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 This book was originally conceived at a dinner meeting with Beth 
 Gierlowski- Kordesch, Kevin Bohacs and Mike Rosen in Portland, Oregon 
during the GSA annual meeting of 2009. Its purpose is two-fold: (1) to 
 provide a logical starting point to its strata; and (2) to showcase the wealth of 
sedimentary geology currently being conducted on its strata. Our hope is that 
the reader can effi ciently discover a wealth of accumulated knowledge and at 
the same get a snapshot of the current cutting edge of sedimentary research 
on lacustrine depositional systems. 

 Our gratitude goes out to all of the contributors and reviewers of this 
volume.  

    Flagstaff ,  AZ ,  USA      Michael     Elliot     Smith   
    Madison ,  WI ,  USA      Alan     R.     Carroll   
     February, 2015 
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      Introduction to the Green River 
Formation 

           Michael     Elliot     Smith      and     Alan     R.     Carroll    

    Abstract  

  The Green River Formation of Wyoming, Colorado and Utah contains an 
important record of the paleogeography, climate and lakes in the Rocky 
Mountains region during the Early Eocene epoch. Its have been a source 
of inspiration for paleolimnologists since before the term paleolimnology 
came to exist. Its strata contain fossil faunas and fl ora, extensive resources 
of trona and kerogenous shale, and one of the most complete records of the 
Early Eocene Climatic Optimum. Emerging geochronology has permitted 
correlations of the Green River Formation between the structural basins 
that contain it, and is beginning to bring to tempo and origins of the pro-
nounced cyclity exhibited by the Green River Formation into focus. Each 
of the 11 subsequent chapters of this book presents a suite of detailed 
stratigraphic and sedimentologic investigations of the Green River 
Formation within the Green River Formation basins.  

1.1         A Rich Lacustrine Archive 
of the Early Eocene Earth 

 The Green River Formation is a complex amal-
gam of Eocene lacustrine strata that was depos-
ited within a series of intermontane basins 
surrounding the Uinta Uplift during the end 
phases of Laramide basement deformation in the 
U.S. foreland (Fig.  1.1 ). Since it was fi rst named 
by the Hayden survey in  1869 , the Green River 
Formation has been the subject of over 2,500 pub-
lications. Its strata occupy four structural basins 
arrayed around the Uinta Uplift: the Greater 
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Green River; Fossil; Piceance Creek; and Uinta 
basins (Fig  1.1 ), record a great variety of deposi-
tional environments (i.e., lake depth, lake water 
chemistry, and paleobiology), and interfi nger 
extensively with predominantly alluvial facies of 
the Wasatch, DeBeque, Colton, Bridger and Uinta 

Formations (Fig.  1.2 ). In this volume alone, more 
than 100 distinct Green River Formation lithofa-
cies are described and interpreted.   

 The Green River Formation was deposited 
during the most geologically recent period of 
unusually warm climate (cf. Smith et al.  2014 ), 

  Fig. 1.1    Map showing the location of Eocene basins and 
basin-bounding uplifts (Adapted from Smith et al.  2008 ). 

The location of the Skyline 16 core from which the Skyline 
tuff was sampled from is indicated by an  S  (cf. Fig.  1.4 )       
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and as such it provides a valuable opportunity to 
examine the mode and tempo of past episodes of 
global warming. A number of studies have con-
cluded that fl uctuations in Eocene lake levels 
were caused by Milanovitch-scale orbital forcing 
of climate (Fischer and Roberts  1991 ; Roehler 
 1993 ; Machlus et al.  2008 ; Meyers  2008 ; 
Aswasereelert et al.  2013 ) or by shorter-period 
climatic oscillations related to ENSO or sunspots 
(Bradley  1929 ; Ripepe et al.  1991 ). The actual 
mechanisms by which any these putative forcing 
signals were transferred into Green River 
Formation strata remain enigmatic however. 

 Green River Formation strata and their allu-
vial equivalents also contain an unparalleled fos-
sil treasure trove, famous for its well preserved 
vertebrate (both terrestrial and aquatic) and plant 
remains that have been preserved within its fi nely 
laminated strata (MacGinitie  1969 ; Grande  1984 ; 
Wilf  2000 ). It is also host to several rich and var-
ied assemblages of trace fossils (see Chap.   12     of 
this volume). Vertebrate fossils collected from 
alluvial strata laterally equivalent to the Green 
River Formation throughout the Laramide broken 
foreland province have been utilized to defi ne the 
North American land mammal “ages” (Wood 
et al.  1941 ), which have been refi ned and subdi-
vided by subsequent paleontologic investigations 
(cf. Robinson et al.  2004 ). Though vertebrate fos-
sils are rare to entirely absent in the Green River 
Formation itself, a great number of vertebrate 
faunas have been collected from Green River 
Formation-equivalent alluvial strata assigned to 
the Wasatch, DeBeque, Colton, Bridger and 
Uinta Formations (Osborn  1895 ; Morris  1954 ; 
McGrew and Roehler  1960 ; McGrew and 
Sullivan  1970 ; Gunnell and Bartels  1994 ,  1999 ; 
Gunnell  1998 ; Zonneveld et al.  2000 ) and indi-
cate that the Green River Formation spans the 
Wasatchian, Bridgerian and Uinta land mammal 
ages (Fig.  1.2 ; cf. Smith et al.  2008 ). 

