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Preface

Modeling in fluid mechanics, hydraulics, and hydrology, whether using digital
tools or scale models, has reached sufficient maturity to be in daily use by engi-
neers for analysis, design, and for communication. Increasingly complex cases can
be handled, thanks to ever more sophisticated tools and increasingly abundant
computing power. The emerging environment populated with new generation of
sensors, using cloud computing resources, is challenging the current practices of
modeling and request innovation in methodology and concepts for a real inte-
gration into the decision-makings processes.

With respect to these issues, however, still a number of questions remain open:
coupling of models, data acquisition and management, uncertainties, use of 3D
CFD, models for complex phenomena, and for large-scale problems. All those
points are continuously explored and investigated by researchers, scientist, and
engineers. Like in all scientific domains, most recent and advanced developments
have to be discussed and shared. The SimHydro 2012 conference contributes to
this work by providing a platform exchanges and discussion for the different actors
of the water domain.

SimHydro is a permanent cycle of conferences held every 2 years, hosted by
Polytech’Nice Sophia Antipolis and organized by the Société Hydrotechnique de
France (SHF) and its European partners. It aims, as the subject, recent advances in
modeling and hydroinformatics and at the participation and exchanges at European
scale (it is open for all other researchers and participants but the purpose is to
maintain a specific platform for the region that was a birthplace of both domain).
That is why the SimHydro language is English.

The latest SimHydro conference was held in Sophia Antipolis, France, from 12
to 14 September 2012. The conference was jointly organized by the SHF, the
Association Française de Mécanique (AFM) and the University of Nice Sophia
Antipolis/Polytech Nice Sophia and with the support of IAHR, Eau, and DREAM
clusters. The conference has attracted 171 delegates from 38 (although most of
them European) countries and who have participated in 14 sessions where 86 papers
have been presented. The program was organized around three main themes:

• New trends in modeling for marine, river, and urban hydraulics;
• Stakeholders and practitioners of simulation;
• 3D CFD and applications.
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Within (?) these general themes, topics like coupling of models, data assimi-
lation and uncertainties, urban flooding, data and uncertainties in hydraulic
modeling, model efficiency and real situations, new methods for numerical models,
hydraulic machinery, 3D flows in the near field of structure, and models for
complex phenomena have been covered. The conference, by attracting researchers,
engineers and decision makers, has promoted and facilitated the dialog between
communities with round tables where needs and expectations have been discussed.
Exchanges have been very fruitful on crucial questions related to sources of
uncertainty in modeling, the state-of-the-art in research and development in
domain of numerical fluid mechanics, the stakeholder’s capacity to understand
results, the means for dialog directly or indirectly between the stakeholders and the
model developers, the information’s exchange between stakeholders and
developers.

In order to contribute to this dialog and to provide useful references, the
organizers of SimHydro 2012 have decided to elaborate this book. This volume
gathers a selection of the most significant contributions received and presented
during the conference. The objective is to provide to the reader a global overview
on the on-going developments and the state-of-the-art taking place in three major
themes which are:

• The data and uncertainties in hydraulic modeling for engineering and some
specific applications of modeling;

• The new numerical methods and approaches for modeling systems;
• 3D computational fluid dynamics and applications.

Obviously, all dimensions of these themes cannot be covered in a single book.
However, the editors are convinced that the contents may contribute to provide to
the reader essential references for understanding the actual challenges and
developments in the hydroinformatics field.

This volume represents the sum of the efforts invested by the authors, members
of the scientific committee, and members of the organizing committee. The editors
are also grateful for the dedicated assistance of the reviewers who worked tire-
lessly behind the scene to ensure the quality of the papers. We hope this book will
serve as a reference source on hydroinformatics for researchers, scientist, engi-
neers, and managers alike.

Sophia Antipolis, October 2012 Philippe Gourbesville
Jean Cunge

Guy Caignaert
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Introduction to Part I: Data
and Uncertainties in Hydraulic Modelling
for Engineering, Specific Applications
of Modelling

Philippe Gourbesville, Jean Cunge and Guy Caignaert

In this first part, it gathers a global overview of the ongoing developments and
applications of hydroinformatics tools and methods in engineering projects. The
various chapters provide to the reader a good idea about the various methodologies
applied today to investigate some complex phenomena which have to be carefully
understood during engineering projects. Most of the applications are based on
numerical models which are currently widely used and applied within projects.
However, as underlined and demonstrated by Jean Cunge in the first introductive
chapter, it is essential to keep in mind the reality of the physical processes that we
try to represent with our models and which reflect only a partial dimension of the
complex reality under a specific set of conditions. The chapters in Part I show how
models could be properly implemented and may provide relevant results.

