
US $49.99

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Android 5 shows you how to build real-world and fun mobile apps
using the Android 5.0 SDK. This book covers everything from the

fundamentals of building apps for embedded devices, smartphones, and
tablets to advanced concepts such as custom components, multi-tasking,
sensors/augmented reality, better accessories support and much more.

• Using the tutorials and expert advice, you’ll quickly be able to
build cool mobile apps and run them on dozens of Android-based
smartphones

• You’ll explore and use the Android APIs, including those for media
and sensors

• And you’ll check out what’s new in Android, including the improved
user interface across all Android platforms, integration with services,
and more

By reading this definitive tutorial and reference, you’ll gain the knowledge and
experience to create stunning, cutting-edge Android apps that can make you
money, while keeping you agile enough to respond to changes in the future.

• How to use Android to build Java-based mobile apps for Android
smartphones and tablets

• How to build irresistible user interfaces (UIs) and user experiences (UXs)
across Android devices

• How to populate your application with data from data sources, using
Content Providers

• How to build multimedia and game apps using Android’s media APIs
• How to use Android’s location-based services, network-based services,

and security
• How to use key Android features, such as Fragments and the ActionBar Pro

Android 5
Dave MacLean | Satya Komatineni | Grant Allen

Use this definitive Android reference
to take your apps further

M
acLean

Kom
atineni

Allen
ProAndroid 5

SOURCE CODE ONLINE
9 781430 246800

54999
ISBN 978-1-4302-4680-0

Foreword by Grant Allen, Google

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors���xxvii

About the Technical Reviewer���xxix

Acknowledgments���xxxi

Foreword���xxxiii

Introduction��xxxv

Chapter 1■■ : Hello Android�� 1

Chapter 2■■ : Introduction to Android Application Architecture������������������������������� 29

Chapter 3■■ : Building Basic User Interfaces and Using Controls���������������������������� 69

Chapter 4■■ : Adapters and List Controls��� 99

Chapter 5■■ : Building More Advanced UI Layouts��� 119

Chapter 6■■ : Working with Menus and Action Bars�� 141

Chapter 7■■ : Styles and Themes�� 163

Chapter 8■■ : Fragments��� 169

Chapter 9■■ : Responding to Configuration Changes�� 197

Chapter 10■■ : Working with Dialogs��� 205

Chapter 11■■ : Working with Preferences and Saving State���������������������������������� 219

vi Contents at a Glance

Chapter 12■■ : Using the Compatibility Library for Older Devices�������������������������� 239

Chapter 13■■ : Exploring Packages, Processes, Threads, and Handlers���������������� 247

Chapter 14■■ : Building and Consuming Services�� 265

Chapter 15■■ : Advanced AsyncTask and Progress Dialogs����������������������������������� 317

Chapter 16■■ : Broadcast Receivers and Long-Running Services�������������������������� 343

Chapter 17■■ : Exploring the Alarm Manager��� 365

Chapter 18■■ : Exploring 2D Animation�� 373

Chapter 19■■ : Exploring Maps and Location-Based Services������������������������������� 405

Chapter 20■■ : Understanding the Media Frameworks�� 451

Chapter 21■■ : Home Screen Widgets��� 471

Chapter 22■■ : Touch Screens��� 491

Chapter 23■■ : Implementing Drag and Drop�� 519

Chapter 24■■ : Using Sensors��� 539

Chapter 25■■ : Exploring Android Persistence and Content Providers������������������� 559

Chapter 26■■ : Understanding Loaders��� 607

Chapter 27■■ : Exploring the Contacts API��� 621

Chapter 28■■ : Exploring Security and Permissions��� 653

Chapter 29■■ : Using Google Cloud Messaging with Android��������������������������������� 667

Chapter 30■■ : Deploying Your Application: Google Play Store and Beyond����������� 677

Index�� 697

xxxv

Introduction

Welcome to the wonderful world of Android. A world where, with a bit of knowledge and
effort, you too can write Android applications. To write good applications, however, you
will need to dig deeper, to understand the fundamentals of the Android architecture, to
understand how applications can work together, to understand how mobile applications are
different from all previous forms of programming. The online documentation on Android is
fair, but it does not go far enough. You can read the source code, but that's not at all easy.

This book is the culmination of seven years of researching, developing, testing, refining, and
writing about Android. We’ve read all the online documentation, scoured through source
code, explored the far reaches of the Internet, and have compiled this book. We’ve filled in
the gaps, anticipated the questions you have, and provided answers. Along the way we’ve
seen APIs come and go and be revised. We’ve seen major changes in how applications
are constructed. At first we all used Activities, but when tablets came along we started
using Fragments. We've taken everything we’ve learned and filled this book with practical
guidance to using the latest Android APIs to write interesting applications.

You will still find coverage of the beginning topics, to help the new learner get started
developing for Android. You will also find coverage of the more advanced topics, such as
Google Maps Android API v2, which is very different from v1. We’ve updated this edition
with the latest information on the available APIs. You will find in-depth coverage of intents,
services, broadcast receivers, communication, fragments, widgets, sensors, animation,
security, loaders, persistence, Google Cloud Messaging, audio and video, and more. And for
every topic there are sample programs that illustrate each API in meaningful ways. All source
code is downloadable, so you can copy and paste it into your applications to get a great
head start.