 The Green River Formation has also stimulated 
considerable interest due to its rich endowment of 
economic resources. Its potential to generate oil 
via retort of organic-rich mudstone has been rec-
ognized since at least 1916, when federal Naval 
Oil Shale Reserves were designated by Woodrow 
Wilson in Colorado and Utah. Recent U.S.G.S. 
estimates put the total in situ resource magnitude 

in Colorado, Utah, and Wyoming at approximately 
4.3 trillion barrels of oil (Johnson et al.  2011 ), an 
amount 2.5 times greater than the currently proven 
oil reserves of the world. However, it remains 
unclear how much of this resource (if any) will be 
commercially exploited, or whether the environ-
mental consequences of its use would outweigh 
the benefi ts. Although very rich, Green River 
Formation oil shale is generally too thermally 
immature to act as a conventional petroleum 
source rock across most of its area, except in the 
northern Uinta basin. There, oil generated from the 
lower Green River Formation accounted for 
approximately 30 million barrels of production in 
2014 (Utah Division of Oil, Gas, and Mining). 

 The other main economic resource of the 
Green River Formation is soda ash, which is 
mined primarily in the form of trona (cf. Wiig 
et al.  1995 ). Trona deposits in the Bridger basin 
of Wyoming represent the single largest soda ash 
deposit in the world, and with more than 17 mil-
lion metric tons of production in 2013 (U.S.G.S. 
2013 Minerals Yearbook).  

1.2     A Century and a Half 
of Geologic Inquiry 

 Wilmot H. Bradley’s pioneering work on the Green 
River Formation during the 1920s through 1970s 
set a high bar for subsequent workers (Sears and 
Bradley  1924 ; Bradley  1926 ,  1928 ,  1929 ,  1931 , 
 1964 ,  1974 ), and set the stage for the types of 
 questions that are still being investigated nearly a 
century later (i.e., stratigraphic packaging, lacus-
trine sedimentology, and the identifi cation of cli-
mate cycles from vertical facies stacking patterns). 

 During the 1950s through 1990s, and great 
number of scientists from the U.S. Geological 
Survey, industry and academia brought the Green 
River Formation into much greater focus by dif-
ferentiating, mapping and correlating its member- 
scale units and lithofacies (Donovan  1950 ; 
Duncan and Belser  1950 ; Dane  1954 ; Picard 
 1955 ; Bradley  1959 ; Picard  1959 ; Culbertson 
 1961 ,  1965 ,  1966 ,  1971 ,  1998 ; Donnell  1961 ; 
Stuart  1963 ; Love  1964 ; Wiegman  1964 ; Hansen 
 1965 ; Sanborn and Goodwin  1965 ; Roehler  1968 ; 
Oriel and Tracey  1970 ; Trudell et al.  1970 ; 

M.E. Smith and A.R. Carroll
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Wolfbauer  1971 ; Cashion and Donnell  1972 , 
 1974 ; Roehler  1973 ; West  1973 ; Duncan et al. 
 1974 ; O’Sullivan  1974 ; Trudell et al.  1974 ; Fouch 
 1976 ; Burnside and Culbertson  1979 ; Surdam and 
Stanley  1979 ,  1980 ; Sullivan  1980 ; Dyni  1981 , 
 1996 ; Johnson  1984 ,  1985 ; Dyni et al.  1985 ; 
Roehler  1985 ; Rowley et al.  1985 ; Hail  1987 , 
 1990 ,  1992 ; Franczyk et al.  1989 ; Roehler  1991 , 
 1992 ,  1993 ; Franczyk et al.  1992 ; Remy  1992 ; 
and works cited within; Buchheim  1994 ; Wiig 
et al.  1995 ; Buchheim and Eugster  1998 ). These 
efforts were aided by an extensive coring program 
funded by both industry and the U.S. Energy 
Research and Development Administration. 
Several of these cores are still available at the 
U.S.G.S. core repository in Denver, Colorado. 

 During the 1970s and early 1980s, detailed 
sedimentologic investigation of the Wilkins Peak 
Member of the Green River Formation in 
Wyoming revealed that a signifi cant proportion 
of its lithofacies were accumulated on lake fring-
ing playa rather than within a deep stratifi ed lake 
(Eugster and Surdam  1973 ; Wolfbauer  1973 ; 
Wolfbauer and Surdam  1974 ; Eugster and Hardie 
 1975 ; Surdam and Wolfbauer  1975 ; Smoot  1978 , 
 1983 ). The application of the playa-lake model to 
other members of the Green River Formation has 
proven less successful, however, because much 
of the Green River Formation, including portions 
of the Wilkins Peak Member, does in fact record 
deep lake conditions. 

 The Green River Formation was infl uential in 
the conception and development of the lake type 
concept (Carroll and Bohacs  1999 ; Bohacs et al. 
 2000 ), which relates lacustrine lithofacies and 

stacking patterns to the long term balance between 
precipitation, evaporation, and basinal accommo-
dation. The criteria used for lake type subdivision 
of its strata are summarized in Table  1.1 .

   Since the advent of the new century, investiga-
tions of the Green River Formation have taken 
advantage of new radioisotopic dating methods 
(Smith et al.  2008 ,  2010 , cf. Table  1.2 ), sedimen-
tology and ichnology (cf. Chap.   12    ), stable and 
radiogenic isotopic proxies (Doebbert et al.  2010 , 
 2014 ), and the application of sequence- and 
cyclo-stratigraphy to its strata (Bohacs et al. 
 2007 ; Machlus et al.  2008 ; Aswasereelert et al. 
 2013 ). Radioisotopic geochronology ( 40 Ar/ 39 Ar 
and U-Pb) in particular has facilitated viewing 
the Green River lake system as a whole in a 
paleogeographic context (Fig.  1.3 ). This volume 
contains nine chapters (Chaps.   2    ,   3    ,   4    ,   5    ,   6    ,   7    ,   8    , 
  9    ,   10    ) that explore the member-scale  stratigraphy 
and lithofacies of the Green River Formation 
within the individual basins it occupies (Fig.  1.2 ), 
and the two fi nal Chaps. (  11     and   12    ) which 
address the paleoenvironmental implications of 
evaporite deposits and ichnofossils from a 
regional perspective.