A major emerging field for hydroinformatics is linked to the assessment in real
time of the status of a hydrosystem. Irrigation networks, water distribution sys-
tems, and rivers are complex systems which request a constant monitoring and
control in order to ensure efficiency and safety in the case of flood warning issue
for example. The data mining and control methods, initiated mainly in the
industrial domain, have massively invaded the water domain and are today inte-
grated within the systems which are applied for real-time operations. This trend is
constantly supported by the growing performances and the availability of the
computing resources. The possibilities offered by the parallel computing and the
access to high-performance computing resources allow today to run in real time

P. Gourbesville (&)
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some of the most sophisticated deterministic models, which can assist the deci-
sion-making process. At the same time, the new facilities do not solve all diffi-
culties and the difficult issues of the uncertainty remain a central question for all
applications. In the chapter, different approaches are presented in order to quantify
uncertainties and to express them to public. This last point still represents a major
challenge for the engineering community which has to communicate to the public
on sensitive subject like dam break.

If the numerical models are widely used and performed in many engineering
project, some specific cases may request the use of physical and scale models. The
complexity of processes especially when physical processes like sediment trans-
port are involved represents a limit of the existing deterministic models and is
associated with a large uncertainty. The physical experiment associated with the
numerical simulations may significantly help to improve the quality of the simu-
lations by reducing the uncertainty. This type of approach represents a sector
where progresses and experiments could support the efficiency of the models. In a
similar way, the coupling of models—1D and 2D—demonstrates a clear
improvement of results. However, if this approach is being now more and more
applied, there is a need to work on the definition of the exchange terms between
the two types of models.

The urban domain with the associated water services represents clearly a new
frontier for the development of a new generation of hydroinformatics systems
which have to be able to integrate a wide range of aspects like the data collec-
tion—sensor networks—the decision-making process, and the public awareness.
The growing complexity of the urban environment characterized with the densi-
fication process and the need of secured services requests the development of a
global information system where hydroinformatics elements have to be integrated.
Several applications presented in different chapters demonstrate this emerging
trend. The availability of sensors and the implementation of monitoring networks
will bring in a flow of data in quantities of few orders of magnitude greater than
they have existed up to now and that has to be managed. Acquisition, analysis, and
storage are some of the new challenges which request new developments. These
subjects, introduced by the new generation of devices and by the availability of
data, will drive to review some of the actual paradigms and will lead to question of
the very concept of what is information. Quality and sustainability of data will
become essential issues which have to be answered with the global integration in
the information system. At the same time, the water–energy nexus is also
appearing especially when optimization is requested to perform some pumping and
distribution operations. This link between water and energy represents, for sure,
one of the directions where new developments will take place.

4 P. Gourbesville et al.



What Do We Model? What Results Do We
Get? An Anatomy of Modelling Systems
Foundations

Jean A. Cunge

Abstract The chapter is a reminder, a follow-up of the road-map that leads from
observation of natural situation to colourful presentation of results of modelling that
are supplied to the user and decision makers. It is unfortunate matter of fact that too
many people involved in modelling do not know how the very heart of the software
they use was conceived and on what physical and mathematical hypotheses it is
based. Most of the users do not realise what are the limitations in the validity of the
results that may be traced back to the limitations of the stages of this road-map.
Using as the departure point and an example 1D modelling, the chapter describes
and, up to a point, lists the chain of intellectual activities that can be summarised as
follows: observation of the nature (flow); hypotheses concerning main physical
phenomena; formulation of physical laws (e.g. conservation laws) for isolated
systems where only these phenomena exist; mathematical formulation of these laws
(differential, integral, etc., equations); parameterisation of phenomena not descri-
bed by equations; impossibility to solve the equations; numerical algorithms
solutions of which converge to those of equations; interpretation of parameters and
approximate solutions obtained from algorithms; interpretation of results. The
purpose is to let the users of commercial software to understand how the very heart
of the modelling system they use was conceived and why the validity of the results
obtained in the end is limited by the hypotheses of the original concept. In con-
clusions, the following question is put to the reader: can a modeller who is not
sufficiently knowledgeable about all the links of this chain tell his ‘‘client’’ what are
possible doubts or deviations between what was just simulated and the reality?
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1 Introduction