1

Chapter 1
Hello Android

Welcome to the book, and welcome to the world of Android development. In a little under
ten years, Android has helped change the face of modern mobile computing and telephony
and launched a revolution in how applications are developed, and by whom. With this book
in your hands, you are now part of the great Android explosion! We’re going to assume
that you want to get straight at working with Android, so we're not going to bore you with a
fireside chat about Android's history, major characters, plaudits, or any other prose. We're
going to get straight to it!

In this chapter, you’ll start by seeing what you need to begin building applications with
the Android software development kit (SDK) and set up your choice of development
environment. Next, you step through a “Hello World!” application. Then the chapter explains
the Android application life cycle and ends with a discussion about running your applications
with Android Virtual Devices (AVDs) and on real devices. So let’s get started.

Prerequisites for Android Development
To build applications for Android, you need the Java SE Development Kit (JDK), the Android
SDK, and a development environment. Strictly speaking, you can develop your applications
using nothing more than a primitive text editor and a handful of command-line tools like
Ant. For the purposes of this book, we’ll use the commonly available Eclipse IDE, though
you are free to adopt Android Studio and its IntelliJ underpinnings—we’ll even walk through
Android Studio for those who have not seen it. With the exception of a few add-on tools, the
examples we share in the book will work equally well between these two IDEs.

The Android SDK requires JDK 6 or 7 (the full JDK, not just the Java Runtime Environment
[JRE]) and optionally a supported IDE. Currently, Google directly supports two alternative
IDEs, providing some choice. Historically, Eclipse was the first IDE supported by Google
for Android development, and developing for Android 4.4 KitKat or 5.0 Lollipop requires
Eclipse 3.6.2 or higher (this book uses Eclipse 4.2 or 4.4, also known as Juno and Luna,
respectively, and other versions). The alternative environment released and supported by
Google for Android is now known as Android Studio. This is a packaged version of IDEA
IntelliJ with built-in Android SDK and developer tools.

2 CHAPTER 1: Hello Android

Note  At the time of this writing, Java 8 was available but not yet supported by the Android SDK.
In previous versions of the Android SDK, Java 5 was also supported, but this is no longer the case.
The latest version of Eclipse (4.4, a.k.a. Juno) was also available, but Android has historically not
been reliable on the latest Eclipse right away. Check the system requirements here to find the latest:
http://developer.android.com/sdk/index.html.

The Android SDK is compatible with Windows (Windows XP, Windows Vista, and Windows 7),
Mac OS X (Intel only), and Linux (Intel only). In terms of hardware, you need an Intel machine,
the more powerful the better.

To make your life easier, if you choose Eclipse as your IDE, you will want to use Android
development tools (ADT). ADT is an Eclipse plug-in that supports building Android
applications with the Eclipse IDE.

The Android SDK is made up of two main parts: the tools and the packages. When you first
install the SDK, all you get are the base tools. These are executables and supporting files
to help you develop applications. The packages are the files specific to a particular version
of Android (called a platform) or a particular add-on to a platform. The platforms include
Android 1.5 through 4.4.2. The add-ons include the Google Maps API, the Market License
Validator, and even vendor-supplied ones such as Samsung’s Galaxy Tab add-on. After you
install the SDK, you then use one of the tools to download and set up the platforms and
add-ons.

Remember, you only need to set up and configure one of Eclipse or Android Studio. You can
use both if you are so inclined, but it’s certainly not required. Let’s get started!

Setting Up Your Eclipse Environment
In this section, you walk through downloading JDK 6, the Eclipse IDE, the Android SDK
(tools and packages), and ADT. You also configure Eclipse to build Android applications.
Google provides a page to describe the installation process (http://developer.android.
com/sdk/installing.html) but leaves out some crucial steps, as you will see.

Downloading JDK
The first thing you need is the JDK. The Android SDK requires JDK 6 or higher; we’ve
developed our examples using JDK 6 and 7, depending on the version of Eclipse or Android
Studio in use. For Windows and Mac OS X, download JDK 7 from the Oracle web site
(www.oracle.com/technetwork/java/javase/ downloads/index.html) and install it. You only
need the JDK, not the bundles. To install the JDK for Linux, open a Terminal window and
instruct your package manager to install it. For example, in Debian or Ubuntu try the following:
 
sudo apt-get install sun-java7-jdk
 

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html
http://www.oracle.com/technetwork/java/javase/

3CHAPTER 1: Hello Android

This should install the JDK plus any dependencies such as the JRE. If it doesn’t, it probably
means you need to add a new software source and then try that command again. The web
page https://help.ubuntu.com/community/Repositories/Ubuntu explains software sources
and how to add the connection to third-party software. The process is different depending
on which version of Linux you have. After you’ve done that, retry the command.

With the introduction of Ubuntu 10.04 (Lucid Lynx), Ubuntu recommends using OpenJDK
instead of the Oracle/Sun JDK. To install OpenJDK, try the following:
 
sudo apt-get install openjdk-7-jdk
 
If this is not found, set up the third-party software as outlined previously and run the
command again. All packages on which the JDK depends are automatically added for you.
It is possible to have both OpenJDK and the Oracle/Sun JDK installed at the same time. To
switch active Java between the installed versions of Java on Ubuntu, run this command at a
shell prompt
 
sudo update-alternatives --config java
 
and then choose which Java you want as the default.