           Acknowledgments   We thank Michael Vanden Berg, 
Lauren P. Birgenheiler, and the Utah Geological Survey for 
kindly providing a core sample of the Skyline tuff. Laser 
fusion  40 Ar/ 39 Ar geochronology for the Skyline tuff was 
conducted by Brian Jicha and Brad S. Singer the University 
of Wisconsin-Madison. National Science Foundation 
grants EAR-0230123, EAR-0114055 and EAR-0516760, 
the Donors of the Petroleum Research Fund of the 
American Chemical Society, Chevron, and ConocoPhillips 
kindly provided funding for the geochronology and stratig-
raphy summarized in Figs.  1.1 ,  1.2 , and  1.3 .  

   Table 1.1    Criteria for classifi cation of lake type in Green River Formation strata   

 Basin type 
 Facies 
Association  Typical facies 

 Stratigraphic
stacking  Fauna 

 Hydrologic 
interpretation 

 Overfi lled  Fluvial-
lacustrine 

 Sandstone, coal, massive 
to laminated mudstone, 
coquina limestone 

 Dominantly 
progradational 

 Molluscs 
common, 
occasional fi sh 

 Freshwater “open” 
lake 

 Balanced 
Filled 

 Fluctuating 
profundal 

 Predominantly organic 
rich laminated mudstone, 
stromatolites, oolites 

 Mixed 
aggradational/
progradational 

 Fish, ostracodes  Fluctuating 
salinity, 
intermittently 
open/closed lake 

 Underfi lled  Evaporative  Na-rich evaporites, may 
include basin interior 
alluvial units and palustrine 
mudstone 

 Aggradational  Fauna absent  Hypersaline 
“closed” lake 

1 Introduction to the Green River Formation
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   Table 1.2     40 Ar/ 39 Ar ages for Eocene strata in the Laramide foreland province   

 Location Sample  Stratigraphy 
 Dated 
Material  Method 

 fl ux 
monitor 

 Age 
(Ma)  ±2σ a   ±2σ b   References 

  Greater Green River Basin  

 Scheggs tuff  Tipton Member  san  fus  TCs  52.22  ±0.09  ±0.35  Smith et al. ( 2008 , 
 2010 ) 

 Rife tuff  ”  san  fus  ”  51.62  ±0.30  ±0.45  ” 

 Firehole tuff  Wilkins Peak 
Member 

 san  fus  ”  51.41  ±0.21  ±0.39  ” 

 Boar tuff  ”  san  fus  ”  51.14  ±0.24  ±0.41  ” 

 Grey tuff  ”  san  fus  ”  50.86  ±0.21  ±0.39  ” 

 Main tuff  ”  san  fus  ”  50.28  ±0.09  ±0.34  ” 

 Layered tuff  ”  san  fus  ”  50.12  ±0.09  ±0.34  ” 

 6 th  tuff  ”  bio  ih  ”  49.93  ±0.10  ±0.34  ” 

 Analcite tuff  Laney Member  san  fus  ”  49.25  ±0.12  ±0.34  ” 

 Antelope 
sandstone 

 ”  san  fus  ”  49.00  ±0.19  ±0.37  ” 

 Church Butte tuff  Bridger 
Formation 

 san  fus  ”  49.06  ±0.09  ±0.33  ” 

 Leavitt Creek 
tuff 

 ”  san  fus  ”  48.93  ±0.28  ±0.42  ” 

 Henrys Fork tuff  ”  san  fus  ”  48.45  ±0.08  ±0.32  ” 

 Tabernacle Butte 
tuff 

 ”  san  fus  ”  48.41  ±0.08  ±0.32  ” 

 Sage Creek tuff  ”  san  fus  ”  47.46  ±0.08  ±0.32  ” 

 Continental tuff  ”  san  fus  ”  48.97  ±0.28  ±0.42  ” 

  Fossil Basin  

 K-spar tuff  Fossil Butte 
Member 

 san  fus  ”  51.98  ±0.09  ±0.35  ” 

 Sage tuff  Fowkes 
Formation 

 san  fus  ”  48.23  ±0.17  ±0.36  ” 

  Piceance Creek Basin  

 Yellow tuff  Parachute 
Creek Mb. 

 san  fus  ”  51.56  ±0.52  ±0.62  ” 

  Uinta Basin  

 Skyline ash  Parachute 
Creek Mb. 

 san  fus  FCs  49.58  ±0.28  ±0.32   This study  (cf. Fig.  1.4  
and Table  1.3 ) 

 Curly tuff  ”  bio  ih  TCs  49.32  ±0.30  ±0.44  Smith et al. ( 2008 , 
 2010 ) 

 Wavy tuff  ”  bio  ih  ”  48.67  ±0.23  ±0.39  ” 

 Blind Canyon 
tuff 

 ”  bio  ih  ”  47.33  ±0.18  ±0.36  ” 

 Fat tuff  Saline member  bio  ih  ”  46.63  ±0.13  ±0.33  ” 

 Portly tuff  ”  bio  ih  ”  45.86  ±0.14  ±0.33  ” 

 Oily tuff  ”  bio  ih  ”  45.42  ±0.10  ±0.31  ” 

 Strawberry tuff  sandstone and 
limestone 
member 

 san  fus  ”  44.27  ±0.93  ±0.97  ” 

(continued)
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Table 1.2 (continued)

 Location Sample  Stratigraphy 
 Dated 
Material  Method 

 fl ux 
monitor 

 Age 
(Ma)  ±2σ a   ±2σ b   References 

  Wind River Basin  

 Halfway Draw 
tuff 

 Wind River 
Formation 

 san  fus  ”  52.07  ±0.10  ±0.35  ” 

 Wagon Bed tuff  Wagon Bed 
Formation 

 san  fus  ”  47.99  ±0.12  ±0.33  ” 

  Bighorn Basin  

 Willwood ash  Willwood 
Formation 

 san  fus  ”  52.91  ±0.12  ±0.36  Smith et al. ( 2004 ) 