When use of numerical simulation in hydraulics or, in much larger area of water
industry and management is considered, one may in legitimate way ask oneself the
question: what should a modeller, a user of a commercial modelling software,
know about the very heart of it, that is, about how the basic knowledge of physics
has been represented in the software he uses and resulted in output pictures he sees
(or forwards to his client) on the screen? There are the notions that are introduced
in the debate that the present author considers as possibly dangerous if not well
understood. One of those is the notion introduced into the hydro technical world by
Abbott [1, 2] that there are groups of knowledge providers and knowledge con-
sumers. Unless really well understood (and this asks for careful reading and
analysing of the description of these terms in the chapters refereed to), the quick
and widely spread conclusion is that the knowledge necessary to model is
encapsulated in the software and there is no problem anymore: anybody can model
anything with the bought software system. Coming back to knowledge providers
and knowledge consumers, the distinction which is supposed to characterise our
society, it would be better to talk about technology providers and consumers.
Consider an analogy between modeller using commercial software and a car
driver. 99 % car drivers in the world have no slightest idea of physical phenomena
going in their engine under the bonnet. They have been provided an encapsulated
technology package and immense majority of them do not know the principles of
explosion engine or diesel one. They learned how to drive but know nothing about
scientific and industrial developments that led to this technology and, with a
country-dependent variable percentage of killed on the roads, most of drivers are
still here, in-spite being knowledge ignoramus. The user is a consumer of the
technology that was encapsulated and provided to him by Volkswagen or what-
ever. I do not feel that he is a knowledge consumer—he has no access to
knowledge under any shape to be consumed. It is true that if his ignorance leads to
wrong use of this technology, generally the damages are limited (if he runs into a
tree) although can be dramatic for limited number of others (if he provokes a head-
on collision with other car). The situation is very different with modelling software
systems because the modelling results are being used to most important decision
concerning investments, structures, management of water systems, etc. Except for
very simple situations, a user of modelling software must be indeed knowledge-
able about basic hypotheses and physical laws lying as foundations of the software
as well as of the methods encapsulated in it. And it can happen that a user of such
software who is a technology consumer in the above-described sense of the term,
employing the technology ‘‘encapsulated’’ by the ‘‘provider’’, supplies the results
and conclusions that provoke, in turn, a catastrophe.

In what follows we shall describe holistically some aspects of one specific area
of such ‘‘encapsulation’’ and for one limited class of phenomena only. It concerns
the chain of knowledge acquisition and application that leads a creator of the
software simulation system to achieve its development. The class of problems
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taken as example is essentially one-dimensional unsteady free-surface fixed-bed
channel flow. In conclusions, we shall repeat the following question to the reader:
can a modeller who is not knowledgeable about all the links of this chain tell his
‘‘client’’ what are possible doubts or deviations between what was just simulated
and the reality?

2 Chain of Concepts and Steps Leading
from Hypotheses to Results

2.1 Observation of the Nature (Flow): Hypotheses
Concerning Main Physical Phenomena

Observation of the flow in any natural or even artificial stream, especially during
flood, leads to the conclusion of incredible complexity of details next to impossible
to understand or to describe. However, if the local detailed small scale is replaced
by the scale of several hundred metres or more the main ideas are obvious: the
flow has one privileged direction, the water is subject to gravity forces and also to
inertia forces and there certainly exists a resistance to the flow causing energy
dissipation. Moreover, our interest (should we say engineering or macroscopic?) is
mainly in knowing what is the free-surface elevation (stage) and discharge along
the observed reach and not in details. Since the area of the wetted cross section A is
defined by the water stage y (depth h) then, if the flow has a privileged direction, it
is useful to imagine brutal simplification that the water velocity is also directed
along this axis. In other words, one assumes that the longitudinal velocity u is so
important with respect to the transversal one than the latter can be neglected.
Rough observation shows that water velocity at a given point does not vary much
with the depth and, if the cross section is compact and the width reasonable, that
the elevation of the free surface across the stream does not vary much neither.
These observations led De Saint–Venant to the set of basic hypotheses that are
very far from reality but which nevertheless concern essence of phenomena of
engineering interest and decisive to overall description of the flow. The hypotheses
are listed in the sequel and it is obvious that they can be true only for an idealised
situation (Fig. 1):

u m/s

Fig. 1 De Saint–Venant
hypotheses
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1. Uniform longitudinal velocity u at every point of the cross section.
2. Transversal free surface at any section horizontal.
3. Hydrostatic pressure distribution along each vertical.
4. Head losses can be represented by Chèzy-type formula valid in steady flow.

2.2 Formulation of Physical Laws (e.g., Conservation
Laws) for Isolated Systems Where Only These
Phenomena Exist: Mathematical Formulation of These
Laws (Differential, Integral, etc., Equations)

The simplified, idealised situation is concerned: a flow along inclined channel of
constant slope and a cross section A(y). A classic approach is to analyse a control
volume contained spatially ‘between two verticals distant Dx one from another and
temporarily between two instants separated by time Dt. The control volume is
supposed to be an isolated system between two cross sections distant Dx and
between two instants separated by the time Dt volume of water of which (with
balance due to inflow and outflow) as well as the energy must be conserved. These
two conservation laws are the foundation from which it is possible to draw
mathematical equations. For the volume, it is obvious: if during time interval Dt
there is more water discharge Q inflowing into the control module then outflowing,
then the elevation y and cross section A will increase. For the energy, because of its
dissipation, the sum of potential and kinetic energies decreases over the distance
Dx and varies with time. The kinetic energy is expressed in terms of time and
space variations of section-constant velocity u = Q/A. The decrease in the total
energy is equal to its dissipation over the distance Dx. Assuming that (Dx ? 0;
Dt ? 0) one obtains two equations known as De Saint–Venant equations:

Conservation of the volume within an infinitely short control volume:
oA

ot
þ oQ

ox
¼ 0; Q ¼ uA; A ¼ A yð Þ ð1Þ

And conservation of the energy within this volume:

1
g

ou

ot
þ o

ox

u2

2

� �ffl �
þ oy

ox
¼ Ku uj j ð2Þ

where K = K(n, h), h = depth, n = empirical parameter of energy dissipation (or
resistance to the flow).

