names and bonuses for employees by using a 5% bonus for
employees with a salary of $5,000 or less and a 3% bonus for others.

Listing 1-5.  Using if else statement

<!DOCTYPE html>
<html lang=en>
<head>
 <title>Iterate Through Objects</title>
 <meta charset=utf-8>
 <script>
 var employees = new Array(
{"FirstName":"John", "LastName":"Smith", "MonthlySalary": 5000},
{"FirstName":"Jane", "LastName":"Smith", "MonthlySalary":5450});
 
 for (var i in employees) {
 var bonusPercentage;
 if (employees[i].MonthlySalary <= 5000) {
 bonusPercentage = 0.05;
 } else {
 bonusPercentage = 0.03;
 }
 document.write(employees[i].FirstName + " " +
 (employees[i].MonthlySalary*bonusPercentage) + "
");
 }
 </script>
</head>
 
<body>
</body>
</html>
 

•	 continue statement is used to go to the next iteration of the loop without performing
subsequent statements in the loop block.

•	 break statement is used to break the loop to exit out of the loop.

The following is a list of commonly used JavaScript objects:

•	 Anchor

•	 Array

•	 Boolean

•	 Button

Chapter 1 ■ Introduction

9

•	 Checkbox

•	 Date

•	 Document

•	 Form

•	 Image

•	 String

•	 Window

•	 Location

The table 1-2 lists the commonly used DOM events that occur when users perform an action. For example, when
a user clicks a button on a web page, the onclick() event is triggered. If there is any function associated with the
onclick event for the button, that function is executed as well.

Table 1-2.  Commonly used DOM events

Event Type Event Name Description

Mouse Event onclick When the user clicks on an element.

Mouse Event ondblclick When the user clicks on an element.

Form Event onblur When the user clicks some other form element or tab on the
form element.

Form Event onchange When a value of a form element is changed.

Form Event onfocus When a form element gets focus.

Form Event onsubmit When a form is submitted, that is, when a submit button is
clicked in the form.

Body Event onload After a page is loaded and all DOM elements are created.

Developers can specify which JavaScript statement or function to call when an event occurs. Listing 1-6
demonstrates an example to display a message when user clicks the button.

Listing 1-6.  Event handling

<!DOCTYPE html>
<html lang=en>
<head>
<title>Events</title>
<meta charset=utf-8>
<script>
 function displayName() {
 alert(frmRegister.txtName.value);
 }
</script>
</head>
<body>
<form id="frmRegister">

Chapter 1 ■ Introduction

10

Name: <input type="text" name="txtName">

 <input type="button" value="Register" onclick="displayName();">

</form>
</body>
</html>
 

When the user clicks the Register button, the onclick event occurs, which calls the displayName() JavaScript
function. The displayName function gets the value entered in the textbox, which is txtName, and displays it as a
popup message.

1-5. About XML
XML (eXtensible Markup Language) is designed to carry and store data. It is a representation of data in a structured
and pre-defined format.
 
Syntax: <xmlTag attributeName=“attributeValue">
 elementValue
 </xmlTag>
 

elementValue can be a literal value or another XML node.
An XML tag name doesn’t have any space in it. It can have zero or more attribute names and attributeValue

pairs. It can have only one value. It can be nested. The start and end of a data element are represented by openingTag
and closingTag, respectively. Refer to Listing 1-7 for XML representation of employee information.

Listing 1-7.  XML representation of employee information

<Employees>
 <Employee>
 <Name>John Doe</Name>
 <Department>Sales</Department>
 <DateOfJoining>09/12/2001</DateOfJoining>
 <Salary>75000</Salary>
 </Employe>
 <Employee>
 <Name>Jane Doe</Name>
 <Department>Technology</Department>
 <DateOfJoining>09/12/1998</DateOfJoining>
 <Salary>85000</Salary>
 </Employe>
</Employees>
 

Data elements enclosed in <> are called tags. Each tag <tagName> has a closing tag, which is specified as
</tagName>. For example, the <Employee>’s closing tag is </Employee>.

