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    Chapter 1 
   Introduction 

          Abstract     The plant hormones salicylic acid (SA), jasmonates (JA), ethylene (ET), 
abscisic acid (ABA), auxin (AUX), cytokinin (CK), gibberellin (GA), and brassino-
steroid (BR) play an important role in intercellular and systemic signaling systems 
triggering expression of various defense-responsive genes. The SA–JA–ET signal-
ing systems are considered as the backbone of the plant immune signaling system, 
while ABA, auxin, cytokinin, GA, and BR are involved in modulating plant immune 
responses by regulating host defense responses triggered by the SA–JA–ET signal-
ing systems. SA signaling is required for the manifestation of systemic acquired 
resistance (SAR). Methyl salicylate, dehydroabietinal, pipecolic acid, azelaic acid, 
a lipid transfer protein (DIR1), a lipid-derived molecule (glycerol 3-phosphate), and 
a glycerol-3-phosphate-dependent factor have been reported as mobile signaling 
components in SA-induced SAR. Mediators MED16 and MED15 are involved in 
triggering SA-mediated SAR. SAR is associated with priming of defense responses, 
and the priming results in a faster and stronger induction of defense responses after 
pathogen attack. Histone modifi cations are systemically set during a priming event. 
The priming can be inherited epigenetically, and descendants of primed plants 
exhibit next-generation systemic acquired resistance. DNA methylation plays an 
important role in the transgenerational SAR. JA signaling triggers systemic immunity 
called “induced systemic resistance (ISR).” JA-Ile may be the mobile signal involved 
in the induction of ISR. The ISR involves priming of JA-dependent responses. 
MED25, MED16, and MED8 subunits of the Mediator complex interact with 
several transcription factors known to function in the control of JA-associated gene 
expression. Ethylene may act as a two-faceted player in the plant immune response 
network, triggering resistance or susceptibility against different pathogens. ABA 
signal perception and signal transduction pathway includes PYR/PYL/RCAR 
(an abscisic acid receptor), type 2C protein phosphatase (PP2C, a negative regulator), 
and SNF1-related protein kinase (SnRK2, a positive regulator). Auxin binds to 
TIR1/AFB nuclear receptors, which are F-box subunits of SCF ubiquitin ligase 
complex. The auxin signal is then modulated by the Aux/IAA    repressors and the 
auxin response factor (ARF) transcription factors. Auxin signaling is also involved 
in triggering SAR. Auxin signaling increases SA levels, which trigger 
SAR. Cytokinins regulate the host defense responses either positively or negatively 
depending on the concentrations of cytokinins available at the infection site. Key 
components in the GA signaling pathway include the GA receptor GID1, the 
DELLA proteins, and the F-box proteins. GA regulates plant immune responses by 
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modulating JA and SA signaling systems. Plant hormones act in concert. Plant 
hormone signaling pathways are not simple linear and isolated cascades, but can 
crosstalk with each other. Architecture of plant immune signaling networks may not 
be static and may vary with the invading pathogen genotype. Crosstalk between 
different hormone signaling pathways in the signaling network helps the plant to 
choose the effective defense strategy to follow, depending on the type of pathogen 
it is encountering. The crosstalk also allows the pathogens to manipulate plants to 
their own benefi t by shutting down the specifi c hormone signaling pathway involved 
in triggering defense responses and hijacking the signaling pathway involved in 
induction of susceptibility.  

1.1               Plant Innate Immunity 

 Plants are endowed with innate immune system, which has a high potential to detect 
and fi ght against viral, bacterial, oomycete, and fungal pathogens and protect the 
crop plants against a wide range of diseases (Vidhyasekaran  2004 ,  2007 ,  2014 ; 
Lacombe et al.  2010 ; Segonzac and Zipfel  2011 ; Alkan et al.  2012 ; Dubery et al. 
 2012 ; Denancé et al.  2013 ; Kim and Hwang  2014 ). The plant innate immune system 
is a sleeping system in unstressed healthy plants (Vidhyasekaran  2014 ). Specifi c 
signals are needed to activate the “sleeping” immune system. Pathogen-associated 
molecular patterns (PAMPs) of invading pathogens have been found to be potential 
signals to activate the plant innate immunity. These PAMP signals are perceived by 
the plant pattern recognition receptors (PRRs), and the PAMP–PRR signaling com-
plex activates the plant immune system (Iriti and Faoro  2009 ; Nicaise et al.  2009 ; 
Petutschnig et al.  2010 ; Shinya et al.  2010 ; Schulze et al.  2010 ; Segonzac and Zipfel 
 2011 ; Yang et al.  2013 ). The plant immune system uses several second messengers 
to encode information generated by the PAMPs and deliver the information down-
stream of PRRs to proteins which decode/interpret signals and initiate defense gene 
expression (Mersmann et al.  2010 ; Boudsocq et al.  2010 ; Hwang and Hwang  2011 ). 
Plant hormones such as salicylic acid (SA), jasmonates (JA), ethylene (ET), abscisic 
acid (ABA), auxin (AUX), cytokinin (CK), gibberellin (GA), and brassinosteroid 
(BR) have been reported to play an important role in intercellular and systemic 
signaling systems triggering expression of various defense-responsive genes 
(Denancé et al.  2013 ; Yang et al.  2013 ; Alazem et al.  2014 ; Kim and Hwang  2014 ).  