2.3 Parameterisation of Phenomena Not Described
by Equations

Antoine Chézy was the first one to note that in a long channel of constant slope the
‘‘initial flow velocity …diminishes or augments rapidly enough to reduce to a
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uniform and constant velocity which is due to the slope of the channel and to
gravity, of which effect is restrained by the resistance of friction against the
channel boundaries’’. And further on: ‘‘…velocity due to gravity…is only uniform
when it no longer accelerates, and gravity does not cease to accelerate except when
its action upon the water is equal to the resistance occasioned by the boundary of
the channel; but the resistance is as the square of the velocity because of the
number and the force of the particles colliding at the given time; it is also a part of
the perimeter of the section of the flow which touches the boundary of the
channel’’ [3]. Everything is said. Chézy used the concept of friction analogy to
describe the energy dissipation: there is a resistance (energy dissipation) that until
today we do not know how to formalise its exact mechanism (which is the tur-
bulence). Its scale and complexity are not in proportion with our purpose: to
describe the flow over ‘‘engineering’’ length. Hence, the need to parameterise these
complex mechanisms keeping essential factors in: resistance is proportional to the
square of the velocity and to the wetted perimeter or, inversely, the velocity u is
proportional to the square root of the slope S and hydraulic radius R. This is the
Chézy formula:

u ¼ k
ffiffiffiffiffiffi
SR
p

ð3Þ

Note that the coefficient k is the parameter that replaces the description of the
process of energy dissipation (something we still cannot pretend to know well and
to be able to formulate correctly). Note also that while in De Saint–Venant
equations k is the only one empirical and subjective parameter, the Chézy formula
(and then its follow-ups such as Manning or Strickler formulas) is valid but for
steady-state flow. Thus, De Saint–Venant hypothesis that ‘‘the resistance law is the
same as for steady-state flow’’ may in certain situations be questionable.

2.4 Impossibility to Solve the Equations and Conditions
of Existence of the Solutions

To solve the problem as stated by De Saint–Venant means to find two continuous
differentiable functions of independent variables u(x, t) and y(x, t) satisfying Eqs.
(1) and (2). It must be kept in mind of a modeller that such solution would be the
description of the situation limited by the hypotheses and not the full description of
real-life flow. Hence, it is not possible to expect from the solution anything more
(e.g., nonuniform velocity repartition, information on transversal slope of free-
surface or transversal velocity component). Moreover, we cannot solve these two
equations. Indeed, the two De Saint–Venant equations are a system of two non-
linear partial differential equations of hyperbolic type. The problem is that
mathematics do not know how to solve exactly such equations. If we consider a
simple partial differential equation such as:
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of

ot
þ a

of

ox
¼ 0; f x; 0ð Þ ¼ f0 xð Þ; �1\x\þ1 ð4Þ

then we know that there exists exact, ‘‘analytical’’ solution for this equation:

f x; tð Þ ¼ f0 x� atð Þ ð5Þ

But for De Saint–Venant equations such solution is not available has not been
found by mathematicians. Let us consider a space (x, t) and half space of it t [ 0.
Then, it has been proved that if there exist initial conditions smooth enough, that is,
if at the time t = 0, there do exist functions u(x, 0) and y(x, 0) and their derivatives,
then the existence of solutions for some time interval 0 \ t\T can be proved. This
is what we call the initial well-posed problem: we know that solution exists but we
cannot find it under exact closed form. Hence, there is necessary to seek an
approximate (numerical) solution. Situation is even more complicated when finite
length of the stream is considered (x segment is x0 \ x\xL). It is still possible to
prove that the solution exists for 0 \ t\T within these space limits but the mixed
problem (initial and boundary conditions) must be well posed. That means that
appropriate boundary conditions and continuous solutions of Eqs. (1) and (2) must
be given at the boundaries x = x0 and x = xL for all t [ 0. The case of unsteady
subcritical flow and upstream boundary condition provides an illustration of the fact
that things are not as simple as they may look or be presented. While imposing u(x0,
t) or y(x0, t) corresponds to well-posed problem, it can be proved that imposing a
rating curve Q(y) at the upstream boundary x = x0 makes the bounded solution of
the problem impossible while the same type of condition (rating curve) at the
downstream boundary x = xL is correct from mathematical point of view. Note,
however, that in hydrology practice rating curve function Q(y) is typically single
valued and, hence, it corresponds to a steady-state flow. When such rating curve is
the downstream-imposed boundary condition, it introduces errors to the solution of
the unsteady flow Eqs. (1) and (2). In other words, the solution with such down-
stream boundary condition does exist, but in fact, it is not the solution of the original
equations! The conclusion and warning is that the Eqs. (1) and (2) alone do not
suffice our purpose even if we assume that reality obeys De Saint–Venant
hypotheses: the initial and boundary conditions formulated in terms of the inde-
pendent variables u(x, t) and/or y(x, t) make integral part of the problem that is
known as a mixed (initial and boundary values) Cauchy problem. And, again, it is
not the solution that we can find but only conditions of its existence.