Now that you have a Java JDK installed, it’s time to set the JAVA_HOME environment variable
to point to the JDK install folder. To do this on a Windows XP machine, choose Start ➤ My
Computer, right-click, select Properties, choose the Advanced tab, and click Environment
Variables. Click New to add the variable or Edit to modify it if it already exists. The value of
JAVA_HOME is something like C:\Program Files\Java\jdk1.7.0_79.

For Windows Vista and Windows 7, the steps to get to the Environment Variables screen
are a little different. Choose Start ➤ Computer, right-click, choose Properties, click the link
for Advanced System Settings, and click Environment Variables. After that, follow the same
instructions as for Windows XP to change the JAVA_HOME environment variable.

For Mac OS X, you set JAVA_HOME in the .bashrc file in your home directory. Edit or create the
.bashrc file, and add a line that looks like this
 
export JAVA_HOME=path_to_JDK_directory
 
where path_to_JDK_directory is probably /Library/Java/Home. For Linux, edit your .bashrc
file and add a line like the one for Mac OS X, except that your path to Java is probably
something like /usr/lib/jvm/java-6-sun or /usr/lib/jvm/java-6-openjdk.

Downloading Eclipse
After the JDK is installed, you can download the Eclipse IDE for Java Developers.
(You don’t need the edition for Java EE; it works, but it’s much larger and includes things
you don’t need for this book.) The examples in this book use Eclipse 4.2 or 4.4 (on both
Linux and Windows environments). You can download all versions of Eclipse from
www.eclipse.org/downloads/.

https://help.ubuntu.com/community/Repositories/Ubuntu
http://www.eclipse.org/downloads/

4 CHAPTER 1: Hello Android

Note  As an alternative to the individual steps presented here, you can also download the ADT
Bundle from the Android developer site. This includes Eclipse with built-in developer tools and the
Android SDK in one package. It’s a great way to get started quickly, but if you have an existing
environment, or just want to know how all the components are stitched together, then following the
step-by-step instructions is the way to go.

Figure 1-1.  Base contents of the Android SDK

The Eclipse distribution is a .zip file that can be extracted just about anywhere. The
simplest place to extract to on Windows is C:\, which results in a C:\eclipse folder where
you find eclipse.exe. Depending on your security configuration, Windows may insist on
enforcing UAC when running from C:\. For Mac OS X, you can extract to Applications. For
Linux, you can extract to your home directory or have your administrator put Eclipse into a
common place where you can get to it. The Eclipse executable is in the eclipse folder for
all platforms. You may also find and install Eclipse using Linux’s Software Center for adding
new applications, although this may not provide you with the latest version.

When you first start up Eclipse, it asks you for a location for the workspace. To make things
easy, you can choose a simple location such as C:\android or a directory under your home
directory. If you share the computer with others, you should put your workspace folder
somewhere underneath your home directory.

Downloading the Android SDK
To build applications for Android, you need the Android SDK. As stated before, the SDK
comes with the base tools; then you download the package parts that you need and/or want
to use. The tools part of the SDK includes an emulator so you don’t need a mobile device
with the Android OS to develop Android applications. It also has a setup utility to allow you
to install the packages that you want to download.

You can download the Android SDK from http://developer.android.com/sdk. It ships as a
.zip file, similar to the way Eclipse is distributed, so you need to unzip it to an appropriate
location. For Windows, unzip the file to a convenient location (we used the C: drive), after
which you should have a folder called something like C:\android-sdk-windows that contains
the files as shown in Figure 1-1. For Mac OS X and Linux, you can unzip the file to your home
directory. Notice that Mac OS X and Linux do not have an SDK Manager executable; the
equivalent of the SDK Manager in Mac OS X and Linux is to run the tools/android program.

http://developer.android.com/sdk

5CHAPTER 1: Hello Android

An alternative approach (for Windows only) is to download an installer EXE instead of the zip
file and then run the installer executable. This executable checks for the Java JDK, unpacks
the embedded files for you, and runs the SDK Manager program to help you set up the rest
of the downloads.

Whether through using the Windows installer or by executing the SDK Manager, you should
install some packages next. When you first install the Android SDK, it does not come with
any platform versions (that is, versions of Android). Installing platforms is pretty easy. After
you’ve launched the SDK Manager, you see what is installed and what’s available to install,
as shown in Figure 1-2. You must add Android SDK tools and platform-tools in order for your
environment to work. Because you use it shortly, add at least the Android 1.6 SDK platform,
as well as the latest platform shown in your installer.

Click the Install button. You need to click Accept for each item you’re installing (or Accept
All) and then click Install. Android then downloads your packages and platforms to make
them available to you. The Google APIs are add-ons for developing applications using
Google Maps. You can always come back to add more packages later.

Figure 1-2.  Adding packages to the Android SDK

6 CHAPTER 1: Hello Android

Updating Your PATH Environment Variable
The Android SDK comes with a tools directory that you want to have in your PATH. You also
need in your PATH the platform-tools directory you just installed. Let’s add them now or, if
you’re upgrading, make sure they’re correct. While you’re there, you can also add a JDK bin
directory, which will make life easier later.