1.2     Salicylic Acid Signaling 

 Salicylic acid (SA) is an important endogenous immune signal in the induction of 
disease resistance responses in plants (Anand et al.  2008 ; Fung et al.  2008 ; Garcion 
et al.  2008 ; Mukherjee et al.  2010 ; Dempsey et al.  2011 ; Liu et al.  2011a ,  b ; Argueso 
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et al.  2012 ; Fu et al.  2012 ; Denancé et al.  2013 ; Gimenez-Ibanez and Solano  2013 ; 
Yang et al.  2013 ). Infection of plants by necrotizing pathogens, which induce the 
accumulation of SA, or treatment of plants with synthetic compounds, which are 
able to trigger SA signaling, induces systemic acquired resistance (SAR). SAR is a 
heightened state of defense against a broad spectrum of pathogens activated 
throughout a plant following a local infection (Liu et al.  2011a ,  b ). SA signaling is 
required for the manifestation of SAR (Du et al.  2012 ; Návarová et al.  2012 ; Shah 
and Zeier  2013 ). 

 Methyl salicylate, dehydroabietinal, pipecolic acid, and azelaic acid are the sys-
temic signal molecules involved in the activation of SAR (Jung et al.  2009 ; 
Manosalva et al.  2010 ; Chaturvedi et al.  2012 ; Návarová et al.  2012 ; Shah and Zeier 
 2013 ). A lipid transfer protein (DIR1), a lipid-derived molecule (glycerol 3- phosphate), 
and a glycerol-3-phosphate-dependent factor have been reported as lipid-based 
mobile signaling components in SA-induced SAR (Kachroo et al.  2001 ,  2004 ; 
Chaturvedi et al.  2008 ; Jung et al.  2009 ; Chanda et al.  2011 ). The mediators MED16 
and MED15/NRB4 have been shown to be involved in triggering SA-mediated 
SAR. Mediator is a multiprotein complex that functions as a transcriptional coacti-
vator (Conaway and Conaway  2011a ,  b ; Kidd et al.  2011a ; Canet et al.  2012 ; An and 
Mou  2013 ). MED16 may regulate the function of NPR1 in inducing SAR (Zhang 
et al.  2012 ). 

 SAR is associated with priming of defense (Kohler et al.  2002 ; Jung et al.  2009 ; 
Luna et al.  2012 ; Slaughter et al.  2012 ), and the priming results in a faster and stronger 
induction of defense mechanisms after pathogen attack (Conrath  2011 ). Jaskiewicz 
et al. ( 2011 ) showed that histone modifi cations are systemically set during a priming 
event. These modifi cations might create a memory of the primary infection that is 
associated with an amplifi ed reaction to the second stress condition. The priming 
can be inherited epigenetically from disease-exposed plants, and descendants of 
primed plants exhibit next-generation systemic acquired resistance (Luna et al. 
 2012 ; Slaughter et al.  2012 ). The transgenerational SAR was found to be sustained 
over one stress-free generation, indicating an epigenetic basis of the phenomenon 
(Luna et al.  2012 ). DNA methylation may also play an important role in the trans-
generational SAR (Luna et al.  2012 ). 

 NPR1 functions as a transcriptional co-activator in a TGA2–NPR1 complex after 
SA treatment. Binding of SA causes a conformational change in NPR1 that is 
accompanied by the release of the C-terminal transactivation domain from the 
N-terminal autoinhibitory BTB/POZ domain (Wu et al.  2012 ). Pathogen/PAMP 
exposure induces SA accumulation (Durrant and Dong  2004 ), and the induced SA 
controls the nuclear translocation of NPR1 through cellular redox changes (Spoel 
and Dong  2012 ). The SA-induced changes in gene expression have been found to 
have a link to chromatin remodeling, such as histone modifi cations and histone 
replacement. The recruitment of chromatin-modifying complexes to SA-responsive 
loci controls their basal and SA-induced expression (March-Diaz et al.  2008 ; van 
den Burg and Takken  2009 ,     2010 ; Jaskiewicz et al.  2011 ). SA signaling triggers 
transcription of a multitude of defense-related genes in plants (Krinke et al.  2007 ). 
Small RNA-directed RNA silencing    is a potent immune surveillance system 
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 targeting foreign nucleic acids of invading pathogens (Ding and Voinnet  2007 ; 
Jaubert et al.  2011 ). SA signaling may enhance the effi ciency of RNA silencing 
pathway in triggering immune responses against viruses by activating RdRP/RDR 
(Diaz- Pendon et al.  2007 ).  

