Cindy Hull · Emma Bennett Elizabeth Stark · Ian Smales Jenny Lau · Mark Venosta *Editors*

Wind and Wildlife

Proceedings from the Conference on Wind Energy and Wildlife Impacts, October 2012, Melbourne, Australia

Wind and Wildlife

Cindy Hull • Emma Bennett • Elizabeth Stark Ian Smales • Jenny Lau • Mark Venosta Editors

Wind and Wildlife

Proceedings from the Conference on Wind Energy and Wildlife Impacts, October 2012, Melbourne, Australia

Editors Cindy Hull Woolnorth Wind Farm Holding Launceston, TAS, Australia

Elizabeth Stark Symbolix Pty Ltd Williamstown North, VIC, Australia

Jenny Lau BirdLife Australia Carlton, VIC, Australia Emma Bennett Elmoby Ecology Creswick, VIC, Australia

Ian Smales Mark Venosta Biosis Pty Ltd Port Melbourne, VIC, Australia

ISBN 978-94-017-9489-3 ISBN 978-94-017-9490-9 (eBook) DOI 10.1007/978-94-017-9490-9 Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2014955790

© Springer Science+Business Media Dordrecht 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Acknowledgements

The Wind and Wildlife Conference organising committee comprised Emma Bennett (Elmoby Ecology), Cindy Hull (Hydro Tasmania), Jenny Lau (BirdLife Australia), Ian Smales (Biosis), Elizabeth Stark (Symbolix) and Mark Venosta (Biosis). Thanks to Tim Power (Herbert Smith Freehills) for his assistance to the committee and for facilitating the conference and to Paul Fulton of Joule Logic for providing a description of the engineering principles of wind farms at the conference. Recognition must also be given to the sponsors of the conference. Platinum sponsors: Biosis Pty Ltd and Ecology and Heritage Partners. Gold Sponsors: Acciona Energy, ngh environmental and Energy Australia. Bronze Sponsors: Elmoby Ecology, Symbolix, Hydro Tasmania, Herbert Smith Freehills, BirdLife Australia, Pacific Hydro and Joule Logic.

Contents

Part I Investigations and Assessments of New Wind Farms	
Predicting the Weather-Dependent Collision Risk for Birds at Wind Farms Henrik Skov and Stefan Heinänen	3
Fauna Collisions with Wind Turbines: Effects and Impacts, Individuals and Populations. What Are We Trying to Assess? Ian Smales	23
Wind Farms and Biodiversity: Improving Environmental Risk Assessments I.K.G. Boothroyd and L.P. Barea	41
The Use of Aerial Surveys for the Detection of the Brolga Grus rubicunda Through South-West Victoria: Key Considerations for the Wind Industry David Wilson and Aaron Organ	59
Planning for Net Biodiversity Gains: A Case Study of Hauāuru mā raki Wind Farm, New Zealand John L. Craig, Gerry Kessels, Peter Langlands, and Stephen Daysh	69
Part II Monitoring, Mitigation and Offsets	
Results and Analysis of Eagle Studies from the Bluff Point and Studland Bay Wind Farms 2002–2012 Cindy Hull, Chris Sims, Elizabeth Stark, and Stuart Muir	95

Observations from the Use of Dogs to Undertake Carcass Searches at Wind Facilities in Australia Emma Bennett	113
Key Learnings from Ten Years of Monitoring and Management Interventions at the Bluff Point and Studland Bay Wind Farms: Results of a Review Chris Sims, Cindy Hull, Elizabeth Stark, and Robert Barbour	125
Summary of Panel Session	145

Contributors

Robert Barbour Woolnorth Wind Farm Holding, Launceston, TAS, Australia

L.P. Barea Wingspan Birds of Prey Trust, Rotorua, New Zealand

Emma Bennett Elmoby Ecology, Creswick, VIC, Australia

I.K.G. Boothroyd Boffa Miskell Ltd., Auckland, New Zealand

John L. Craig School of Environment, University of Auckland, Auckland, New Zealand

Stephen Daysh Environmental Management Services Limited, Napier, New Zealand

Stefan Heinänen DHI, Hørsholm, Denmark

Cindy Hull Woolnorth Wind Farm Holding, Launceston, TAS, Australia

Gerry Kessels Kessels & Associates, Ecology and Environmental Planning Ltd, Hamilton, New Zealand