  Notes: All ages calculated relative to the 28.201 Ma age for FCs using the equations of Kuiper et al. ( 2008 ) and Renne 
et al. ( 1998 ), and are shown with 2σ analytical and fully propagated uncertainties. Mineral dated: san – sanidine, bio – 
biotite. Analysis type: ih – weighted mean of concordant plateau ages from incremental heating experiments, fus – 
weighted mean of multiple laser fusions. Neutron fl ux monitors:  TCs  Taylor Creek Rhyolite sanidine,  FCs  Fish Canyon 
Tuff sanidine, Cf. Smith et al. ( 2008 ) for analytical details 
  a Analytical uncertainty 
  b Fully propagated uncertainty for preferred age  

   Table 1.3     40 Ar/ 39 Ar results for Skyline tuff single crystal laser fusion experiments   

  40 Ar/ 39 Ar   37 Ar/ 39 Ar   36 Ar/ 39 Ar 

  40 Ar*   40 Ar*  K/Ca  Apparent 
age ± 2σ Ma  ×10 −14  mol  % 

 3.669 ± 0.009  0.00305 ± 0.00185  0.000317 ± 0.000074  0.19  97.4  141  50.25 ± 0.65 

 4.763 ± 0.011  0.04946 ± 0.00312  0.004088 ± 0.000109  0.17  74.7  9  50.01 ± 0.93 

 4.012 ± 0.010  0.03922 ± 0.00198  0.001600 ± 0.000088  0.20  88.3  11  49.79 ± 0.76 

 4.079 ± 0.008  0.02443 ± 0.00139  0.002002 ± 0.000059  0.30  85.5  18  49.05 ± 0.52 

 3.657 ± 0.010  0.06422 ± 0.00397  0.000256 ± 0.000121  0.11  98.1  7  50.40 ± 1.02 

 3.937 ± 0.008  0.01221 ± 0.00210  0.001347 ± 0.000071  0.23  89.9  35  49.75 ± 0.62 

 3.867 ± 0.008  0.00993 ± 0.00218  0.001191 ± 0.000096  0.17  90.9  43  49.42 ± 0.82 

 4.419 ± 0.011  0.01673 ± 0.00287  0.002851 ± 0.000117  0.16  81.0  26  50.28 ± 0.99 

 4.435 ± 0.010  0.02423 ± 0.00290  0.003170 ± 0.000123  0.15  78.9  18  49.21 ± 1.04 

 4.006 ± 0.009  0.08356 ± 0.00343  0.001772 ± 0.000095  0.19  87.1  5  49.04 ± 0.81 

 4.496 ± 0.010  0.09342 ± 0.00393  0.003342 ± 0.000110  0.18  78.2  5  49.42 ± 0.93 

 4.644 ± 0.010  0.02280 ± 0.00227  0.003790 ± 0.000100  0.21  75.9  19  49.55 ± 0.85 

 4.269 ± 0.008  0.01886 ± 0.00214  0.002632 ± 0.000099  0.19  81.8  23  49.10 ± 0.84 

 4.697 ± 0.009  0.07262 ± 0.00376  0.004373 ± 0.000112  0.21  72.6  6  47.96 ± 0.94 

 Inverse isochron 
age 

 49.78 ± 0.55 

  40 Ar/ 39 Ar 
intercept 

 288.2 ± 17.3  MSWD  1.52   Weighted 
mean age  

  49.58 ± 0.28  

  Notes: All ages calculated relative to 28.201 Ma for the Fish Canyon tuff sanidine (Kuiper et al.  2008 ); using the decay 
constants of Min et al. ( 2000 ); uncertainties in Ar isotope ratios are reported at 1σ analytical precision, uncertainties in 
ages are reported at 2σ analytical precision. Corrected for  37 Ar and  39 Ar decay, half lives of 35.2 days and 269 years, 
respectively.  J  = 0.0078430 ± 0.00000701; μ = 1.0060. Italics indicate analysis that were excluded from weighted mean 
age calculations  
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  Fig. 1.3    Annotated synoptic maps showing paleohydro-
logic confi guration of the Green River Formation lakes at 
8 discrete times between 53.5 and 45 Ma (updated from 
Smith et al.  2008 ). Time slices were selected to highlight 
major hydrologic confi gurations of Green River Formation 

lake system (cf. Smith et al.  2008 ). Note that knowledge 
of the continuity of lacustrine deposition in the central 
Greater Green River Basin is limited by the absence of 
Eocene strata atop the Rock Springs uplift ( dashed 
outline ).       
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      Initiation of Eocene Lacustrine 
Sedimentation in the Greater 
Green River Basin: Luman Member 
of the Green River Formation 

           Brooke     Ann     Norsted    ,     Alan     R.     Carroll    , 
and     Michael     Elliot     Smith    

    Abstract  

  The Luman Member is the lowermost unit of the lacustrine Green River 
Formation, and provides an opportunity to examine in detail the initiation 
of lacustrine deposition within the Greater Green River Basin during the 
Early Eocene. Well-drained alluvial and fl uvial strata of the Wasatch 
Formation are overlain by carbonaceous mudstone, channelized sandstone 
and isolated interbedded pond deposits of the lower Luman Member, 
which are in turn overlain by laterally extensive calcareous mudstone of 
the upper Luman Member, and together record a conformable progression 
alluvial to paludal to lacustrine environments. Here we describe alluvial, 
paludal and lacustrine lithofacies along a basin-scale transect through the 
Luman Member depocenter. Based on detailed correlation of Luman 
Member strata, freshwater lakes formed fi rst in isolated regions of high 
subsidence to the east and west of the Rock Springs Uplift, then expanded 
and became more prone to carbonate deposition.  