1-6. About JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format. A JSON object is represented as
{"objectName":objectValue}. An array is represented as [object,object,...].

For example, Employees information can be represented as {"Employees":[]} where Employee is an object and
Employees is an array of Employee objects. This example has two object types: Employees and Employee.

Chapter 1 ■ Introduction

11

In JavaScript, the JSON string can be converted to a JavaScript object and each element can be accessed using the
code segment specified in Listing 1-8.

Listing 1-8.  JSON representation of employee information

<script>
 var jsonString = '{"Employees":[{"Name":"John", "Department":"Sales"},
 {"Name":"Jane", "Department":"Technology"}]}';
 var jsonObj = jQuery.parseJSON(jsonString);
 var employeesObj = jsonObj.Employees;
 for (var i=0; i<employeesObj.length; i++) {
 var employeeObj = employeesObj[i];
 var employeeName = employeeObj.Name;
 alert(i + ": " + employeeName);
 }
</script>

1-7. Introduction to Web Services
Web services are application components that can be used by other applications over HTTP or HTTPS. In a typical
application (desktop and web applications), their functional components are defined in the same source code or in
the same package or externally packaged software (like DLL and JAR) located on the same machine. In the case of
web services, the functions provider and consumer are usually on separate servers. The web service provider and
consumers don’t have to be written using same language and be running on the same type of operating system.
This is one of the main advantages of using web services—it operates under heterogeneous environments.

Here’s an example of a web service specification:

Web Service – WeatherService

Function / Operation – getCurrentTemperature()

Input: Zip Code

Result: Temperature in Celsius

Figure 1-1 dispays web service request and response between the consumer and the provider.

Figure 1-1.  Web Service request and response

Chapter 1 ■ Introduction

12

1-7-1. SOAP Web Services
The acronym SOAP stands for Simple Object Access Protocol. It is an XML-based protocol used to consume web
services. A protocol is a contract between the provider and consumer for the specification of the format of requests
and responses between them. Details of services (the operations) provided by the web services are defined (by the
provider) and accessed (by the users) using the Web Services Description Language (WSDL), which is in XML format.
WSDL has following four main sections—message, portType, binding, and service.

Developers don’t need to code each element of the SOAP message. There are many libraries, utilities, and
plug-ins available that can take an object and build the SOAP message request. Upon receiving the response, they can
parse the SOAP message and build the object, which can then be used in the program. Listing 1-9 shows an example
of a SOAP message request.

Listing 1-9.  SOAP message request

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Header>
</soap:Header>
<soap:Body>
 <m:GetCurrentTemperatureRequest xmlns:m="http://www.myWeather.org/weather">
 <m:ZipCode>60606</m:ZipCode>
 </m: GetCurrentTemperatureRequest>
</soap:Body>
</soap:Envelope>
 

Listing 1-10 shows an example of a SOAP message response.

Listing 1-10.  SOAP message response

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Header>
</soap:Header>
<soap:Body>
 <m:GetCurrentTemperatureResponse xmlns:m="http://www.myWeather.org/weather">
 <m:ZipCode>60606</m:ZipCode>
 <m:CurrentTemperature>76 F</m:CurrentTemperature>
 </m: GetCurrentTemperatureResponse>
</soap:Body>
</soap:Envelope>

1-7-2. RESTful Web Services
The acronym REST stands for Representational State Transfer. It is a simpler alternative to SOAP and is gaining
widespread acceptance for creating web services. It transfers XML, JSON, or both (refer to Sections 1-5 and 1-6 for
XML and JSON formats). REST establishes a one-to-one mapping between four basic operations—Create, Retrieve,
Update, and Delete (called CRUD) operations and HTTP methods—POST, GET, PUT and DELETE. A client can access
the REST resource using the unique URI and a representation of the resource is returned by the REST web service.
Unlike SOAP, REST doesn’t contain a messaging layer. SOAP uses the Web Services Description Language (WSDL) to
define the web services interface, whereas REST uses the Web Application Description Language (WADL) to define
the web services interface.

http://www.w3.org/2003/05/soap-envelope
http://www.myweather.org/weather
http://www.w3.org/2003/05/soap-envelope
http://www.myweather.org/weather

Chapter 1 ■ Introduction

13

Consider the same example from SOAP to invoke a REST service:
 
http://www.myWeather.com/weather/CurrentTemperature/60606
 

This is not the request body—it's just the URL. This URL is sent to the server using a simpler GET request, and the
HTTP reply is the raw result data in XML or JSON. Unlike with SOAP, the response is not embedded inside anything.