1.3     Jasmonate Signaling 

 Several metabolites of jasmonates (JA) have been reported to act as signal mole-
cules in triggering plant immunity. Among them, (+)-7-iso-jasmonoyl- L -isoleucine 
(JA-Ile) is the major bioactive form of the hormone JA (Kombrink  2012 ; Wasternack 
and Hause  2013 ). JA signaling systems modulate plant immune responses and con-
fer resistance or susceptibility against different pathogens (Méndez-Bravo et al. 
 2011 ; Moffat et al.  2012 ). JA receptor is a three-molecule co-receptor complex, 
consisting of COI1, JAZ, and inositol pentakisphosphate, all of which are indis-
pensable for high-affi nity hormone binding (Sheard et al.  2010 ). The JA receptor 
JAZ proteins are suppressors of jasmonate signaling (Chini et al.  2007 ; Howe 
 2010 ; Wasternack and Hause  2013 ). Repression of JA response genes involves 
binding of JAZ to NINJA, which contains an EAR motif that recruits the corepres-
sor TPL, which may silence gene expression. COI1 is involved in the degradation 
of the repressors of the JA signaling pathway through SCF COI1 -dependent ubiquitin 
(Thines et al.  2007 ). In response to stress cues that activate JA-Ile synthesis, high 
levels of JA-Ile promote SCF COI1 -mediated ubiquitination and subsequent degrada-
tion of JAZs by the 26S proteasome. JAZ degradation relieves TPL-mediated 
repression of gene expression (Howe  2010 ; Wasternack and Hause  2013 ). 
Acetylation of the core histones in nucleosomes plays an important role in gene 
regulation (Wu et al.  2008 ), and histone deacetylation has been shown to be 
involved in COI1-mediated activation of JA-inducible transcription factors (Wang 
et al.  2008b ). MED25, MED16, and MED8 subunits of the Mediator complex 
interact with several transcription factors (TFs) known to function in the control of 
JA-associated gene expression (Kidd et al.  2009 ; Cevik et al.  2012 ; Ińigo et al. 
 2012 ; Wathugala et al.  2012 ; Zhang et al.  2012 ). MYC2 is a master regulator of the 
JA signaling pathway. Several ERF, bHLH, WRKY, MYB, NAC, and bZIP tran-
scription factors have been shown to act downstream of JA signaling system triggering 
expression of JA-responsive defense genes (Nurmberg et al.  2007 ; Wasternack 
 2007 ; Zander et al.  2010 ; Cheng et al.  2011 ; Le Hénanff et al.  2013 ). 

 JA signaling triggers systemic immunity conferring resistance against a wide 
range of pathogens, and the systemic immunity triggered by JA is called “induced 
systemic resistance (ISR)” as against “systemic acquired resistance (SAR)” induced 
by SA. ISR is dependent mostly on jasmonic acid (Kravchuk et al.  2011 ; Niu et al. 
 2011 ; Weller et al.  2012 ; Zamioudis and Peterse  2012 ; Bakker et al.  2013 ; Martinez- 
Medina et al.  2013 ). ISR is triggered mostly by biocontrol agents (BCAs) and 
necrotrophic fungi. Several chemicals and PAMPs/MAMPs have also been reported 
to trigger ISR (Kravchuk et al.  2011 ). JA-Ile may be the mobile signal involved in 

1 Introduction



5

the induction of ISR (Sato et al.  2011 ; Matsuura et al.  2012 ). JA-Ile may be synthesized 
de novo and transported into systemic tissues (Matsuura et al.  2012 ). The ISR has 
been shown to be mainly based on priming JA-dependent responses (Martinez- 
Medina et al.  2013 ). Treatment with  Trichoderma hamatum  T382 primes the plant 
(ISR-prime), resulting in an accelerated activation of defense responses against 
 B. cinerea  during ISR-boost in  Arabidopsis thaliana  (Mathys et al.  2012 ). Hexanoic 
acid-treated plants infected with the necrotrophic pathogen  Botrytis cinerea  showed 
priming in the expression of the JA-responsive genes  PDF1.2 ,  PR-4 , and  VSP1  in 
 Arabidopsis  (Kravchuk et al.  2011 ).  

1.4     Ethylene Signaling 

 Ethylene (ET) signaling system is an important component in plant innate immune 
system (Berr et al.  2010 ; Nie et al.  2011 ; Shakeel et al.  2013 ). Pathogen invasion or 
PAMP application results in enhanced expression of ET biosynthetic genes leading 
to enhanced ET biosynthesis (Qutob et al.  2006 ; Denoux et al.  2008 ; Mur et al.  2008 ; 
Zhu et al.  2011a ; Nambeesan et al.  2012 ; Vidhyasekaran  2014 ). Ethylene signal 
transduction is initiated by the binding of ethylene to its membrane-bound receptors 
ETR1, ERS1, ETR2, EIN4, and ERS2 (Grefen et al.  2008 ; Zhao and Guo  2011 ; 
Shakeel et al.  2013 ). The fi ve-member family of ethylene receptors act as negative 
regulators in the ethylene signaling pathway    (Qu and Schaller  2004 ; Gao and Schaller 
 2009 ). CTR1 functions as a key mediator of ethylene signal transduction, acting just 
downstream of the receptors. It negatively regulates ET signaling (Guo et al.  2004 ; 
Yoo et al.  2008 ). All the fi ve ethylene receptors physically interact with CTR1 (Gao 
et al.  2003 ). EIN2 is a positive regulator of the ethylene signaling pathway and acts 
downstream of CTR1 (Ju et al.  2012 ; Qiao et al.  2012 ; Shakeel et al.  2013 ). Upon 
ethylene binding to the ethylene receptors, the ethylene receptors inactivate CTR1, 
potentially through propagation of conformational changes in the receptor–CTR1 
protein complex. EIN2 becomes dephosphorylated and this results in proteolytic 
cleavage and release of C-terminal domain of EIN2 (Ju and Chang  2012 ; Ju et al. 
 2012 ; Qiao et al.  2012 ; Wen et al.  2012 ; Shakeel et al.  2013 ). The C-terminal domain 
of EIN2 translocates to the nucleus. In the nucleus, EIN2 either directly or indirectly 
activates the transcription factors EIN3 and EIN3-like1 (EIL1) to initiate the tran-
scriptional response to ethylene (Qiao et al.  2012 ; Wen et al.  2012 ; Shakeel et al. 
 2013 ). EIN3 binds to the promoter sequence of the ethylene-inducible transcription 
factor ERF1 (Solano et al.  1998 ). ERFs contain a single DNA-binding domain. ERFs 
have been shown to bind specifi cally to the GCC-box that is found in several promot-
ers of the pathogenesis-related (PR) genes as well as ethylene- and jasmonate-induc-
ible defense genes (Yamamoto et al.  1999 ; Gutterson and Reuber  2004 ). ERF2 might 
play a major role in the elicitor-induced GCC-box-mediated transcription of defense 
genes (Yamamoto et al.  1999 ). The transcription factor ERF1 has been shown to 
induce transcription of several defense-related  PR  genes (Zhou et al.  2005 ; Johansson 
et al.  2006 ; Jung et al.  2007 ; Oñate-Sánchez et al.  2007 ). 