2.1         Introduction 

 Lacustrine systems commonly occur within and 
adjacent to active orogens. Uplifts are known to 
infl uence not only the distribution of lakes but 
also the character and architecture of lacustrine 
sedimentation patterns (e.g., Anadón et al.  1989 ; 
Sáez and Cabrera  2002 ). However, the interac-
tion of large scale tectonic and climatic forcing 
on lacustrine depositional systems is poorly 
understood. Field exposures of the lacustrine 
Luman Member of the Green River Formation 
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along the southern margin of the Greater Green 
River Basin permit detailed observation of initia-
tion and sedimentation in the context of growth 
of the Uinta and Rock Springs Uplifts. 

 This study examines sedimentology and stra-
tigraphy of the Luman Member along an east- 
west cross-section that exposes the transgression 
of lacustrine facies over alluvial facies with the 
aim of constructing a genetic model for the 
embryonic stages of Lake Gosiute. Though 
ancient palustrine depositional environments are 
well described (cf. Sagri et al.  1989 ; Alonso- 
Zarza and Calvo  2000 ; Alonso-Zarza et al.  1992 ; 
Armenteros et al.  1997 ), less is known about the 
dynamics and stratal geometries associated with 
the transition from paludal to lacustrine 
environments.  

2.2     Geologic Setting 

2.2.1     Stratigraphic Framework 

 Terrestrial lithofacies within late Paleocene 
through the early Eocene strata in the southern 
part of the Greater Green River Basin record 
large-scale changes in accommodation and allu-
vial and lacustrine deposition that occurred in 
response to basin-bounding basement uplifts. 
The earliest Cenozoic deposits in the region con-
sist of the Late Paleocene Fort Union Formation 
strata, which is comprised of sandstone and mud-
stone and sporadic coal beds that were deposited 
in fl uvial, alluvial and limited paludal environ-
ments, respectively (McDonald  1972 ). The Fort 
Union Formation thickens to the north and east in 
the Greater Green River Basin, which likely 
records fl uxurally-driven subsidence in response 
to growth of the Sierra Madre, Rawlins, and 
Wind River Uplifts (Beck et al.  1988 ). Overlying 
the Fort Union Formation are gray, green and red 
mudstones and light-gray to red sandstones were 
deposited in fl uviatile and fl oodplain environ-
ments and constitute the Main Body of the 
Wasatch Formation (Roehler  1993 ). The Wasatch 
Formation is thickest in the south of the Greater 
Green River Basin, and thins to the north, indicat-
ing increased accommodation resulting from 

fl exural loading by the Uinta Uplift coupled with 
high sediment supply rates in the southern part of 
the basin triggered by denudation of the Uinta 
Uplift (Roehler  1969 ). Overlying the Wasatch 
Formation (Fig.  2.1 ), the Green River Formation 
constitutes the deposits of Lake Gosiute, which 
occupied the 48,500 mi 2  of southwestern 
Wyoming in the early Eocene from 53 to 48 mil-
lion years ago (Smith et al.  2008 ).  

 The term “Luman Tongue of the Green River 
Formation” was fi rst applied by Pipiringos ( 1955 ) 
to a package of lacustrine strata within the upper 
part of the Wasatch Formation in the Great Divide 
sub-basin of the Greater Green River Basin. In its 
naming and in much of the subsequent literature, 
Luman strata have been considered a tongue. 
According to the North American Stratigraphic 
Code ( 1983 ), a tongue is “a wedging member 
that extends outward beyond a formation or 
wedges out within another formation.” This defi -
nition implies lithological continuity between the 
tongue and the main body from which it is 
extending. Like all other members of the Green 
River Formation, on its margins, Luman strata 
exhibit intertonguing geometries with the adja-
cent Wasatch Formation. As a whole, however, 
the Luman is a lithologically distinct unit within 
the Green River Formation that is not laterally 
equivalent to any other parts of the GRF. We 
therefore adopt the term Luman Member for 
these deposits. 

 The Luman Member ranges in thickness from 
10 to 125 m, however it is thickest in the southern 
part of the Greater Green River Basin in a trough 
that runs east-west, roughly parallel to the Uinta 
Mountains until bending to the northeast in the 
Washakie sub-basin (Roehler  1973 ). Complex 
intertonguing relationships and gradational tran-
sitions with both the overlying and underlying 
units contribute to signifi cant lateral thickness 
gradients in the Luman Member thickness 
(Roehler  1987 , this study; Culbertson  1965 ; 
Pipiringos  1955 ). The Luman Member is sepa-
rated in many places from the Tipton Member 
and the rest of the Green River Formation proper 
by the Niland Tongue of the Wasatch Formation 
(Fig.  2.1 ). The Niland Tongue represents a return 
to widespread fl uvial conditions before the 
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 deposition of the Tipton Member of the Green 
River Formation.  

2.2.2     Geochronology 

 Age determinations within the Greater Green 
River Basin are established through mammalian 
biostratigraphy and the  40 Ar/ 39 Ar dating of tuffs. 
At present, the Luman Member has not yielded 
any tuffs for dating, leaving biostratigraphy as 
the primary tool for age control in this unit. 
Within the early Eocene of southwestern 
Wyoming, Wasatchian and Bridgerian provincial 
Land Mammal ages (Wood et al.  1941 ) have been 
subdivided into several subzones based on mam-
malian and reptilian faunas (Gingerich and Clyde 

 2001 ; Gunnell and Bartels  1994 ; Robinson et al. 
 2004 ). Fossils found at Little Mountain, the 
Washakie sub-basin, and Tipton Buttes in later-
ally equivalent strata to the Luman Member cor-
relate it to the Lysitean subage of the Wasatchian 
NALMA (McGrew and Roehler  1960 ; Holroyd 
and Smith  2000 ; Anemone  2001 ). A bentonite 
near the Lystitean – Lostcabinian boundary in the 
upper Willwood Formation in the Bighorn Basin 
yields a sanidine  40 Ar/ 39 Ar age of 52.91 ± 0.36 Ma 
(Wing et al.  1991 ; Smith et al.  2004 ,  2010 ), which 
provides a minimum age for Luman Member 
deposition (all ages shown with 2 s uncertainties 
relative to 28.201 Ma for FCs). Based on interpo-
lation between the Lysitean-Lostcabinian age and 
the 52.22 ± 0.35 Ma sanidine  40 Ar/ 39 Ar age for the 
Scheggs tuff in the overlying Tipton Member 