Peter Langlands Wild Capture, Christchurch, New Zealand

Jenny Lau BirdLife Australia, Carlton, VIC, Australia

Stuart Muir Symbolix Pty Ltd, Williamstown North, VIC, Australia

Aaron Organ Ecology and Heritage Partners, Ascot Vale, VIC, Australia

Chris Sims Operations, Hydro Tasmania, Hobart, TAS, Australia

Henrik Skov DHI, Hørsholm, Denmark

Ian Smales Biosis Pty Ltd, Port Melbourne, VIC, Australia

Elizabeth Stark Symbolix Pty Ltd, Williamstown North, VIC, Australia

David Wilson Ecology and Heritage Partners, Ascot Vale, VIC, Australia

Mark Venosta Biosis Pty Ltd, Port Melbourne, VIC, Australia

List of Figures

Predicting the Weather-Dependent Collision Risk for Birds at Wind Farms

Fig. 1	The sites were the study was conducted	5
Fig. 2	Observed altitude plotted against distance to closest wind	
	turbine for northern gannets at Horns Rev. The different	
	colors indicate head winds (red), tail winds (blue) and side	
	winds (green). The rotor height (lowest tip) of the turbines	
	at Horns Rev 2 is indicated with a dashed black line	11
Fig. 3	Response curves of the GAMM for the northern gannet	
	displaying the relationship between the flight altitude	
	and predictor variables. The values of the environmental	
	predictors are shown on the X-axis and the probability	
	on the Y-axis in logit scale. The degree of smoothing	
	is indicated in the title of the Y-axis. The shaded areas	
	and the dotted lines show the 95 % Bayesian confidence intervals	12
Fig. 4	Mapped results of the predicted altitude of birds at two	
	wind farms (Horns Rev 2, upper and Horns Rev 1, lower),	
	along a "theoretical" transect through the investigated	
	area for the northern gannet during head winds, tail winds	
	and side winds, with all other predictor variables set	
	to mean conditions. The dashed lines around	
	the predictions indicate the standard errors. The rotor	
	swept area is defined by the rectangle with shading red lines	13
Fig. 5	Observed altitude plotted against distance to closest	
	wind turbine for common scoters at Horns Rev. The different	
	colors indicate head winds (red), tail winds (blue) and side	
	winds (green). The rotor height (lowest tip) of the turbines	
	at Horns Rev 2 is indicated with a dashed black line	15

Fig. 6	Response curves of the GAMM for the common scoter displaying the relationship between the flight altitude and predictor variables. The values of the environmental predictors are shown on the X-axis and the probability on the Y-axis in logit scale. The degree of smoothing is indicated in the title of the Y-axis. The <i>shaded areas</i> and the <i>dotted lines</i> show the 95 % Bayesian confidence intervals	16
Fig. 7	Mapped predicted altitudes of common scoters at the Horns Rev 2 wind farm during tail wind (<i>upper left</i>) with associated model standard errors (<i>lower left</i>). The same predictions are visualised along a "theoretical" transect trough the investigated area (see <i>upper left</i>) during head winds, tail winds and side winds, with all other predictor variables set to mean conditions. The <i>dashed lines</i> around the predictions indicate the standard errors. The rotor swept area is defined	
Fig. 8	by the <i>rectangle</i> with <i>shading red lines</i> Response curves of the GAMM for the red kite at Rødsand 2 displaying the relationship between the flight altitude and predictor variables. The values of the environmental predictors are shown on the X-axis and the probability on the Y-axis in logit scale. The degree of smoothing is indicated in the title of the Y-axis. The <i>shaded areas</i> and the <i>dotted lines</i> show the 95 % Bayesian confidence intervals	17
Fig. 9	Mapped predicted altitude of birds in autumn, in relation to distance from the coast of Hyllekrog (island of Lolland), for the red kite during tail winds (0° , <i>red line</i>) and head winds (180° , <i>blue line</i>), with all other predictor variables set to mean conditions during the specific wind conditions (either tail or head winds). The <i>dashed lines</i> around the predictions indicate the standard errors. The GAMM model is based on data from <i>left</i> of the <i>dashed black line</i> (n=1,313). The <i>rectangle</i> with <i>shading red lines</i> indicate the rotor swept area	19
	arms and Biodiversity: Improving Environmental sessments	
F ' 1		

Fig. 1	Distribution of snow-tussock grassland vegetation	
	within the Mahinerangi Wind Farm development envelope	53
Fig. 2	Distribution of vegetation and habitat quality within gully	
	systems of the Mahinerangi Wind Farm development	
	envelope. See text for gully vegetation quality criteria	54

Results of a Review

The Use of Aerial Surveys for the Detection of the Brolga *Grus rubicunda* Through South-West Victoria: Key Considerations for the Wind Industry