1.4  Ethylene Signaling
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 Ethylene may act as a two-faceted player in the plant immune response network, 
triggering resistance or susceptibility against different pathogens (De Vleesschauwer 
et al.  2008 ,  2010 ; Gaige et al.  2010 ; Akagi et al.  2011 ; Son et al.  2012 ). ET has also 
been reported to be involved in systemic immunity (Zhu et al.  2011a ). Ethylene has 
been shown to be an integral part of PAMP-triggered immunity. Ethylene perception 
and signaling are crucial for the PRR  FLS2  gene transcription (Boutrot et al.  2010 ). 
FLS2 promoter revealed the presence of nine potential EIN3/EIL-binding sites 
(Boutrot et al.  2010 ), suggesting that EIN3 may bind to the promoter of the  FLS2  
gene to infl uence its transcription. Plants mutated in the key ethylene signaling 
protein EIN2 are impaired in all the PRR FLS2-mediated responses. The EIN3 and 
EIN3-like transcription factors, which depend on EIN2 activity for their accumulation, 
directly controlled the transcription of the PRR  FLS2  gene transcription (Boutrot 
et al.  2010 ).  

1.5     Abscisic Acid Signaling 

 The phytohormone abscisic acid (ABA) plays a multifaceted role in plant immunity 
(Cao et al.  2011 ; Alazem et al.  2014 ). ABA induces defense responses (Asselbergh 
et al.  2008 ; Fan et al.  2009 ; Garcia-Andrade et al.  2011 ) or suppresses the immune 
responses depending upon the type of plant–pathogen interactions (Feng et al.  2012 ; 
Sánchez-Vallet et al.  2012 ; Yazawa et al.  2012 ). Pathogen/pathogen-associated 
molecular patterns (PAMPs) induce increase in ABA accumulation triggering 
disease resistance (Whenham et al.  1986 ) or susceptibility (Mohr and Cahill  2003 ; 
Koga et al.  2004 ; Schmidt et al.  2008 ). ABA signal perception and signal transduction 
pathway includes PYR/PYL/RCAR (an abscisic acid receptor), type 2C protein 
phosphatase (PP2C, a negative regulator), and SNF1-related protein kinase (SnRK2, 
a positive regulator) (Umezawa et al.  2010 ,  2013 ). In the presence of accumulated 
ABA, the PYR/PYL/RCAR receptor proteins disrupt the interaction between the 
SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the 
SnRK2s and resulting in the activation of the SnRK2 kinases (Fujii et al.  2009 ; 
Miyazono et al.  2009 ; Umezawa et al.  2009 ; Vlad et al.  2009 ; Raghavendra et al. 
 2010 ). The SnRK2 kinases phosphorylate and activate downstream transcription 
factors, which initiate transcription at ABA-responsive promoter elements (Sheard 
and Zheng  2009 ). The  cis -regulatory elements responsible for the ABA regulation 
of gene expression share a conserved motif, ACGTGGC, which is known as ABA- 
responsive element (ABRE). ABRE appears in the promoters of many defense 
genes (Adie et al.  2007 ). The ABA-induced gene regulation is mediated by a sub-
family of basic leucine zipper class transcription factors referred to as ABRE- 
binding factors (ABFs, also referred to as AREBs) (Choi et al.  2005 ; Furihata et al. 
 2006 ). The bZIP-type transcription factors AREBs/ABFs bind ABRE and transacti-
vate downstream gene expression in  Arabidopsis  (Furihata et al.  2006 ). MYC2, 
MYB2, BOS1, and WRKY transcription factors are also involved in ABA-inducible 
gene expression (Abe et al.  2003 ; Mengiste et al.  2003 ; Anderson et al.  2004 ; Xie 
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et al.  2005 ). ABA signaling system is involved in the induction of callose (β-1,3- 
glucan) deposition (Yazawa et al.  2012 ), which is involved in conferring disease 
resistance. Stomatal closure is an innate immune response involved in bacterial 
disease resistance (Hettenhausen et al.  2012 ). ABA induces stomatal closure 
immune response (Saito et al.  2008 ; Hossain et al.  2011 ; Munemasa et al.  2011 ; 
Hubbard et al.  2012 ; Sugiyama et al.  2012 ; Uraji et al.  2012 ). ABA regulates plant 
immune responses mostly by modulating other plant hormone signaling systems 
involved in the immune signaling systems. Antagonistic interaction between ABA 
and JA signaling pathways modulates defense gene expression and disease resis-
tance (Anderson et al.  2004 ; Chen et al.  2012 ). ABA negatively regulates 
SA-dependent immune responses (Sánchez-Vallet et al.  2012 ). ABA signaling sys-
tem suppresses SA signaling system and vice versa (Alazem et al.  2014 ). ABA 
signaling may also act synergistically with SA signaling in triggering plant immune 
responses (Seo and Park  2010 ). Ethylene signaling pathway triggers ABA biosynthesis 
pathway (Wasilewska et al.  2008 ; Hauser et al.  2011 ; Liu et al.  2012 ). ABA-induced 
resistance against the brown spot pathogen  Cochliobolus miyabeanus  in rice 
involves repression of ethylene signaling (De Vleesschauwer et al.  2010 ) Synergistic 
interaction between ABA and ethylene signaling systems has also been reported 
(Sánchez- Vallet et al.  2012 ).  