  Fig. 2.1    Generalized cross-section illustrating the gen-
eral stratigraphy of the Greater Green River Basin. The 
Luman Member is laterally equivalent to fl oodplain and 
fl uvial deposits of the Wasatch Formation. Luman 

Member-equivalent strata contain mammals associated 
with the Lysitean subage of the Wasatchian North 
American land mammal age (Holroyd and Smith  2000 ) 
(Modifi ed from Roehler  1991 )       
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(Smith et al.  2008 ,  2010 ), the duration of Luman 
Member deposition was ca. 400 ka, which trans-
lates to an average basin-center accumulation 
rate of ~150 μm/year.  

2.2.3     Regional Tectonics 

 The Greater Green River Basin is bounded by the 
Sevier fold-thrust belt, and by Laramide-style 
basement uplifts (Fig.  2.2 ). These structures 
formed during the latest Cretaceous through early 
Cenozoic, with many experiencing late growth 
coeval with the deposition of the Green River 
Formation. Major movement along the Uinta- 
Sparks Fault, which bounds the north edge of the 
Uinta Uplift, occurred in the late Cretaceous to 

early Paleogene. Assuming that Phanerozoic 
strata were isopachous prior to uplift, angular 
unconformity and included fragments indicate 
that approximately 3 km of Cretaceous strata 
were eroded from parts of the Uinta Mountains 
prior to Paleocene deposition of the alluvial Fort 
Union Formation (Hansen  1965 ; Bradley  1995 ). 
Later early Eocene uplift is recorded by alluvial 
fan deposition (Crews and Ethridge  1993 ) and 
deformation and truncation of Wasatch and 
Green River Formation strata adjacent to the 
North Flank thrust, Sparks Ranch thrust and 
Uinta thrust (Roehler  1993 ; Hansen  1965 ,  1986 ; 
Bradley  1995 ). Coarse conglomerates north of 
the Uinta Uplift in Luman Member-equivalent 
deposits at Sugarloaf Butte and Richards 
Mountain imply steep gradients between the 

  Fig. 2.2    Map showing the extent and tectonic context of 
the Luman Member of the Green River Formation in 
Wyoming and Colorado. Labels indicate the locations of 
measured sections and locales discussed in this report: 
Red Creek Rim ( RCR ); Telephone Canyon ( TC ); Colorado 
( CO ); Canyon Creek ( CC ); and Hiawatha ( HI ). Luman 
Member maximum extent and thicknesses (in meters) are 

from Roehler ( 1993 ); base map modifi ed from Witkind 
and Grose ( 1972 ). Abbreviations for Laramide uplifts:  TG  
Teton-Gros Ventre;  OC  Owl Creek;  MB  Medicine Bow, 
 SM  Medicine Bow,  P  Park,  WR  White River. Cross section 
A is illustrated in Fig.  2.1 .  Colors  correspond to thickness 
contours (see Carroll and Bohacs  2001 )       
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basin fl oor and the crest of the Uinta Mountains 
during Luman time (Crews and Ethridge  1993 ; 
Rowley et al.  1985 ).  

 The Rock Springs Uplift (RSU) intersects 
with the Uinta Uplift and likely experienced 
growth during Luman Member deposition. The 
RSU is a north-south oriented anticlinal structure 
that lies in the south-central portion of the Greater 
Green River Basin (Gosar and Hopkins  1969 ), 
separating it into distinct subbasins to the east 
and west of it. Isopach mapping of upper 
Cretaceous Blair and Rock Springs Formation 
strata show thickening off the fl anks of the uplift 
(Beaubouef et al.  1995 ). Syn-depositional move-
ment along north-south trending faults on the 
west side of the Rock Springs Uplift is evident in 
large-scale lithofacies and thickness distributions 
of the upper Cretaceous Almond Formation (Van 
Horn  1979 ; Martinsen et al.  1995 ; Mongomery 
 1996 ). Additionally, the Paleocene Fort Union 
and Wasatch Formations, both of which underlie 
the Green River Formation, are observed to onlap 
the fl anks of the uplift (Roehler  1965 ) which has 
been speculated to have been a topographic high 
during Green River Formation deposition 
(Bradley  1964 ; Roehler  1993 ). Isopach maps and 
depocenter depictions of the Green River 
Formation along the north fl ank of the Uinta 
Mountains show beds thinning with proximity to 
the Uinta Uplift, with depocenters on either side 
of its intersection with the Rock Springs Uplift 
(Burchfi el et al.  1992 ; Roehler  1993 ; Johnson 
and Anderson  2009 ; Mederos et al.  2005 ), imply-
ing either its active uplift or to less-rapid subsid-
ence of the structure relative to adjacent 
subbasins.  