Here’s an example of a response in JSON format:
 
{"ZipCode":"60606", "Temerature":"76 F"}

1-8. About jQuery UI
jQuery UI is collection of commonly used user interface widgets that responds to user initiated events and provides
prebuilt themes and easily maintainable custom themes. It is built on top of the jQuery JavaScript library.

jQueryUI can be downloaded from http://jqueryui.com/download/. Refer to the listing 1-11 to see how to use
the widgets available in the jQuery UI library.

Listing 1-11.  Using the jQuery UI datepicker widget

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="http://code.jquery.com/ui/1.11.1/themes/start/jquery-ui.min.css"/>
 <script src="http://code.jquery.com/jquery-2.1.0.min.js"></script>
 <script src="http://code.jquery.com/ui/1.11.1/jquery-ui.min.js"></script>
 <script>
 $(document).ready(function(){
 $("#datepicker").datepicker();
 });
 </script>
</head>
<body>
 Date: <input type="text" id="datepicker" />
</body>
</html>
 

Figure 1-2 displays jQuery UI datepicker widget which is created by the above code.

http://www.myweather.com/weather/CurrentTemperature/60606
http://jqueryui.com/download/

Chapter 1 ■ Introduction

14

The jQuery UI is built on the jQuery JavaScript library. In order to use it, you need to download jQuery in addition
to jQuery UI and include the jQuery JavaScript file before including the jQuery UI JavaScript file. Table 1-3 lists
commonly used jQuery UI Widgets.

Figure 1-2.  Datepicker widget

Table 1-3.  Commonly used jQuery UI Widgets

UI Widget Display As

Accordion

Autocomplete

(continued)

Chapter 1 ■ Introduction

15

UI Widget Display As

Button Simple button:

Icons:

Checkboxes:

Radio buttons:

Toolbar:

Datepicker

Dialog

(continued)

Table 1-3.  (continued)

Chapter 1 ■ Introduction

16

The ui-lightness theme is in for the previous examples. You’ll learn more about jQuery UI in Chapter 10.

1-9. About jQueryMobile
jQueryMobile is a JavaScript user interface library for mobile devices. It is built on the jQuery and jQuery UI JavaScript
libraries. It supports responsive design, which means the user interface is adjusted depending on target platform
(such as desktop browsers, smartphones, and tablets).

UI Widget Display As

Menu

Progress bar

Slider

Spinner

Tabs

Tooltip

Table 1-3.  (continued)

Chapter 1 ■ Introduction

17

jQueryMobile is built on HTML5, CSS3, and the jQuery JavaScript library. In order to use it, you need to
download jQuery in addition to jQueryMobile and include the jQuery .js file before including the jQueryMobile .js file.

The jQueryMobile JavaScript library can be downloaded from http://jquerymobile.com/download/. You’ll
learn more about jQueryMobile in Chapter 11.

1-10. Introduction to jqWidgets
jqWidgets is a JavaScript user interface library for developing websites and applications on mobile devices. It is built
on HTML5, CSS3, JavaScript, and the jQuery libraries. jQuery UI provides basic widgets, whereas jqWidgets provides
advanced user interface components such as jqxGrid, jqxChart, jqxTree, and so on.

jQueryMobile is built on HTML5, CSS3, and the jQuery JavaScript library. In order to use it, you need to
download jQuery in addition to jQueryMobile and include the jQuery .js file before including the jQueryMobile js file.

The jqWidgets library can be downloaded from http://www.jqwidgets.com/download/.
In order to use jqWidgets, include jQuery JavaScript and the respective jqwidgets JavaScript file in the HTML

file. The table 1-4 lists commonly used widgets.