2.5 Numerical Algorithms Solutions of Which Converge
to Those of the Equations

In order to deal with the difficulty, we have to replace Eqs. (1) and (2) and their
boundary conditions by some other systems that we can solve. This may be
justified only if we can prove that the solutions of such surrogate systems are not
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very far from the solutions of original equations—those are what we called
approximate numerical solutions.

Since we wish only to point out to the conceptual track of creation of the heart of
modelling systems, we shall here limit ourselves to just one of various numerical
methods of approximation, namely the finite difference methods (FDM). The FDM
of integration of systems of differential, integro-differential or integral equations of
mathematical physics consist in transformation of derivatives into difference ratios
and of integrals into the summations. In practice that means a transfer from the
infinite space of functions of continuous arguments to the finite space of grid-
functions and transformation of the equations of continuous functions into algebraic
equations for which exist numerical methods to find approximate solution.

Note the original equations are replaced by algebraic equations, and then, the
latter are solved approximately. Two questions are to be answered:

• Is the system of algebraic equations well posed, that is, can it be solved even
approximately?

• How to be sure that after such double stage the approximate solution of alge-
braic systems is not too ‘‘far’’ from the analytical solutions (which cannot be
found) of the original systems. And is it possible to reduce the difference
between the two?

The grid-functions are the networks or grids of enumerable computational
points and the approximate solutions are sought at these discrete points. Such
approach is convenient in practice, but it introduces difficulties to prove mathe-
matically the convergence of the FDM results to those of the original equations
because the approximating grid functions (solution of FDM) and continuous
approximated functions (solution of differential equations) are defined in different
spaces having different norms. Using more descriptive approach to the problem,
consider as in Fig. 2 a grid of computational points distant Dxi one from another
and the Dtn time intervals for which the solution is sought. Suppose that indeed the
unknown values of originally sought continuous functions u(x, t) and y(x, t) are
approximated at grid points by FDM approximations ũ(xi, tn), ~y(xi, tn). Suppose
now that we refine space grid by using new distance Dxk = 0.5 Dxi. Then, new
solution at grid points would be obtained: û xk; tnð Þ; ŷ xk; tnð Þf g.

Then, the following questions become legitimate:

1. What is the difference between the solutions {u(x, t), y(x, t)} and {(xi, tn)~y(xi,
tn)}?

2. What is the difference between the solutions {û(xk, tn)~y(xk‘, tn)} and {(xi, tn)~y(xi,
tn)}?

3. Is the solution {(xk, tn)~y(xk, tn)} ‘‘better’’ than the solution {ũ(xi, tn)~y(xi, tn)}?
4. What means ‘‘better’’?

Note the reasoning and criteria of being better or not should be with respect to the solutions
of the original equations. The results obtained are considered as better or worse not in
comparing them with the reality but with the unknown solutions of differential equations.
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There is no direct way to answer question (1) The question (2) can be answered
by running two computations, one with Dxi and other with Dxk = 0.5 Dxi. But to
answer question (3), it is necessary to answer the question (4) first: if one reduces
the computational steps dividing them by 2, are approximate solutions converge to
the analytical solutions?

The answer is that in general case it is not true. To clarify this point, one must
take into consideration the way the derivatives in original equations were
approximate by finite differences and, hence, how the differential equations
themselves were replaced by difference algebraic equations.

Consider simple (as compared with De Saint–Venant Eqs. (1)and (2)) case and
the grid (i, n) as in Fig. 2:

of

ot
þ of

ox
¼ 0; ð6Þ

The derivatives can be approximate in various ways for time and space
derivatives, for example,

of

ot
ffi f nþ1

i � f n
i

Dtn
;

of

ot
ffi f nþ1

i � 0:5ðf n
iþ1 þ f n

i�1Þ
Dtn

; ð7Þ

of

ox
ffi f n

iþ1 � f n
i�1

2Dxi
;

of

ox
ffi f n

iþ1 � f n
i

Dxi
;