2.2.4     Eocene Climate 

 Luman Member deposition occurred during the 
early Eocene just subsequent to the Paleocene- 
Eocene thermal maximum and prior to the early 
Eocene climatic optimum. Beginning in the late 
Paleocene, a warming trend led to frost-free con-
ditions and a humid, warm-temperate to sub- 
tropical climate prior to and during deposition of 
the Green River Formation (MacGinitie  1969 ; 

Wilf  2000 ). Paleontologic records of continental 
fl ora and faunas suggest warm climates during 
the Eocene (Wolfe  1978 ; Wolfe and Poore  1982 ). 
Leaf-margin analyses of plant assemblages from 
the late Paleocene through the Early Eocene in 
the Greater Green River Basin indicate maximum 
temperatures in the Cenozoic were reached in 
middle Early Eocene time (Wilf  2000 ). During 
deposition of the Luman Member, plant assem-
blages from the Bighorn and Greater Green River 
Basins include tree ferns, palms and cycads, all 
of which are unable to survive prolonged freezes 
(Wing et al.  1991 ; Wilf  2000 ). Based on taxo-
nomic affi nities with modern plants and leaf mar-
gin analysis, mean annual temperatures in the 
Greater Green River Basin during deposition of 
the Luman Member are estimated to have been 
between 16 and 21 ° C (Greenwood and Wing 
 1995 ). Coals and ferns found in the Luman 
Member-equivalent Latham assemblage imply 
wet conditions in southwestern Wyoming during 
the Lysitean (Masursky  1962 ). Based on leaf- 
area analysis on leaf assemblages found within 
the Green River Formation, regional Eocene 
mean annual rainfall is estimated between 113 
and 140 cm (Wilf  2000 ). Crocodilians have been 
identifi ed in the Green River and Bridger 
Formations in southwestern Wyoming and north-
eastern Utah (Grande  1984 ) indicating a MAT 
>16 ° C (Markwick  1994 ).   

2.3     Field Methodology 
and Results 

 To understand the sedimentology and strati-
graphic relationships between the Luman 
Member and the Wasatch Formation, four verti-
cal sections along a ~10 km transect were mea-
sured and described at 10 cm detail along an 
east-west transect in the southern part of the 
Greater Green River Basin (see section line in 
Fig.  2.2 ). Gamma ray scintillometry was con-
ducted using a multi-channel spectrometer at the 
outcrop using an Exploranium GR-320 enviSpec 
hand-held spectrometer, with individual abun-
dances of uranium, thorium, and potassium mea-
sured every 0.5 m. A detail photographic and 
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lithofacies investigation of a large, particularly 
well-exposed exposure of intertonguing lacus-
trine, paludal and alluvial facies was performed 
at Telephone Canyon. 

2.3.1     Sedimentary Lithofacies 

 Lacustrine lithofacies within the Luman 
Member consist of mudstone; fossiliferous cal-
careous sandstone, and coquina (Pipiringos 
 1955 , this study; Roehler  1993 ; Sklenar and 
Anderson  1985 ). These deposits alternate with 
coal, carbonaceous mudstone, and trough cross-
bedded sandstone of fl uvial and paludal origin 
(Figs.  2.3  and  2.4 ). This study identifi es three 
major lacustrine lithofacies within the Luman 
Member and two associated lithofacies of fl u-
vial-paludal origin. Gastropods, pelycopods and 
ostracodes found throughout the Luman 
Member support the interpretation of a freshwa-
ter depositional environment (Taylor  1972 ; 
Kuchta  2000 ).   

   Calcareous mudstone      This facies consists of 
homogeneous gray to cream or brown calcareous 
mudstone that is infrequently thinly-laminated 
(Fig.  2.3a ). The mudstone often contains ostra-
codes as well as both broken and complete mol-
lusc shells. Within the Luman Member, 
calcareous mudstone may form low grade oil 
shale (Horsfi eld et al.  1994 ; Carroll and Bohacs 
 2001 ) and forms thick (1–15 m), recessive units 
generally bounded above and below by sand 
facies (Fig.  2.3 ). Crude 10 cm scale bedding is 
most common, with intervals of fi ne laminations 
(Fig.  2.4b ).  

  Interpretation : Thinly-laminated strata are 
interpreted to represent of deposition in relatively 
deep or sheltered aquatic environments where 
disruption by wave action of biogenic activity is 
restricted (e.g. Anadón et al. 1989). The lack of 
pervasive laminated strata in the calcareous mud-
stone facies supports an interpretation of deposi-
tion in a moderately deep, yet dominantly 
unrestricted lacustrine setting during Luman 
time. Laminated facies likely are the result of 
deposition in the deepest part of Lake Gosiute 

during periods of higher lake levels or in more 
restricted settings within the lake. 

   Coquina      Luman Member coquina is composed 
of limestone-cemented shells generally 1 to 3 cm 
in size and contain mollusc assemblages of 
 Goniobasis tenera ,  Viviparus  sp., and various 
unidentifi ed unionid bivalves (Figs.  2.3b  and 
 2.4c, h , i, j) (Hanley  1976 ; Kuchta  2000 ). Various 
degrees of transport are evident between different 
coquina beds. In general, shells are disarticulated 
and show mild breakage and rounding implying 
minimal transport. Thick (1 m) coquina beds can 
be traced for up to 5 km; thinner (2–10 cm) 
coquina beds are traceable less than 500 m.  

  Interpretation : These deposits are interpreted 
as sediment-starved stages of Lake Gosiute dur-
ing which littoral and sublittoral shells were 
exposed and concentrated due to the winnowing 
of fi ner sediment. A possible analogous setting 
may exist in Lake Tanganyika, where shell com-
munities live in the littoral zone and lake level 
fl uctuations (on the order of ~10 m) expose shells 
to increased wave and wind action, winnowing 
fi ner sediment away and leaving broad, tabular 
shell lag surfaces. Hanley ( 1976 ) considers accu-
mulations of  Goniobasis  and  Viviparus  shells in 
the Green River Formation indicative of littoral- 
lacustrine habitats where accumulations of these 
communities in coquinas record shoreline fl uc-
tuations, concentrating shells in widespread, tab-
ular benches similar to those seen in the modern 
at Lake Tanganyika (Cohen  1989 ). Some coqui-
nas cap bioturbated shoreface sandstone inter-
vals, suggesting that molluscs were likely the 
burrowers. 