1.6     Auxin Signaling 

 The plant hormones SA, JA, and ET signaling systems are considered as the back-
bone of the plant immune signaling system. In contrast, the plant hormone auxin is 
considered as a simple signaling molecule involved in modulation of those hormone 
signaling pathways activating or suppressing the plant defense responses (Hayashi 
 2012 ; Peer et al.  2013 ; Sauer et al.  2013 ; Tatsuki et al.  2013 ). Auxin binds to TIR1/
AFB nuclear receptors, which are F-box subunits of SCF ubiquitin ligase complex 
(Dharmasiri et al.  2005 ; Mockaitis and Estelle  2008 ; Parry et al.  2009 ; Calderon- 
Villalobos et al.  2010 ). The auxin signal is then modulated by the Aux/IAA repres-
sors and the auxin response factor (ARF) transcription factors (Hayashi  2012 ). The 
specifi city of the auxin-regulated gene expression is regulated by the expression of 
these regulatory proteins (Hayashi  2012 ). Auxin signaling appears to be mostly 
involved in disease susceptibility rather than in disease resistance (O’Donnell et al. 
 2003 ; Kidd et al.  2011b ). Elevated levels of endogenous plant IAA have been 
observed during pathogen infection, and the susceptible reaction seems to be associ-
ated with rapidly increased endogenous biosynthesis of IAA (Fu et al.  2011 ). Auxins 
may induce susceptibility by inducing the formation of the conjugated forms of 
auxin through the action of GH3 proteins (Fu and Wang  2011 ; González- Lamothe 
et al.  2012 ). Fungal and bacterial pathogens hijack the host auxin metabolism in 
 Arabidopsis thaliana , leading to the accumulation of a conjugated form of the hor-
mone, indole-3-acetic acid (IAA)–Asp, to promote disease development. IAA–Asp 
increases pathogen progression in the plant by regulating the transcription of 
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virulence genes (González-Lamothe et al.  2012 ). Auxin may suppress the induction 
of SA signaling and induce susceptibility (Robert-Seilaniantz et al.  2011 ). 

 Auxin also induces resistance against some pathogens, probably modulating 
auxin homeostasis, polar auxin transport, and expression of ARF transcription fac-
tors (Robert-Seilaniantz et al.  2011 ; Mah et al.  2012 ). Auxin signaling has been 
reported to be involved in triggering systemic acquired resistance (SAR). Auxin 
signaling increases SA levels, which trigger SAR (Rock and Sun  2005 ). Auxin is 
highly mobile and is involved in SA-triggered SAR (Truman et al.  2010 ). Auxin 
signaling induces disease resistance by triggering accumulation of SA, which posi-
tively regulates defense responses, and by suppressing both JA and ABA signaling 
systems, which negatively regulate defense responses (Truman et al.  2010 ). Auxin 
triggers biosynthesis of ethylene (Tatsuki et al.  2013 ). Application of ethylene bio-
synthetic precursor ACC triggers an increase in the rate of IAA biosynthesis 
(Swarup et al.  2007 ), and ACC treatments also increase IAA transport (Negi et al. 
 2008 ). Ethylene has been shown to induce susceptibility (De Vleesschauwer et al. 
 2010 ; Pantelides et al.  2013 ) or resistance (De Vleesschauwer et al.  2008 ; Gaige 
et al.  2010 ; Zhu et al.  2011a ; Nambeesan et al.  2012 ) against various pathogens.  