For Windows, get back to the Environment Variables window. Edit the PATH variable and
add a semicolon (;) on the end, followed by the path to the Android SDK tools folder,
followed by another semicolon, followed by the path to the Android SDK platform-tools
folder, followed by another semicolon, and then %JAVA_HOME%\bin. Click OK when you’re
done. For Mac OS X and Linux, edit your .bashrc file and add the Android SDK tools
directory path to your PATH variable, as well as the Android SDK platform-tools directory
and the $JAVA_HOME/bin directory. Something like the following works for Linux:
 
export PATH=$PATH:$HOME/android-sdk-linux_x86/tools:$HOME/android-sdk-linux_x86/platform-
tools:$JAVA_HOME/bin
 
Just make sure that the PATH component that’s pointing to the Android SDK tools
directories is correct for your particular setup.

The Tools Window
Later in this book, there are times when you need to execute a command-line utility
program. These programs are part of the JDK or part of the Android SDK. By having these
directories in your PATH, you don’t need to specify the full pathnames in order to execute
them, but you need to start up a tools window in order to run them (later chapters refer to
this tools window). The easiest way to create a tools window in Windows is to choose Start
➤ Run, type in cmd, and click OK. For Mac OS X, choose Terminal from your Applications
folder in Finder or from the Dock if it’s there. For Linux, run your favorite terminal.

You may need to know the IP address of your workstation later. To find this in Windows,
launch a tools window and enter the command ipconfig. The results contain an entry
for IPv4 (or something like that) with your IP address listed next to it. An IP address looks
something like this: 192.168.1.25. For Mac OS X and Linux, launch a tools window and use
the command ifconfig. You find your IP address next to the label inet addr.

You may see a network connection called localhost or lo; the IP address for this network
connection is 127.0.0.1. This is a special network connection used by the operating system
and is not the same as your workstation’s IP address. Look for a different number for your
workstation’s IP address.

7CHAPTER 1: Hello Android

Installing ADT
Now you need to install ADT (very recently renamed to GDT, the Google Developer Tools), an
Eclipse plug-in that helps you build Android applications. Specifically, ADT integrates with
Eclipse to provide facilities for you to create, test, and debug Android applications. You need
to use the Install New Software facility in Eclipse to perform the installation. (The instructions
for upgrading ADT appear later in this section.) To get started, launch the Eclipse IDE and
follow these steps:

1.	 Select Help ➤ Install New Software.

2.	 Select the Work With field, type in

https://dl-ssl.google.com/android/eclipse/,

and press Enter. Eclipse contacts the site and populates the list as shown
in Figure 1-3.

Figure 1-3.  Installing ADT using the Install New Software feature in Eclipse

https://dl-ssl.google.com/android/eclipse/

8 CHAPTER 1: Hello Android

3.	 You should see an entry named Developer Tools with four child
nodes: Android DDMS, Android Development Tools, Android
Hierarchy Viewer, and Android Traceview. Just before publishing
this book, Google updated the ADT to be part of the more generic
Google Developer Tools plugin for Eclipse, or GDT. Look for the same
options in the GDT. Select the parent node Developer Tools, make
sure the child nodes are also selected, and click the Next button.
The versions you see may be newer than these, and that’s okay.
You may also see additional tools. These tools are explained further
in Chapter 11.

4.	 Eclipse asks you to verify the tools to install. Click Next.

5.	 You’re asked to review the licenses for ADT as well as for the tools
required to install ADT. Review the licenses, click “I accept,” and then
click the Finish button.

Eclipse downloads the developer tools and installs them. You need to restart Eclipse for the
new plug-in to show up in the IDE.

If you already have an older version of ADT in Eclipse, go to the Eclipse Help menu and
choose Check for Updates. You should see the new version of ADT and be able to follow the
installation instructions, picking up at step 3.

Note  If you’re doing an upgrade of ADT, you may not see some of these tools in the list of tools
to be upgraded. If you don’t see them, then after you’ve upgraded the rest of the ADT, go to Install
New Software and select https://dl-ssl.google.com/android/eclipse/ from the Works
With menu. The middle window should show you other tools that are available to be installed.

The final step to make ADT functional in Eclipse is to point it to the Android SDK. In Eclipse,
select Window ➤ Preferences. (On Mac OS X, Preferences is under the Eclipse menu.) In the
Preferences dialog box, select the Android node and set the SDK Location field to the path
of the Android SDK (see Figure 1-4) and then click the Apply button. Note that you may see
a dialog box asking if you want to send usage statistics to Google concerning the Android
SDK; that decision is up to you.

https://dl-ssl.google.com/android/eclipse/

9CHAPTER 1: Hello Android

You may want to make one more Preferences change on the Android ➤ Build page. The
Skip Packaging option should be checked if you’d like to make your file saves faster. By
default, the ADT readies your application for launch every time it builds it. By checking this
option, packaging and indexing occur only when truly needed.

From Eclipse, you can launch the SDK Manager. To do so, choose Window ➤ Android SDK
Manager. You should see the same window as in Figure 1-2.

If you’ve chosen Eclipse as your IDE, you are almost ready for your first Android
application—you can skip the following section on Android Studio and head straight to the
“Learning Android’s Fundamental Components” section.