of

ox
ffi f n

i � f n
i�1

Dxi
; ð8Þ

Developing grid-functions Eqs. (6), (7) in Taylor series around (i, n) point and
substituting in Eq. (6) one finds that differential form Eq. (6) is replaced by a finite
difference equation. The unknown values f n+1 for each point xi i = 1, 2,…,L can
be then computed with orders of truncation error such as Dx, Dx2, Dt, Dt2, or with
ratios of these time or space steps. That means that the approximation is each time
consistent because when (Dx, Dt)! 0 then the finite difference equation will tend
towards differential form of Eq. (6). But to maintain the degree of consistent

t

x

i i

tn

(xi,tn), (xi,tn) and also { (xk,tn), k,tn)}

xi=i i = xk=k k

tn=n tn

xk= 0.5 xi

Fig. 2 Grid of computational points
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approximation for each case, both Dx and Dt must decrease simultaneously and
their ratio such as appearing in finite difference equation must be kept constant
during this process. Another important problem is numerical stability of the finite
difference scheme. For example, the use of the first time approximation of Eq. (7)
and of the first space approximation of Eq. (8) leads to absolutely unstable
numerically finite difference scheme and no valid results for f n+1 at point I can be
obtained.

The finite difference solution found at the computational grid points would
converge to the solution of the differential equations they approximate but under
certain conditions: the approximation must be consistent, the finite difference
scheme must be stable and both differential and finite difference problems must be
well posed (including boundary and initial conditions). And if the convergence is
thought numerically by repeating computations while refining computational grid
(Dx, Dt) ! 0 then the successive computations must maintain the relationship
between Dx and Dt obtained from consistent approximation. Now, we can answer
the question of grid refining as shown in Fig. 2, namely: if the time step is divided
by 2, will the results better? From the computational point of view, no! Indeed the
time step should be reduced at the same time in order to maintain consistency of
approximation. However, it is obvious that reduce the space step should improve
topography representation in our model if the topography is introduced again in
new details and this may well be essential.

As illustration of the fact that consistency of the scheme with equation is not
enough to ensure the convergence consider the following example [4]. Let the
partial differential Eq. (6) with the forward-space consistent scheme:

f nþ1
i � f n

i

Dtn
þ

f n
iþ1 � f n

i

Dxi
¼ 0 ! f nþ1

i ¼ 1þ Dtn
Dxi

� �
f n
i �

Dtn

Dxi
f n
iþ1; ð9Þ

Note that the finite difference scheme is consistent with differential equation but
numerically unstable.

As initial conditions for the differential equation, we take

If � 1� x� 0; f0 xð Þ ¼ 1; elsewhere f0 xð Þ ¼ 0;

The solution of the partial differential equation is a shift of f0 to the right by t. In
particular, for t greater than 0, there are positive values of x for which f(t, x) is
nonzero. This is illustrated in Fig. 3. Let us take for difference scheme the initial
data as:

f 0
i ¼ 1 for � 1� iDx� 0; f 0

i ¼ 0 elsewhere

Equation (9) shows that the values of grid-function f nþ1
i for Dt/Dx = 1, for

n [ 0 and i [ 0 will always be zero. Hence, the computed values of grid-function
will never converge towards the solution of differential equation although the finite
difference scheme is consistent with this equation.
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But if instead Eq. (9), the following consistent approximation is considered:

f nþ1
i � f n

i

Dtn
þ f n

i � f n
i�1

Dxi
¼ 0 ! f nþ1

i ¼ 1� Dtn
Dxi

� �
f n
i þ

Dtn

Dxi
f n
i�1; ð10Þ

then with Dt/Dx B 1, the result is stable and correct, and hence, the scheme is
convergent.

2.6 Interpretation of Parameters and Approximate Solutions
Obtained from Algorithms: Interpretation of Results

As shown above, the only parameter in De Saint–Venant equation is the coefficient
k in Chézy formula (Eq. 3). The coefficient k is the parameter that replaces
essentially the description of the process of energy dissipation (something we still
cannot pretend to know well and to be able to formulate correctly without
including some other parameters). There may be other phenomena that are not
represented in Eqs. (1) and (2), for example, subgrid phenomena, but it must be
clear that, precisely, they are not represented. Essential point is to understand that
as long as we can relate this parameter to the reality (e.g., as long as we can
assume that for a sand bed, the value of k varies within reasonable and known
limits) such parameterisation is useful. If, however, by calibration or ‘‘tuning’’ one
finds, through the modelling of past floods for a given river reach that may contain
all kinds of obstacles and local head losses, some global value of k, then of course
such value of the parameter has no physical meaning. In such a case, a modeller is
parameterising the situations that are due to unknown factors (not a general sit-
uation of the flow in a channel but rather specific situation of resistance encoun-
tered in a given reach during a given flood event) and thus jeopardises the

for −1≤x≤0

for i= −1 & i= 0 

f(x,t)=f0(x)

Fig. 3 Consistency alone does not imply convergence
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predictivity of the model. This is often a price for reproducing past-observed
floods with models that do not contain all topography, structures, etc.