1.7     Cytokinins 

 Cytokinins act as both long-range and local signals (Hwang and Sakakibara  2006 ) and 
play an important role in modulation of plant innate immunity (Choi et al.  2010 ; 
Grosskinsky et al.  2011 ; Naseem et al.  2012 ; Pieterse et al.  2012 ). Cytokinin signaling 
system may regulate positively or negatively the plant defense responses (Choi et al. 
 2010 ; Argueso et al.  2012 ). Cytokinins may regulate the host defense responses either 
positively or negatively depending on the concentrations of cytokinins available at the 
infection site (Babosha  2009 ; Argueso et al.  2012 ). Cytokinin may modulate SA sig-
naling system to trigger immune responses (De Vleesschauwer et al.  2010 ; Pantelides 
et al.  2013 ). ABA treatment decreases the expression of several genes involved in 
cytokinin biosynthesis and degradation (Tsai et al.  2012 ) Cytokinin antagonistically 
impacts the signaling of auxin (Stepanova and Alonso  2011 ). Synergism between 
auxin and cytokinin signaling has also been reported (Hwang et al.  2012 ). Elevated 
plant auxin levels enhance susceptibility by repressing the defense-related  PR1  gene 
expression (Kazan and Manners  2009 ), while elevated cytokinin levels mediate resis-
tance and induction of  PR1  (Choi et al.  2011 ; Naseem et al.  2012 ).  

1.8     Gibberellins 

 Gibberellins (GA) are important plant growth hormones involved in plant innate 
immunity. GA modulates plant defense responses, mostly by regulating SA–JA–ET 
signaling systems. Key components in the GA signaling pathway include the GA 
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receptor GID1, the DELLA proteins, and the F-box proteins (Hauvermale et al. 
 2012 ; Daviẻre and Achard  2013 ). Upon GA binding, the GA-dependent conformational 
change causes the GID1 N-terminal helical lid domain to behave like “molecular 
glue” to form the GA–GID1–DELLA complex. DELLAs repress GA-dependent 
defense responses, whereas GA relieves their repressive activity (Achard and 
Genschik  2009 ). GA lifts DELLA repression by targeting DELLA for destruction 
via the ubiquitin–proteasome pathway. GA regulates the plant innate immune 
responses either positively or negatively. It induces susceptibility or resistance 
against different fungal and bacterial pathogens (Navarro et al.  2008 ; Yang et al. 
 2008 ; De Vleesschauwer et al.  2012 ; Qin et al.  2013 ). GA modulates plant disease 
resistance or susceptibility by inducing the degradation of DELLA proteins 
(Hauvermale et al.  2012 ). GA regulates plant immune responses by modulating JA 
and SA signaling systems (Navarro et al.  2006 ; Yang et al.  2008 ; Qi et al.  2014 ). It 
also enhances SAR against pathogens (Xia et al.  2010 ). GA expedites SA accumu-
lation (Navarro et al.  2008 ; Alonso-Ramirez et al.  2009 ) and promotes resistance 
against pathogens by degrading DELLA proteins (Navarro et al.  2008 ). Loss-of- 
function mutants in DELLAs, the suppressors of GA signaling up-regulate the 
SA-mediated defense and down-regulate JA/ET-mediated defense in  Arabidopsis  
(Robert-Seilaniantz et al.  2007 ). GA interacts antagonistically with JA signaling 
(Yang et al.  2013 ), while GA attenuates the JA-induced expression of a number of 
JA-responsive genes (Cao et al.  2006 ; Hou et al.  2008 ,  2010 ). Both JA and GA 
signaling systems modulate plant immune responses. JA interferes with gibberellin 
signaling cascade. JA delays GA-mediated DELLA protein degradation. The JAZ 
protein JAZ9 inhibits RGA (a DELLA protein) interaction with the transcription 
factor PIF3 (phytochrome-interacting factor 3) (Yang et al.  2012 ). JA signaling has 
been shown to activate expression of DELLA genes involved in GA signaling pathway. 
JA-induced  RGL3  expression works via the COI1/MYC2-dependent signaling path-
way. JA-mediated induction of RGL3 expression was abolished in the  coi1-1  
mutant, indicating that  RGL3  is downstream of COI1 (Wild et al.  2012 ). 
Brassinosteroids (BR) negatively regulate innate immune responses induced by 
GAs. BR and GA cause cross-inhibitory effects on the reciprocal hormone biosyn-
thesis pathways to interact in a mutually antagonistic manner (De Vleesschauwer 
et al.  2012 ). Pathogen triggers overexpression of DELLA proteins to suppress 
GA-regulated defense responses (De Vleesschauwer et al.  2012 ).  