Setting Up Your Android Studio Environment
In 2013, Google introduced a second supported development environment, known as
Android Studio (or Android Developer Studio at the time of launch). This is based around a
popular Java IDE: IDEA IntelliJ. The most important thing to know about Android Studio is
that it is still a work in progress. As of this book’s writing, the latest version is 1.2. Anyone
familiar with the vagaries of version numbers knows that starting with a low number usually
means “beware!”

Figure 1-4.  Pointing ADT to the Android SDK

10 CHAPTER 1: Hello Android

The second most important thing to remember is that Android Studio currently assumes a
64-bit development environment. That means dependencies like Java also need to be 64-bit.

The next sections briefly cover the setup of Android Studio for those interested or gung-ho
enough to use it. Be mindful that the rest of the book predominantly shows examples and
options using Eclipse.

Java requirements for Android Studio
Like Eclipse, Android Studio relies on a working Java installation. Android Studio will attempt
to automatically discover your Java environment during installation, so it pays to have Java
installed and configured.

For Java installation, remember that Android Studio is 64-bit. In all other respects, you can
follow the preceding section titled “Downloading JDK”—we won’t repeat that word-for-word
here to save some trees. Ensure you follow all the instructions there, including setting the
JAVA_HOME environment variable, as this is the main indicator used by the Android Studio
installer to find your Java installation.

Downloading and Installing Android Studio
Google makes Android Studio available from the main Android development site, currently at
the URL http://developer.android.com/sdk/installing/studio.html. That may change at
any time, but a quick search on the developer.android.com site should find it. Android Studio
is packaged as a monolithic bundle, with nearly all the components you need. The Java SDK
is the exception—we’ll cover that shortly. The package downloaded from the preceding URL
will be named something like android-studio-bundle-132.893413-windows.exe for windows,
or a similar name with a different extension for OS X and Linux, and includes the following:

Current latest build of the Android Studio bundle of IntelliJ IDEA	

Built-in Android SDK	

All related Android build tools	

Android Virtual Device images	

We’ll talk more about these components in later chapters. For a Windows installation run
the executable and follow the prompts to choose an installation path, and decide whether
Android Studio is made available to all users on the Windows machine, or just the current
user. For OS X, open the .dmg file and copy the Android Studio entry to your Applications
folder. Under Linux, extract the contents of the .tgz file to your desired location.

Once installed, you can start Android Studio under Windows from the start menu folder you
chose when prompted; under OS X from the Applications folder; and under Linux by running
the ./android-studio/bin/studio.sh file under your installation directory. Whatever the
operating system, you should see the Android Studio home screen as depicted in Figure 1-5.

http://developer.android.com/sdk/installing/studio.html

11CHAPTER 1: Hello Android

Learning Android’s Fundamental Components
Every application framework has some key components that developers need to understand
before they can begin to write applications based on the framework. For example, you
need to understand JavaServer Pages (JSP) and servlets in order to write Java 2 Platform,
Enterprise Edition (J2EE) applications. Similarly, you need to understand views, activities,
fragments, intents, content providers, services, and the AndroidManifest.xml file when
you build applications for Android. You briefly cover these fundamental concepts here and
explore them in more detail throughout the book.

Figure 1-5.  Android Studio when first launched

12 CHAPTER 1: Hello Android

View
Views are user interface (UI) elements that form the basic building blocks of a user interface.
A view can be a button, a label, a text field, or many other UI elements. If you’re familiar with
views in J2EE and Swing, then you understand views in Android. Views are also used as
containers for views, which means there’s usually a hierarchy of views in the UI. In the end,
everything you see is a view.

Activity
An activity is a UI concept that usually represents a single screen in your application. It
generally contains one or more views, but it doesn’t have to. An activity is pretty much like it
sounds—something that helps the user do one thing, which could be viewing data, creating
data, or editing data. Most Android applications have several activities within them.

Fragment
When a screen is large, it becomes difficult to manage all of its functionality in a single
activity. Fragments are like sub-activities, and an activity can display one or more fragments
on the screen at the same time. When a screen is small, an activity is more likely to contain
just one fragment, and that fragment can be the same one used within larger screens.

Intent
An intent generically defines an “intention” to do some work. Intents encapsulate several
concepts, so the best approach to understanding them is to see examples of their use. You
can use intents to perform the following tasks:

Broadcast a message	

Start a service	

Launch an activity	

Display a web page or a list of contacts	

Dial a phone number or answer a phone call	

Intents are not always initiated by your application—they’re also used by the system to notify
your application of specific events (such as the arrival of a text message).

Intents can be explicit or implicit. If you simply say that you want to display a URL, the system
decides what component will fulfill the intention. You can also provide specific information
about what should handle the intention. Intents loosely couple the action and action handler.

13CHAPTER 1: Hello Android

Content Provider
Data sharing among mobile applications on a device is common. Therefore, Android defines
a standard mechanism for applications to share data (such as a list of contacts) without
exposing the underlying storage, structure, and implementation. Through content providers,
you can expose your data and have your applications use data from other applications.