Table 1-4.  Commonly used jqWidgets

Widget Display As

jqxInput

jqxNumberInput

jqxCalendar

(continued)

http://jquerymobile.com/download/
http://www.jqwidgets.com/download/

Chapter 1 ■ Introduction

18

Widget Display As

jqxTree

jqxMenu

Table 1-4.  (continued)

(continued)

Chapter 1 ■ Introduction

19

More details about jqWidget’s widgets are specified in Chapter 12.

1-12. About Eclipse IDE
Eclipse is an open source integrated development environment (IDE) that provides features like folder structure
creation, suggestions, auto-complete, and the ability to check code in and out from commonly used source control
repositories like Subversion. Eclipse installation is optional. In place of Eclipse, you can use any text editor or other
IDE tools like Microsoft Visual Studio.

To download Eclipse, go to http://www.eclipse.org/downloads/. Figure 1-3 displays the latest version of
eclipse available at the time of writing of this book.

Figure 1-3.  Eclipse version

Check the appropriate Windows 32-Bit or Windows 64-Bit link, depending on your Windows operating system.
Figure 1-4 displays the page when "Windows 64 Bit" link is clicked.

Widget Display As

jqxGrid

Table 1-4.  (continued)

http://www.eclipse.org/downloads/

Chapter 1 ■ Introduction

20

Click on the down arrow to download and save the file. Extract the folders and files from the downloaded file
called eclipse-standard-kepler-R-win32-x86_64.zip using Winzip or any other compression/decompression
utility. Save the extracted files and folders under c:\eclipse or any other folder you prefer. You can run eclipse by
double clicking eclipse.exe.

Summary
This chapter was a high-level overview of technologies used to develop static and dynamic web and mobile
applications. It introduced JavaScript, jQuery, jQueryUI, jqWidgets, and jQueryMobile, which are used to create
a rich user interface. It also covered web services (SOAP and RESTful), XML, and JSON, which are used to transfer
information between tiers within the same infrastructure or within infrastructures spread across the globe. The
following chapters will use these technologies to understand how different sub-components of an application are
designed, built, and implemented.

Figure 1-4.  Eclipse 64 Bit downloadable file

21

Chapter 2

jQuery Fundamentals

This chapter covers the fundamentals of the jQuery library, including the following topics:

How to access jQuery library functionalities•	

Using conditional statements•	

Looping•	

The structure of the Document Object Model (DOM)•	

Commonly used objects in the jQuery library•	

jQuery functions•	

Method chaining•	

2-1. Setting Up jQuery
As with any other JavaScript library, if you want to access functionalities of the jQuery library, you need to include the
jQuery JavaScript file. There are two ways to include the jQuery JavaScript library in an HTML file:

•	 Using a local file—The jQuery library can be downloaded from http://jquery.com/download/.
At the time of this writing, the latest version of jQuery was 2.1.0. Download the compressed
(production) version of the library if you don’t intend to modify or debug the jQuery JavaScript
code. Otherwise, you can download the uncompressed (development) version.

If your user base is still using Internet Explorer 8 or older, download the latest version
of jQuery 1.x. You should download the latest version of jQuery 2.x if your user base is
using Internet Explorer 9 (or newer) or any other new version of browsers such as Firefox,
Google Chrome, and Apple Safari.

•	 Using the Content Delivery Network (CDN)—CDN is a distributed network of servers that
hosts open source libraries like jQuery. When a request is made in a browser to access the
jQuery library, CDN identifies the closest server and provides the jQuery JavaScript file to the
browser.

The advantages of using CDN include:

If another application has already used the CDN to locate the jQuery JavaScript file, the ––
chances are the file is in the browser’s cache. If it is in the cache, that copy of the library will be
used; otherwise it will be downloaded from the closest server.

–– Has a faster download since the closest server is used to deliver the file.

http://jquery.com/download/

Chapter 2 ■ jQuery Fundamentals

22

The only problem with using CDN is that if an Internet connection is not available, the web page won’t work.
This is an issue for developers who sometimes want to develop and test their sites offline.