The results obtained by above-described procedures are to be interpreted in
respect of what these procedures contain. There is no hope to expect that mod-
elling based on the approximate resolution of partial differential equations can
supply anything more that the values of grid-functions {ũ(xi, tn)~y(xi, tn),
i = 1,2,…L; n = 0,1, …, N} that are approximation to continuous functions {u(x,
t), y(x, t)}. Obvious consequence is that the four hypotheses used to set up Eqs. (1)
and (2) are built-in in the results of all 1D modelling systems based on De Saint–
Venant equations. Important point is also the fact that the result of simulation is
the approximate solution only at the grid points. Nothing can be said about what
happens between two grid points unless a complementary hypothesis assuming the
continuity of the grid-functions is ensured between the points. Thus, interpolation
between the computational points or a search for improvement of the results using
higher-order approximation of derivatives through the extrapolation formulas
involving several grid points is hazardous. The interpretation of the results must
also take into account how the computations were conducted: to refine space grid
of computational points in two consecutive computations is not enough to improve
the quality of results from one simulation to another.

In general, the interpretation of the results may lead to inaccurate or even false
conclusions and, then, policies and decision. Consider the example of flood
insurance problems for dwelling on the inundated plain created by 1D-modelled
free-surface elevation. As demonstrated, the free surface across the river is com-
puted as horizontal at any time of the flood and computed velocity is uniform
within the whole section. This is notoriously false: even if the flow is of one-
dimensional character in unsteady flood of reasonable duration the free surface
will be higher along the river axis than on the plain, the duration of inundation will
not be the same and velocity very different. Nowadays, we often have available the
digital terrain models (DTM). Using GIS techniques, it is enough to superimpose
the 1D flow model results and DTM to produce illusion of accuracy. There are
numerous cases of similar situations, especially when the studies (compulsory in
many EU countries) of inundation risks are conducted. The reasons are of two
origins: available budgets that push clients to less-qualified service suppliers using
cheaper tools and lack of knowledge of the decision makers. How many of
everyday users of market-available 1D software think of De Saint–Venant
hypotheses when producing ‘‘inundation maps’’ from the colourful results supplied
by GUI? Imagine that topography used in a model of an area was manufactured a
couple of years ago and that since local forest service built a dirt service road crest
of which is 1 metre above original plain elevation. Somebody unable to analyse the
results in function of basic hypotheses and of sound knowledge of hydraulics will
not be able to seek and find the differences between the results of 1D model and
the free-surface elevation observed during last year flood.
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3 A Remarkable Example of Limitation of De Saint–
Venant Approach

Consider a case of a trapezoidal concrete derivation channel several kilometres
long and conveying a steady flow discharge towards a power station, irrigation
area, etc. What happens when the gates (or turbines) downstream close rapidly? In
classic hydraulics curricula, the case becomes a 1D unsteady flow as downstream
positive-steep front wave (discontinuity, roller, bore) propagates upstream the
channel. Question is: is it possible with a commercial De Saint–Venant-based code
to simulate the situation and define the heights of the dykes along this channel?
Still classic answer is yes, and the computed result is as in Fig. 4a. In many (if not
most) cases, the real situation is different. Like shown in Fig. 4b (and in Fig. 5),
the upstream propagating wave is under the shape of undular bore height of which
may be twice of that of steep front wave [5].

In this particular case, De Saint–Venant hypotheses of uniform velocity and
hydrostatic pressure are wrong and no commercial software based on such
hypotheses can produce acceptable results. And, once the structure built and water
spilling out of channel at every manoeuver of the gates, there may occur serious
consequences if the modeller or his client do not know hydraulics in depth: the
client may well feel that modelling is a humbug, inapplicable to engineering
problems. At the very best, the used software would be disqualified.

Steep front wave
gate

Initial flow

Steep front wave

Initial flow

gate

H
h

(b)(a)

Fig. 4 Closure of downstream gate a simulation results from 1D De Saint–Venant-based code
(steep front bore of height h), b often observed reality—undular bore of height H = 1.2–2.1 h
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4 Conclusions

From mathematical point of view, the results of models are nothing more than, at
their best, approximate solution of original differential equations. From the engi-
neering point of view, the interpretation of the results is essential because of the
limitative basic hypotheses on which equations are built and because the computer
output cannot supply more than these hypotheses allow. If there is a contradiction,
an in-depth analysis is necessary. A modeller who is not sufficiently knowledge-

Fig. 5 a from [5]. b Tests of release in Chaudanne HP station (France), courtesy Electricité de
France
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able about links of the chain leading from hypotheses to results may not be able to
supply his ‘‘client’’ with appropriate conclusions indicating how the original
hypotheses and subsequent approximations may make the results differ from the
reality. Given that the ‘‘client’’ is typically a decision maker in wide sense of the
word: investor, public body, administration, etc., it is important that he realises the
situation and makes sure to find necessary and qualified assistance in order not to
be at the mercy of the modelling studies supplier.
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Use of Standard 2D Numerical Modeling
Tools to Simulate Surface Runoff Over
an Industrial Site: Feasibility
and Comparative Performance Survey
Over a Test Case