Service
Services in Android resemble services you see in Windows or other platforms—they’re
background processes that can potentially run for a long time. Android defines two types of
services: local services and remote services. Local services are components that are only
accessible by the application that is hosting the service. Conversely, remote services are
services that are meant to be accessed remotely by other applications running on the device.

An example of a service is a component that is used by an e-mail application to poll for
new messages. This kind of service may be a local service if the service is not used by
other applications running on the device. If several applications use the service, then it’s
implemented as a remote service.

AndroidManifest.xml
AndroidManifest.xml, which is similar to the web.xml file in the J2EE world, defines the
contents and behavior of your application. For example, it lists your application’s activities
and services, along with the permissions and features the application needs to run.

AVDs
An AVD allows developers to test their applications without hooking up an actual Android
device (typically a phone or a tablet). AVDs can be created in various configurations to
emulate different types of real devices.

Hello World!
Now you’re ready to build your first Android application. You start by building a simple “Hello
World!” program. Create the skeleton of the application by following these steps:

1.	 Launch Eclipse, and select File ➤ New ➤ Project. In the New Project
dialog box, select Android Application Project and then click Next. You
see the New Android Project dialog box, as shown in Figure 1-6. (Eclipse
may have added Android Project to the New menu, so you can use it if
it’s there.) There’s also a New Android Project button on the toolbar.

14 CHAPTER 1: Hello Android

2.	 As shown in Figure 1-6, enter HelloAndroid as the project name.
You need to distinguish this project from other projects you create in
Eclipse, so choose a name that will make sense to you when you are
looking at all the projects in your Eclipse environment. You will also
see the available Build Targets. Select Android 2.2. This is the version
of Android you use as your base for the application. You can run
your application on later versions of Android, such as 4.3 and 4.4;
but Android 2.2 has all the functionality you need for this example,
so choose it as your target. In general, it’s best to choose the lowest
version number you can, because that maximizes the number of
devices that can run your application.

3.	 Leave the Project Name to auto-complete itself based on your
Application Name.

4.	 Use com.androidbook.hello as the package name. Like all Java
applications, your application must have a base package name,
and this is it. This package name will be used as an identifier for
your application and must be unique across all applications. For
this reason, it’s best to start the package name with a domain name
that you own. If you don’t own one, be creative to ensure that your
package name won’t likely be used by anyone else. Click Next.

Figure 1-6.  Using the New Project Wizard to create an Android application

15CHAPTER 1: Hello Android

5.	 The next window provides options for customer launcher icons, the
actual directory for the workspace in which you source code and
other files are stored, and several other options. Leave all of these at
the default, and click Next.

6.	 The next window shows you the Configure Launcher Icon options
and settings, as shown in Figure 1-7. Feel free to play with the
options here, though any changes you make are cosmetic and affect
the look of the launcher icon when your application is deployed, and
not its actual logic. Click Next when ready.

7.	 You’ll next see the Create Activity screen. Choose Blank Activity as the
activity type, and click Next to move to the last screen of the wizard.

8.	 The final screen of the New Android Application wizard will be the
Blank Activity details page. Type HelloActivity as the Activity Name.
You’re telling Android that this activity is the one to launch when
your application starts up. You may have other activities in your
application, but this is the first one the user sees. Allow the Layout
Name to auto-populate with the value activity_hello.

Figure 1-7.  The Android launcher configuration options for a new Android project

16 CHAPTER 1: Hello Android

9.	 Click the Finish button, which tells ADT to generate the project
skeleton for you. For now, open the HelloActivity.java file under
the src folder and modify the onCreate() method as follows:

 
/** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /** create a TextView and write Hello World! */
 TextView tv = new TextView(this);
 tv.setText("Hello World!");
 /** set the content view to the TextView */
 setContentView(tv);
 }
 

You will need to add an import android.widget.TextView; statement at the top of the file
with the other imports to get rid of the error reported by Eclipse. Save the HelloActivity.
java file.

To run the application, you need to create an Eclipse launch configuration, and you need a
virtual device on which to run it. We’ll run quickly through these steps and come back later to
more details about AVDs. Create the Eclipse launch configuration by following these steps:

1.	 Select Run ➤ Run Configurations.

2.	 In the Run Configurations dialog box, double-click Android
Application in the left pane. The wizard inserts a new configuration
named New Configuration.

3.	 Rename the configuration RunHelloWorld.

4.	 Click the Browse button, and select the HelloAndroid project.

5.	 Leave Launch Action set to Launch Default Activity. The dialog
should appear as shown in Figure 1-8.

17CHAPTER 1: Hello Android

6.	 Click Apply and then Run. You’re almost there! Eclipse is ready to run
your application, but it needs a device on which to run it. As shown
in Figure 1-9, you’re warned that no compatible targets were found
and asked if you’d like to create one. Click Yes.

Figure 1-8.  Configuring an Eclipse run configuration to run the “Hello World!” application

Figure 1-9.  Error message warning about targets and asking for a new AVD

18 CHAPTER 1: Hello Android

Figure 1-10.  The existing AVDs

8.	 Fill in the Create AVD form as shown in Figure 1-11. Set Name to
KitKat, choose Android 4.4 - API Level 19 (or some other version)
for the Target, set SD Card Size to 64 (for 64MB), and choose other
values as shown. Click Create AVD. The Manager may confirm the
successful creation of your AVD. Close the AVD Manager window by
clicking X in the upper-right corner.