1.9     Brassinosteroids 

 Brassinosteroids (BRs) are growth-promoting steroidal hormones in plants, and 
they are also involved in plant innate immunity (Nakashita et al.  2003 ; Bajguz and 
Hayat  2009 ; Divi et al.  2010 ; Jaillais et al.  2011 ; Albrecht et al.  2012 ; Owens et al. 
 2012 ; Wang  2012 ; Vriet et al.  2012 ). BR signals are perceived by the plasma 
membrane receptor BRI1 and co-receptor BAK1. Several positive (BSK1, BSU1, 
PP2A, CDG1) and negative (BKI1, BIN2, MSBP1, and 14-3-3) regulators of BR 
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signaling control the activities of BZR1 and BES1 family of transcription factors, 
which regulate the expression of hundreds to thousands of genes for various BR 
responses (Wang et al.  2008a ; Kim et al.  2009 ; Li et al.  2010 ). BRs either positively 
(Khripach et al.  2000 ; Nakashita et al.  2003 ) or negatively (Albrecht et al.  2012 ; 
Belkhadir et al.  2012 ; De Vleesschauwer et al.  2012 ; Nahar et al.  2013 ) regulate 
plant innate immunity. BAK1, a key component in BR signaling pathway 
(Schwessinger et al.  2011 ), is involved in triggering plant disease resistance by 
modulating JA signaling system (Yang et al.  2011 ). BR may also induce susceptibility 
to pathogens (De Vleesschauwer et al.  2012 ). BR negates disease resistance con-
ferred by the SA synthetic analog benzothiadiazole, suggesting negative crosstalk 
between BR and SA signaling pathways. BR-mediated suppression of SA defenses 
occurs downstream of SA biosynthesis, but upstream of NPR1 and OsWRKY45 in 
the SA signaling pathway (De Vleesschauwer et al.  2012 ). BR triggers the expres-
sion of GA repressor proteins and suppresses GA-induced defense responses (De 
Vleesschauwer et al.  2012 ). Crosstalk between PAMP–PRR signaling and BR 
synthesis pathway has been reported (Albrecht et al.  2012 ). Increasing the endogenous 
pool of bioactive BR antagonizes fl g22-induced responses (Belkhadir et al.  2012 ). 
BRI1–BAK signaling modulates PAMP–PRR signaling pathway. BAK1 is a com-
mon co- receptor for the PRRs activated by various PAMPs. Similarly BAK1 is a 
co-receptor for the BR receptor, BRI1. Signaling downstream of BAK1 differs 
between BRI1 and FLS2 (PRR for fl g22) pathways (Lu et al.  2010 ). Pathogen 
infection results in elevation of BR signal processing (De Vleesschauwer et al. 
 2012 ). Pathogens may exploit BRs as virulence factors and hijack the plant BR 
machinery to cause disease (De Vleesschauwer et al.  2012 ).  

1.10     Plant Hormone Signaling Network 

 Plant hormones activate different signaling pathways inducing distinctly different 
defense genes (Liu et al.  2007 ; Spoel et al.  2007 ; Mitsuhara et al.  2008 ; van Verk 
et al.  2008 ; Cevik et al.  2012 ). These signaling pathways are not simple linear and 
isolated cascades, but can crosstalk with each other (Tsuda et al.  2009 ; Verhage 
et al.  2010 ; Yang et al.  2013 ). Architecture of plant immune signaling networks may 
not be static and may vary with the pathogen genotype invasion. Both antagonism 
and synergism between SA and JA signaling systems have been widely reported in 
plants (Robert-Seilaniantz et al.  2011 ; El Rahman et al.  2012 ; Pieterse et al.  2012 ; 
Thaler et al.  2012 ; Zander et al.  2012 ; Zheng et al.  2012 ; Gimenez-Ibanez and 
Solano  2013 ; Van der Does et al.  2013 ). Crosstalk between JA and ET (Melotto 
et al.  2008 ; Pré et al.  2008 ; Bari and Jones  2009 ; Grant and Jones  2009 ; Pauwels and 
Goossens  2011 ; Robert-Seilaniantz et al.  2011 ; Zhu et al.  2011b ), SA and ET (Leon- 
Reyes et al.  2010 ), JA and GA (Yang et al.  2013 ), SA and auxin (Robert-Seilaniantz 
et al.  2011 ), and SA and ABA (Xu et al.  2013 ) has been reported. The DELLA 
protein RGL3 in the GA pathway represses the SA pathway (Wild et al.  2012 ). In 
contrast, the DELLA protein enhances the expression of JA-dependent expression 
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(Wild et al.  2012 ). The interplay between SA, JA, and GA signaling pathways has 
been reported in  Arabidopsis  (Wild et al.  2012 ). Synergism between ABA and SA 
signaling systems has also been reported in  Arabidopsis  (Chen et al.  2013 ). Mutual 
interactions between stress-specifi c hormones such as SA and JA/ET are regarded 
as the central backbone of the immunity (Pieterse et al.  2012 ). However, the growth- 
promoting hormones (auxin, cytokinins, gibberellic acid, and abscisic acid) either 
inhibit or potentiate this balance in mediating the protection or susceptibility of the 
plant against the invading pathogen (Pieterse et al.  2012 ; Naseem et al.  2012 ; 
Naseem and Dandekar  2012 ). 

 Plant hormones act in concert (Naseem et al.  2012 ; Naseem and Dandekar  2012 ). 
Crosstalk between defense signaling pathways may provide the plant with a powerful 
regulatory potential, which helps the plant to “decide” which defensive strategy to 
follow, depending on the type of attacker it is encountering (De Vos et al.  2005 ). 
Plants modulate the relative abundance of SA, JA, and ET levels; modify the expres-
sion of defense-related genes; and coordinate complex interactions between defense 
signaling pathways to activate an effective defense response against attack by various 
types of pathogens (Bari and Jones  2009 ). Crosstalk between the hormone signaling 
systems fi ne-tunes the defense responses in the plant immune system (Grant and 
Jones  2009 ; El Rahman et al.  2012 ; Pieterse et al.  2009 ,  2012 ). Argueso et al. ( 2012 ) 
showed that cytokinin up-regulates plant immunity via an elevation of SA-dependent 
defense responses and SA in turn feedback inhibits cytokinin signaling. The cross-
talk between cytokinin and SA signaling networks may help plants to fi ne-tune 
defense responses against pathogens (Argueso et al.  2012 ). DELLAs, the repressors 
of GA signaling, promote susceptibility to virulent biotrophs and resistance to 
necrotrophs, partly by altering the relative strength of salicylic acid and jasmonic 
acid (Navarro et al.  2008 ). 