Morgan Abily, Claire-Marie Duluc and Philippe Gourbesville

Abstract Intense pluvial generated surface flow over an industrial facility
represents a flood risk requiring an appropriated approach for risk assessment.
Runoff over industrial site might have flow regime changes, wild flooding/drying
extend, as well as small water deep properties. This makes standard bidimensional
(2D) numerical surface flow models use particularly challenging. Indeed,
numerical treatment of these properties might not be specifically supported by
models. Furthermore, it gets close by their traditional application domain limits.
Accordingly, an assessment of this group of numerical tool use for such a purpose
needs to be in detailed studied to evaluate feasibility, performance, and relevance
of their use in this context. This chapter aims to focus on common 2D numerical
modeling tools use for application over an industrial plant test case to simulate
surface runoff scenarios. Feasibility of such an approach is hereby studied.
Performances and relevance of this attempt are evaluated. Our test case has
specificities of real industrial plants in terms of domain extend, topography, and
surface drainage structures. Tested scenarios state a uniform net 100 mm 1 h long
rainfall event in a context of storm water sewer pipe failure. Selected tested models
were a 2D finite differences diffusive wave model and an array of different 2D
shallow water equation [2D shallow water equations (SWEs)]–based models.
Comparison has been conduced over computed maximal water depth and water
deep evolution. Results reveal a feasibility of these tools application for the studied
specific purpose. They underline the necessity of a highly fine spatial and temporal

M. Abily (&) � P. Gourbesville
University of Nice Sophia Antipolis/Polytech’Nice-Sophia/ Innovative City, 930 Route des
Colles 06903 Sophia Antipolis Cedex, France
e-mail: abily@polytech.unice.fr

P. Gourbesville
e-mail: Philippe.Gourbesville@unice.fr

C.-M. Duluc
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE, SCAN, BEHRIG,
BP17, 92262 Fontenay-aux-Roses Cedex, France
e-mail: claire-marie.duluc@irsn.fr

P. Gourbesville et al. (eds.), Advances in Hydroinformatics,
Springer Hydrogeology, DOI: 10.1007/978-981-4451-42-0_3,
� Springer Science+Business Media Singapore 2014

19



discretization. Tested categories of average 2D SWEs–based models show in a
large extend similar results in water depth calculation. Used indicator of results
reliability estimation did not point out major critical aspects in calculation. Limits
inherent of these categories of models use for this domain of application are
underlined. Relevance of this approach is raised up.

Keywords Flood risk assessment � Surface runoff modeling � Industrial site � 2D
shallow water equations � MIKE � TELEMAC

1 Introduction

Flood risk over industrial sites includes surface runoff generated by intense pluvial
events. For sensitive industrial sites, this risk has to be assessed as it might lead to
issues for industrial activities, environment, and for human protection. A new
guide for nuclear power plant protection against flooding risk has been elaborated
by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) for the French
Safety Authority (ASN). The guide [1] defines a set of Standard Flood Risk
Situations (SFRS) to be taken in consideration for safety assessment of nuclear
power plants. This guide notably includes a SFRS defining a framework for intense
pluvial generated runoff risk assessment. This SFRS recommends that a plant has
to be able to cope with a 1 h long rainfall event with a hundred year return period;
meanwhile, sewer system network is considered as locally non-available. Through
this SFRS, aim is to consider two possible aspects in safety failure which might
occur during an intense rainfall event scenario: (1) a clogging of sewer network
access and (2) a possibility of rainfall events occurrence exceeding the return
period for which the sewer system has been designed and implemented.

Different approaches for the runoff SFRS application are possible. (1) A
spreading of the cumulated rainfall volume over the industrial site might be an
approach to consider for flat sites, to identify pounded areas. It has to be noticed
that this quantitative approach do not take hydrodynamic aspects into accompt.
(2) Using fine topographical data, main drainage path and pounded areas can be
identified. This method is rather qualitative and does not integer quantitative
aspects. (3) Numerical modeling of runoff as a free surface flow is a practice often
used at larger scale for flood risks assessment and might be applied for runoff over
high-resolution topography studies. Indeed, gaining ground of standard numerical
modeling tools use for surface runoff component modeling at high resolution is
observed [2, 3]. At the same time, nowadays techniques for high-resolution
topographical data gathering are becoming commonly used. Modern techniques as
light detection and ranging (LIDAR) [4] and unmanned aerial vehicle (UAV)
photogrammetry [5] can produce digital elevation models (DEMs) with a reso-
lution consistent enough to finely represent surface drainage influencing structures
up (e.g., walls, side walks, curbs). Nevertheless, runoff over an industrial site
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