7.	 You’re presented with a window that shows the existing AVDs
(see Figure 1-10). You need to add an AVD suitable for your new
application. Click the New button.

19CHAPTER 1: Hello Android

Figure 1-11.  Configuring an AVD

Note  You’re choosing a newer version of the SDK for your AVD, but your application can also run
on an older one. This is okay because AVDs with newer SDKs can run applications that require older
SDKs. The opposite, of course, is not true: an application that requires features of a newer SDK
won’t run on an AVD with an older SDK. 

9.	 Select your new AVD from the bottom list. Note that you may need
to click the Refresh button to make any new AVDs to show up in the
list. Click the OK button.

10.	 Eclipse launches the emulator with your very first Android app (see
Figure 1-12)!

20 CHAPTER 1: Hello Android

Note  It may take the emulator a while to emulate the device bootup process. Once the bootup
process has completed, you typically see a locked screen. Click the Menu button or drag the unlock
image to unlock the AVD. After unlocking, you should see HelloAndroidApp running in the emulator,
as shown in Figure 1-11. Be aware that the emulator starts other applications in the background
during the startup process, so you may see a warning or error message from time to time. If you
do, you can generally dismiss it to allow the emulator to go to the next step in the startup process.
For example, if you run the emulator and see a message like “application abc is not responding,”
you can either wait for the application to start or simply ask the emulator to forcefully close the
application. Generally, you should wait and let the emulator start up cleanly. 

Figure 1-12.  HelloAndroidApp running in the emulator

Now you know how to create a new Android application and run it in the emulator. Next,
we’ll look more closely at AVDs, and also how to deploy to a real device.

21CHAPTER 1: Hello Android

AVDs
An AVD represents a device and its configuration. For example, you could have an AVD
representing a really old Android device running version 1.5 of the SDK with a 32MB SD
card. The idea is that you create AVDs you are going to support and then point the emulator
to one of those AVDs when developing and testing your application. Specifying (and
changing) which AVD to use is very easy and makes testing with various configurations a
snap. Earlier, you saw how to create an AVD using Eclipse. You can make more AVDs in
Eclipse by choosing Window ➤ Android Virtual Device Manager. You can also create AVDs
using the command line with the utility named android under the tools directory (e.g.,
c:\android-sdk-windows\tools\). android allows you to create a new AVD and manage
existing AVDs. For example, you can view existing AVDs, move AVDs, and so on by invoking
android with the “avd” option. You can see the options available for using android by
running android -help. For now, let’s just create an AVD.

Running on a Real Device
The best way to test an Android app is to run it on a real device. Any commercial Android
device should work when connected to your workstation, but you may need to do a little
work to set it up. If you have a Mac, you don’t need to do anything except plug it in using
the USB cable. Then, on the device itself, choose Settings ➤ Applications ➤ Development
(though this may vary by phone and version) and enable USB debugging. On Linux, you
probably need to create or modify this file: /etc/udev/rules.d/51-android.rules. We put
a copy of this file on our web site with the project files; copy it to the proper directory, and
modify the username and group values appropriately for your machine. Then, when you plug
in an Android device, it will be recognized. Next, enable USB debugging on the device.

For Windows, you have to deal with USB drivers. Google supplies some with the Android
packages, which are placed under the usb_driver subdirectory of the Android SDK
directory. Other device vendors provide drivers for you, so look for them on their web sites.
You can also visit the XDA forums, forum.xda-developers.com, where advice on sourcing
and configuring drivers for a variety of phones and devices is discussed. When you have the
drivers set up, enable USB debugging on the device, and you’re ready.

Now that your device is connected to your workstation, when you try to launch an app,
either it launches directly on the device or (if you have an emulator running or other devices
attached) a window opens in which you choose which device or emulator to launch into. If
not, try editing your Run Configuration to manually select the target.

Exploring the Structure of an Android Application
Although the size and complexity of Android applications can vary greatly, their structures
are similar. Figure 1-13 shows the structure of the “Hello World!” app you just built.

22 CHAPTER 1: Hello Android

Figure 1-13.  The structure of the “Hello World!” application

Android applications have some artifacts that are required and some that are optional.
Table 1-1 summarizes the elements of an Android application.

Table 1-1.  The Artifacts of an Android Application

Artifact Description Required?

AndroidManifest.xml The Android application descriptor file. This file defines the
activities, content providers, services, and intent receivers
of the application. You can also use this file to declaratively
define permissions required by the application, as well as
instrumentation and testing options.

Yes

src A folder containing all of the source code of the application. Yes

assets An arbitrary collection of folders and files. No

res A folder containing the resources of the application. This is the
parent folder of drawable, animator, layout, menu, values, xml,
and raw.

Yes

(continued)

23CHAPTER 1: Hello Android

As you can see from Table 1-1, an Android application is primarily made up of three
mandatory pieces: the application descriptor, a collection of various resources, and the
application’s source code. If you put aside the AndroidManifest.xml file for a moment, you
can view an Android app in this simple way: you have some business logic implemented in
code, and everything else is a resource.

Android has also adopted the approach of defining views via markup in XML. You benefit
from this approach because you don’t have to hard-code your application’s views; you can
modify the look and feel of the application by editing the markup.