 Crosstalk between defense signaling pathways may also allow pathogens to 
manipulate plants to their own benefi t by shutting down induced defense through 
infl uences on the signaling network. Infection with biotrophic  Pseudomonas syringae , 
which induces SA-mediated defense, renders plants more susceptible to the necro-
trophic pathogen  Alternaria brassicicola  by suppressing JA signaling pathway 
(Spoel et al.  2007 ).  Botrytis cinerea  manipulates the antagonistic effects between 
immune pathways to promote disease development in tomato (El Oirdi et al.  2011 ). 
The rice bacterial blight pathogen  Xanthomonas oryzae  pv.  oryzae  has been shown 
to hijack the rice ABA machinery to cause disease (Xu et al.  2013 ). This immune-
suppressive effect of ABA may be due to suppression of SA-mediated defenses that 
normally serve to limit pathogen growth (Xu et al.  2013 ). 

 Concentration of the plant hormones in the signaling network may also alter the 
immune responses. Treatment of rice plants with increasing concentrations of gib-
berellic acid (GA) enhanced resistance to  Pythium graminicola  in a concentration- 
dependent manner. Conversely, depletion of endogenous GA levels using the GA 
biosynthesis inhibitor uniconazole promoted disease susceptibility (De 
Vleesschauwer et al.  2012 ). Enhanced biosynthesis of ethylene induced by ACC 
treatment decreases SA- and JA-associated defense signaling (Shen et al.  2011 ). 
A transient synergistic enhancement in the expression of genes associated with 
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either JA or SA signaling was observed when both jasmonic acid and salicylic acid 
were applied at low concentrations. However, antagonism was observed at more 
prolonged treatment times or at higher concentrations. Similar results were also 
observed when adding the jasmonate precursor α-linolenic acid with salicylic acid 
(Mur et al.  2006 ). These results suggest that the outcomes of JA–SA interactions 
depend on the relative concentration of JA and SA. 

 Activation of multiple hormone signaling pathways may induce resistance against 
a wide range of pathogens (Hénanff et al.  2013 ). JA signaling system triggers resis-
tance against necrotrophic pathogens (McGrath et al.  2005 ; Zheng et al.  2006 ; 
Méndez-Bravo et al.  2011 ; El Rahman et al.  2012 ), while SA signaling is involved in 
triggering resistance against biotrophic and hemibiotrophic pathogens (Thaler et al.  
 2004 ; Nie  2006 ; De Vos et al.  2006 ; Spoel et al.  2007 ; Jelenska et al.  2007 ; El Oirdi 
et al.  2011 ). By contrast, the SA–JA–ET–ABA signaling network triggers expression 
of several defense genes and confers resistance to both necrotrophic and biotrophic 
pathogens (Hénanff et al.  2013 ).  Bacillus cereus  induces systemic resistance against 
pathogens by simultaneously activating SA-, JA-, and ET-dependent signaling path-
ways (Niu et al.  2011 ).  

1.11     Can Molecular Manipulation of Plant Hormone 
Signaling Network Help the Plant to Win the War 
Against Pathogens? 

 Crosstalk between the different hormone signaling systems fi ne-tunes the defense 
responses against biotrophic and necrotrophic fungal, oomycete, bacterial, and viral 
pathogens (Pieterse et al.  2009 ; Méndez-Bravo et al.  2011 ; El Rahman et al.  2012 ; 
Pieterse et al.  2012 ; Xu et al.  2013 ). Crosstalk between different hormone signaling 
pathways in the hormone signaling network helps the plant to choose the effective 
defense strategy to follow depending on the type of pathogen it is encountering (De 
Vos et al.  2005 ; Niu et al.  2011 ; Nambeesan et al.  2012 ; Wang et al.  2012 ; Hénanff 
et al.  2013 ). The crosstalk also allows the pathogens to manipulate plants to their 
own benefi t by shutting down the specifi c hormone signaling pathway involved in 
triggering defense responses and hijacking the signaling pathway involved in induc-
tion of susceptibility (de Torres-Zabala et al.  2007 ; Katsir et al.  2008 ; Xu et al. 
 2013 ). Can we manipulate specifi c signaling system to activate defense responses 
and suppress the action of pathogens in hijacking the signaling pathway triggering 
susceptibility? It has been reported that concentration of the plant hormones in the 
signaling network can alter the strong and fast expression of specifi c hormones 
(Mur et al.  2006 ; Shen et al.  2011 ; De Vleesschauwer et al.  2012 ). Manipulation of 
the signaling network may be a potential strategy to enhance activation and improve-
ment of plant immunity for crop disease management. This book describes the 
molecular basis of plant hormone-induced immune responses in plants to develop 
technologies for effective management of crop diseases. Enhancing disease resis-
tance through altered regulation of plant immunity systems would be durable and 
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