Setting Up the Development Environment
Before you start a new project, you need to set up the development environment folder structure so that files with a
similar purpose are in the same folder and are easy to find. For example, all JavaScript library files should be in the
scripts folder, all images should be in the images folder, and all CSS files and image files used in the CSS should be
in the styles folder. To set up your development environment, create a new folder (called for example, jQueryLearn)
where you want to keep all your HTML (.htm and .html) files and folders that contain JavaScript (.js) files, CSS (.css)
files, and image (.jpg, .png, .bmp, and so on) files.

The structure of your development environment should follow this:

jQueryLearn/•	

Images/*.png, *.gif, *.jpg, etc.•	

Scripts/*.js•	

Styles/*.css•	

Styles/images/*.png, *.gif, *.jpg, etc.•	

*.htm•	

Copy the downloaded jQuery compressed file called jquery-2.1.0.min.js in the scripts/ folder.
Create a template HTML file in the jQueryLearn folder. You can use this template.htm file to create other

HTML files. Listing 2-1 displays the content of the template.htm file.

Listing 2-1.  Including jQuery library in the HTML page (the template.htm file)

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <script src="scripts/jquery-2.1.0.min.js"></script>
 </head>
 <body>
 </body>
</html>
 

Replace jquery-2.1.0.min.js with the jQuery library version you have downloaded and are planning to use.
If you are planning to step through the jQuery library code during debugging, you should use an uncompressed
development version of jQuery library.

If instead of using a local downloaded jQuery file, you want to use the CDN, include one of the following lines in
your code:
 
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js">
</script>
<script src="http://code.jquery.com/jquery-2.1.0.min.js">
</script>

http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js
http://code.jquery.com/jquery-2.1.0.min.js

Chapter 2 ■ jQuery Fundamentals

23

2-2. Using Conditional Statements
There are two types of conditional statements—if...else and switch. The if...else statement is used if the value
of the variable is checked only a few times. If the value of the same variable is checked many times and a different
set of statements is executed, a switch statement is used. These conditional statements are not specific to the jQuery
library, they are native to the JavaScript.

if...else Statements
Conditional statements tests whether a certain condition is true. If the condition is true, all the statements between
the curly braces immediately after the if statement are executed. If the condition is false, all the statements between
the curly braces immediately after the else statement are executed. If there is only one statement you want to execute
when the condition is true or false, you don’t need to specify the braces but it is preferable to use braces all the time.

In JavaScript and jQuery, the basic syntax for conditional statements is as follows:
 
if (condition) {
 // code segment if condition is true
 } else {
 // code segment if condition is false
 }
 

Listing 2-2 demonstrates the use of the if...else statement.

Listing 2-2.  Using the if...else statement

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <script>
 function submitForm() {
 var firstName = document.getElementById("txtFirstName");
 
 if (firstName.value == "") {
 alert("Please enter First Name before submitting");
 return false;
 } else {
 // Perform some action
 alert("Form is successfully submitted");
 return true;
 }
 }
 </script>
 </head>
 <body>
 <form>
 First Name: <input id="txtFirstName" type="text">

 <input type="button" value="Submit" onClick="submitForm()">
 </form>
 </body>
</html>
 

Chapter 2 ■ jQuery Fundamentals

24

Figure 2-1 displays the page created by Listing 2-2 when viewed in a browser.

Figure 2-1.  Using a conditional statement

Figure 2-2.  The message displayed when First Name is left blank

Figure 2-3.  The message displayed when value is entered for First Name

This code is binding the submitForm() function to the button’s click event. When a user clicks the button,
submitForm() function is executed. In the submitForm() function, you are first getting the input element with the ID
txtFirstName using the getElementById() method and then checking its value property. If value is blank, "Please
enter First Name before submitting" is displayed; otherwise "Form is successfully submitted" is displayed.
Figures 2-2 and 2-3 show the pop-up messages that are displayed depending on the value entered for First Name.

if ... if else ... else Statements
If the logic is more complex and you have to check multiple conditions, you can use the following syntax:
 
if (condition1) {
 // code segment if condition1 is true
} else if (condition2) {
 // code segment if condition2 is true
} else {
 // code segment if condition1 is not true and
 // condition2 is not true
}
 

Chapter 2 ■ jQuery Fundamentals

25

Listing 2-3 demonstrates the use of an if...else if...else statement.