It is also worth noting a few constraints regarding resources. First, Android supports only
a single-level list of files within the predefined folders under res. For example, there are
some similarities between the assets folder and the raw folder under res. Both folders can
contain raw files, but the files in raw are considered resources, and the files in assets are
not. So the files in raw are localized, accessible through resource IDs, and so on. But the
contents of the assets folder are considered general-purpose content to be used without
resource constraints and support. Note that because the contents of the assets folder are
not considered resources, you can put an arbitrary hierarchy of folders and files in this folder.
(Chapter 3 talks a lot more about resources.)

Table 1-1.  (continued )

Artifact Description Required?

drawable A folder containing the images or image-descriptor files used by
the application.

No

animator A folder containing the XML-descriptor files that describe the
animations used by the application.

No

layout A folder containing views of the application. No

menu A folder containing XML-descriptor files for menus in the
application.

No

values A folder containing other resources used by the application.
Examples of resources found in this folder include strings,
arrays, styles, and colors.

No

xml A folder containing additional XML files used by the application. No

raw A folder containing additional data—possibly non-XML data—
that is required by the application.

No

http://dx.doi.org/10.1007/9781430246800_3

24 CHAPTER 1: Hello Android

Note  You may have noticed that XML is used quite heavily with Android. You know that XML can
be a bloated data format, so does it make sense to rely on XML when you know your target is a
device with limited resources? It turns out that the XML you create during development is actually
compiled down to binary using the Android Asset Packaging Tool (AAPT). Therefore, when your
application is installed on a device, the files on the device are stored as binary. When the file is
needed at runtime, the file is read in its binary form and is not transformed back into XML. This
gives you the benefits of both worlds—you get to work with XML, and you don’t have to worry
about taking up valuable resources on the device.

Examining the Application Life Cycle
The life cycle of an Android application is strictly managed by the system, based on the
user’s needs, available resources, and so on. A user may want to launch a web browser,
for example, but the system ultimately decides whether to start the application. Although
the system is the ultimate manager, it adheres to some defined and logical guidelines to
determine whether an application can be loaded, paused, or stopped. If the user is currently
working with an activity, the system gives high priority to that application. Conversely, if an
activity is not visible and the system determines that an application must be shut down to
free up resources, it shuts down the lower-priority application.

The concept of application life cycle is logical, but a fundamental aspect of Android
applications complicates matters. Specifically, the Android application architecture is
component- and integration-oriented. This allows a rich user experience, seamless reuse,
and easy application integration but creates a complex task for the application life-cycle
manager.

Let’s consider a typical scenario. A user is talking to someone on the phone and needs to
open an e-mail message to answer a question. The user goes to the home screen, opens
the mail application, opens the e-mail message, clicks a link in the e-mail, and answers
the friend’s question by reading a stock quote from a web page. This scenario requires
four applications: the home application, a talk application, an e-mail application, and a
browser application. As the user navigates from one application to the next, the experience
is seamless. In the background, however, the system is saving and restoring application
state. For instance, when the user clicks the link in the e-mail message, the system saves
metadata on the running e-mail message activity before starting the browser-application
activity to launch a URL. In fact, the system saves metadata on any activity before starting
another so that it can come back to the activity (when the user backtracks, for example). If
memory becomes an issue, the system has to shut down a process running an activity and
resume it as necessary.

Android is sensitive to the life cycle of an application and its components. Therefore, you
need to understand and handle life-cycle events in order to build a stable application.
The processes running your Android application and its components go through various
life-cycle events, and Android provides callbacks that you can implement to handle state
changes. For starters, you should become familiar with the various life-cycle callbacks for an
activity (see Listing 1-1).

25CHAPTER 1: Hello Android

Listing 1-1.  Life-Cycle Methods of an Activity

protected void onCreate(Bundle savedInstanceState);

protected void onStart();

protected void onRestart();

protected void onResume();

protected void onPause();

protected void onStop();

protected void onDestroy();

 
Listing 1-1 shows the list of life-cycle methods that Android calls during the life of an activity.
It’s important to understand when each of the methods is called by the system in order to
ensure that you implement a stable application. Note that you do not need to react to all of
these methods. If you do, however, be sure to call the superclass versions as well. Figure 1-14
shows the transitions between states.

Figure 1-14.  State transitions of an activity

The system can start and stop your activities based on what else is happening. Android calls
the onCreate() method when the activity is freshly created. onCreate() is always followed by
a call to onStart(), but onStart() is not always preceded by a call to onCreate() because
onStart() can be called if your application was stopped. When onStart() is called, your
activity is not visible to the user, but it’s about to be. onResume() is called after onStart(),
just when the activity is in the foreground and accessible to the user. At this point, the user
can interact with your activity.

When the user decides to move to another activity, the system calls your activity’s onPause()
method. From onPause(), you can expect either onResume() or onStop() to be called.
onResume() is called, for example, if the user brings your activity back to the foreground.
onStop() is called if your activity becomes invisible to the user. If your activity is brought
back to the foreground after a call to onStop(), then onRestart() is called. If your activity sits
on the activity stack but is not visible to the user, and the system decides to kill your activity,
onDestroy() is called.