   Laminated sandstone      This facies consists of 
horizontal to wavy non-parallel laminated, well- 
sorted, well-rounded, calcareous very-fi ne to 
fi ne-grained sandstone containing interbeds of 
coal and carbonaceous mudstone (Figs.  2.3c  and 
 2.4e ). Low-angle cross-stratifi cation, wavy paral-
lel bedding and wave ripples are commonly 
found in this facies. Iron nodules are occasionally 
present and often defi ne bedding planes. 
Sandstone beds vary in thickness from 10 cm to 
5 m and can be traced laterally within outcrops.  
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  Fig. 2.3    Representative measured sections illustrating: 
( a ) calcareous mudstone lithofacies from the Hiawatha 
section meters 108–118 (Chicken Creek SW 7.5′ quad-
rangle; NW1/4, NW1/4, NW1/4 Section 22, T12N, 
R100W); ( b ) interbedded coquina and calcareous mud-
stone lithofacies from the Hiawatha section meters 80–90 
(Chicken Creek SW 7.5′ quadrangle; NW1/4, NW1/4, 
NW1/4 Section 22, T12N, R100W); ( c ) laminated sand-

stone from the Canyon Creek section meters 53–63 
(Sugarloaf Butte 7.5′ quadrangle; NW1/4, NW1/4 Section 
25, T12N, R101W); ( d ) coal and carbonaceous mudstone 
from the Colorado section meters 27–37 (Sparks 7.5′ 
quadrangle; SE1/4, NW1/4, SE1/4 Section 18, T12N, 
R101W); ( e ) trough cross-bedded sandstone from the 
Colorado section meters 27–37 (Sparks 7.5′ quadrangle; 
SE1/4, NW1/4, SE1/4 Section 18, T12N, R101W)       
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  Fig. 2.4    Photographs and photomicrographs of lithofa-
cies described in this report: ( a ) Alternating calcareous 
mudstone and laminated sandstone on the meter scale; ( b ) 
photomicrograph of siliciclastic mudstone (UW1954/18); 
( c ) representative fossils found within calcareous mud-
stone from Hiawatha section ( HI ); ( d ) shell-rich calcare-
ous mudstone; ( e ) laminated sandstone at Canyon Creek 

section ( CC ) Sharpie for scale; ( f ) alternating coal (black) 
and carbonaceous mudstone (cream); ( g ) outcrop charac-
ter of coal and carbonaceous mudstone at Colorado sec-
tion ( CO ); ( h ) 2.5 m thick coquina bed capping Telephone 
Canyon ( TC ) and Red Creek Rim ( RCR ) sections. ( i ) 
Thinly-bedded coquina at Hiawatha section ( HI ); ( j ) 
Photomicrograph of coquina (UW1954/11)       

  Interpretation : We interpret these sandstone 
beds to be beach deposits. Sedimentary struc-
tures indicate wave action and well-sorted, well- 
rounded grains support a high energy 
environment. Repeated, sustained lake level rise 
and fall are represented by the alternation over 
the 1–8 m scale of these laminated sandstones 
with paludal coals and littoral shell-rich mud-
stones respectively (Figs.  2.4f  and  2.5b ).  

   Coal and carbonaceous mudstone      This facies 
consists of vitrinitic to amorphous coals in beds 
that are often interbedded with carbonaceous 
mudstone and fi ne-grained sandstone (Figs.  2.3d  
and  2.4f ). Generally 10–15 cm thick, these coal 
beds are laterally continuous for 100 m but are 
not useful as marker beds between stratigraphic 
sections. Millimeter-scale, planar-laminated 
mudstone contains carbonaceous matter of vary-
ing preservational quality. Unidentifi able plant 
material comprises the majority of the carbon 
content found in this facies. Root traces, woody 
debris, and invertebrate traces are also present.  

  Interpretation : Coal and carbonaceous mud-
stone are interpreted to represent overbank 
deposits and paludal, marginal lacustrine envi-
ronments characterized by still water, abundant 
organic debris and reducing conditions. This type 
of environment is likely a complex of poorly- 
drained backswamps with networks of effective 
drainage systems where high sediment supply 
supports carbonaceous mudstone accumulation 
instead of thick coal bed formation (Flores  1981 ). 
Additionally, the deposition of non-laterally 
extensive or patchy coal deposits such as those 
seen in the Luman Member is generally restricted 
to nearshore and paludal environments and may 
be indicative of instable lake levels due to tec-

tonic activity (Sáez and Cabrera  2002 ) and/or 
shoreline progradation (Bohacs et al.  2000 ). 

   Trough cross-bedded sandstone      This fi ne to 
medium grained sandstone is often micaceous, 
hosting trough crossbeds and planar cross- 
lamination (Fig.  2.3e ). This facies is often chan-
nelized at the meter scale, with cut-and-fi ll 
relationships and lateral accretion surfaces visi-
ble. Trough cross-bedded sandstone bodies typi-
cally cannot be traced more than approximately 
5 m in outcrop and are replaced laterally by car-
bonaceous mudstone and coal. Individual chan-
nel bodies are commonly observable in outcrop, 
and are typically no more than 1 m thick. 
Amalgamated channel horizons are less common 
but can reach up to 5 m in thickness.  

  Interpretation : Trough cross-bedded sand-
stone is interpreted to represent fl uvial sand 
deposited in alluvial systems adjacent to Lake 
Gosiute. Such fl uvial-alluvial systems have been 
well-characterized (e.g., Miall  1988 ; Platt and 
Keller  1992 ) and contain lateral and vertical 
alternation between channel sand and overbank 
mud that record the lateral migration of fl uvial 
channels across fl oodplains.  

2.3.2     Stratigraphy 

 In many locations, an abrupt color change from 
red to drab gray-green occurs at the contact of the 
Main Body of the Wasatch Formation and the 
Luman Member (Fig.  2.5a ). This color change is 
interpreted to represent a shift from oxidizing to 
reducing conditions of interstitial waters (cf. 
Walker  1967 ; Berner  1971 ), and corresponds to 
an increase in organic matter preservation and 
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