Listing 2-3.  Using multiple conditional statements

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 
 <script>
 function getDepartmentName() {
 var departmentID = document.getElementById("departmentID").value;
 var departmentName = "";
 
 if (departmentID == "") {
 alert("Please enter Department ID");
 } else if (departmentID == "S") {
 departmentName = "Sales";
 } else if (departmentID == "M") {
 departmentName = "Marketing";
 } else if (departmentID == "T") {
 departmentName = "Technology";
 } else if (departmentID == "C") {
 departmentName = "Customer Support";
 } else {
 departmentName = "Unknown";
 }
 document.getElementById("departmentName").innerHTML = departmentName;
 }
 </script>
</head>
<body>
 Department ID [S, M, T, C]:<input id="departmentID" type="text">
 <label id="departmentName"></label>

 <input type="button" value="Get Department Name" onClick="getDepartmentName();">
</body>
</html>
 

Figure 2-4 displays the page when viewed in a browser.

Figure 2-4.  Using multiple conditional statements

Chapter 2 ■ jQuery Fundamentals

26

This code binds the getDepartmentName() function to the button’s click event. When a user clicks the button, the
getDepartmentName() function is executed. In the getDepartmentName() function, you first get the input element with
the ID departmentID using the getElementById() method and then check its value property. If value is blank, "Please
enter Department ID" is displayed; otherwise, based on the value entered for the Department ID, departmentName is set.
Its value is then used to set the innerHTML property of the label tag with an ID of departmentName. Figures 2-5 and 2-6
show the pop-up messages depending on the value entered for the Department ID.

Figure 2-5.  The message displayed when the Department ID is left blank

Figure 2-6.  The Department Name is displayed when a valid value is entered for the Department ID

switch Statements
In place of multiple if...else statements, you can use the switch statement. In the case of the switch statement,
the value of the expression is compared with the value of each case statement and if it matches, the following block
of statements is executed until a break statement is encountered. If none of the case statements is true, the block
of statements in the default statement will be executed. The switch statement is used in place of an if...else
statement to make the code more organized and readable.

The syntax for a switch statement is:
 
switch(n) {
 case 1:
 // code segment if n == 1
 break;
 case 2:
 // code segment if n == 2
 break;
 default:
 // code segment if none of the above case statements is true
}
 

Chapter 2 ■ jQuery Fundamentals

27

Listing 2-4 demonstrates the use of a switch statement.

Listing 2-4.  Using the switch statement

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <script>
 function getDepartmentName() {
 var departmentID = document.getElementById("departmentID").value;
 var departmentName = "";
 
 switch (departmentID) {
 case "": alert("Please enter Department ID");
 break;
 case "S": departmentName = "Sales";
 break;
 case "M": departmentName = "Marketing";
 break;
 case "T": departmentName = "Technology";
 break;
 case "C": departmentName = "Customer Support";
 break;
 default: departmentName = "Unknown";
 }
 document.getElementById("departmentName").innerHTML = departmentName;
 }
 </script>
</head>
<body>
 Department ID [S, M, T, C]:<input id="departmentID" type="text">
 <label id="departmentName"></label>

 <input type="button" value="Get Department Name" onClick="getDepartmentName();">
</body>
</html>

2-3. Looping
Loops are used when the same statements need to be executed for a range of values (each time with a different value
from the range) or for each element in an array or in the collection of objects. A loop statement is also used when the
same statements are executed until a condition becomes true. The two commonly used looping statements are for
and while. These looping statements are not specific to the jQuery library; they are native to JavaScript.

for Loops
The for loop executes the same code segment for each element from a collection or for a number of times until a
condition becomes true.