Fig. 1	Typical brolga Grus rubicunda nest	60
Fig. 2	The distribution of brolga in Victoria (location records	
	from the Victorian Department of Environment and Primary	
	Industries' Victorian Biodiversity Atlas) and the area	(2)
E = 2	where aerial surveys occurred in south-west Victoria	63
Fig. 3	Nest sites (species unknown) appear as circular areas	
	cleared of vegetation within wetlands when observed	64
Fig. 4	from the air Active brolga <i>Grus rubicunda</i> nest period for the 2009–2010	04
1 lg. 4	(Biosis Research 2011) and 2012 (Ecology and Heritage	
	Partners unpublished data) breeding seasons. Dates of aerial	
	surveys for the 2009/2010 season are shown as <i>solid lines</i> (<i>white</i>	
	Biosis Research, <i>black</i> Ecology and Heritage Partners)	65
DI 1		00
	ng for Net Biodiversity Gains: A Case Study of Hauāuru	
ша гак	i Wind Farm, New Zealand	
Fig. 1	Location map of the HMR Wind Farm envelope	71
Fig. 2	Indicative routes of migratory shorebirds in New Zealand,	
	between the North and South Islands (red) and the Rangitata	
	River and Nelson in the South Island (yellow); filled triangles	
	indicate the locations of the HMR and Taharoa C windfarm sites	73
Fig. 3	Actual and Assumed Internal Migrant flock trails	
	from shorebird migration surveys during Summer 2009	77
Fig. 4	Actual and Assumed Internal Migrant flock trails	
	from shorebird migration surveys during Winter 2009	78
Fig. 5	Actual and Assumed Internal Migrant flock trails	70
Ein (from shorebird migration surveys during Summer 2010	79
Fig. 6	Actual and Assumed Internal Migrant flock trails	00
Fig 7	from shorebird migration surveys during Winter 2010 Density of trails (trails/km ²) for the Winter 2009 (<i>left</i>)	80
Fig. 7	and Winter 2010 (<i>right</i>) periods	81
Fig. 8	Density of trails (trails/km ²) for the Summer 2010 survey	81
-	• • • •	01
	and Analysis of Eagle Studies from the Bluff Point Idland Bay Wind Farms 2002–2012	
	·	
Fig. 1	Location of the Bluff Point and Studland Bay Wind Farms	96
Key Le	arnings from Ten Years of Monitoring and Management	
Interve	ntions at the Bluff Point and Studland Bay Wind Farms:	

Fig. 1 The risk matrix derived from the review process 130

List of Tables

Predicting the Weather-Dependent Collision Risk for Birds at Wind Farms

Table 1	Significance and t- and F-values for the fixed parametric	
	(wind directions, wind farm and survey year) and smooth	
	terms included in the GAMM for the northern gannet	13
Table 2	Collision risk estimates for wintering northern gannets	
	at HR1 and HR2 offshore wind farms, along	
	with species-specific values of key input parameters	14
Table 3	Significance and t- and F-values for the fixed parametric	
	(wind directions, wind farm and survey year) and smooth	
	terms included in the GAMM for the common scoter	14
Table 4	Collision risk estimates for wintering common scoters	
	at HR1 and HR2 offshore wind farms, along	
	with species-specific values of key input parameters	17
Table 5	Significance and t- and F-values for the fixed parametric	
	(wind directions and survey year) and smooth terms	
	included in the GAMM for the red kite	18
Fauna C	ollisions with Wind Turbines: Effects and Impacts, Individuals	
and Pop	ulations. What Are We Trying to Assess?	
Table 1	Documented wind turbine collision fatalities of all bird	
	and bat taxa and percentage that each taxon represents	
	of the total for eight wind farms in south-eastern Australia	27
Table 2	Annual numbers of eagle mortalities estimated	
	by modelling compared with numbers of actual mortalities	
	detected for two species at two Tasmanian wind farms	34
Wind Fai	rms and Biodiversity: Improving Environmental Risk Assessments	
Table 1	Kernel home range sizes (ha/km ²) for the adult male,	
	adult female and juvenile female falcons tracked	
	at the proposed Hurunui Wind Farm	48
	r - r - r	.0

Table 2	The number of 200 m turbine buffers intersecting the home range kernels (95, 75 and 50 % kernels) of the falcons studied during the autumn/winter 2010 and summer 2010/2011 tracking periods	48
Table 3	Mean number of estimated mean number of collisions per modelled period and number of years (1/mean collision rate) between potential collisions for the falcons radio tracked	49
rubicund	of Aerial Surveys for the Detection of the Brolga <i>Grus</i> <i>la</i> Through South-West Victoria: Key Considerations Vind Industry	
Table 1	Effectiveness of aerial surveys, and subsequent ground-truthing, for detecting brolga nests in south-west Victoria	64
	g for Net Biodiversity Gains: A Case Study of Hauāuru Wind Farm, New Zealand	
Table 1	A summary of the species of internal migratory shorebirds recorded as migrating along the Waikato coastline, their threat status, the estimated population size and the number potentially passing through or past the proposed HMR wind farm	83
Table 2	Summary of predicted annual collision mortality rates of internal NZ migrant shorebirds under DoC, Council and Contact scenarios	85
	and Analysis of Eagle Studies from the Bluff Point lland Bay Wind Farms 2002–2012	
Table 1	Long-term eagle collision rate, with confidence intervals (CI), based on data collected up to October 2012	102
Table 2	Breeding survey results for wedge-tailed eagles 2002–2009, inclusive	103
Table 3	Breeding survey for white-bellied sea-eagles 2002–2009, inclusive	104
	tions from the Use of Dogs to Undertake Carcass Searches Facilities in Australia	
Table 1	Summary of factors that influence a dog's ability to detect carcasses	116
Table 2	Interaction of weather conditions and the suitability for undertaking mortality searchers with dogs	119