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  Pref ace   

 Plants are the major source of secondary metabolites which are used as pharmaceu-
ticals, fl avours, fragrances, colouring agents, food additives and agrochemicals. In 
recent decades, plant cell, tissue and organ cultures have emerged as an alternative 
over whole plant cultivation for the production of valuable secondary metabolites. 
Cells, adventitious roots, hairy roots, shoots and embryos have been successfully 
cultured  in vitro  for the large scale production of secondary metabolites. Strain 
improvement, selection of high-producing cell lines, optimization of medium and 
culture environment have led to the enhanced production of bioactive and value 
added products. In recent years, a couple of bioreactor confi gurations have been 
developed and successfully adopted for the  in vitro  cultivation of plant cells and 
organs. Bioreactors such as mechanically agitated, airlift and photo-bioreactors 
have been designed and used for large scale cultivation of algal, higher fungal and 
plant cells. Bioprocess engineering parameters such as mixing, oxygen supply and 
shear stress have been investigated towards successful commercial scale cultivation. 
Various bioprocess operation modes including batch, fed-batch, two-stage cultiva-
tion, and bioseparation of intracellular metabolites have been suggested for enhanced 
and sustainable recovery of secondary metabolite products. More recently, over- 
expression of regulatory genes in up-regulating a series of enzyme activities in the 
metabolic pathways is also being achieved through genetic and metabolic engineer-
ing approaches. 

 This book provides recent progresses and limitations of production of biomass 
and bioactive compounds using bioreactor technology as mentioned above. It con-
tains six parts: Part   I     describes bioreactor designing advantages and limitations of 
bioreactor cultures; Part   II     deals with the production of biomass and bioactive com-
pounds from cell suspension cultures; Part   III     contains chapters on production of 
secondary metabolites from suspension cultures of plant organs – shoots, adventi-
tious roots and embryos; Part   IV     deals with the strategies for enhanced production 
of secondary products, large-scale cultures and metabolic engineering of selected 
metabolites; Part   V     contains bio-safety assessments of plant cell and organ culture 
products; and the fi nal Part   VI     contains physiological disorders in plants cultured in 
bioreactors. 

http://dx.doi.org/10.1007/978-94-017-9223-3_part1
http://dx.doi.org/10.1007/978-94-017-9223-3_part2
http://dx.doi.org/10.1007/978-94-017-9223-3_part3
http://dx.doi.org/10.1007/978-94-017-9223-3_part4
http://dx.doi.org/10.1007/978-94-017-9223-3_part5
http://dx.doi.org/10.1007/978-94-017-9223-3_part6
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    Chapter 1   
 Design of Bioreactors for Plant 
Cell and Organ Cultures 

             Milen     I.     Georgiev    

        M.  I.   Georgiev     
  Laboratory of Applied Biotechnologies ,  The Stephan Angeloff Institute of Microbiology, 
Bulgarian Academy of Sciences ,   139 Ruski Blvd. ,  Plovdiv   4000 ,  Bulgaria   
 e-mail: milengeorgiev@gbg.bg  

    Abstract     Demands for sustainable supply of plant biomass and/or value added- 
molecules (incl. native and heterologous therapeutic proteins, specialty proteins and 
industrial enzymes) have been the driving efforts to develop alternative ways for 
their bioproduction. Plant cell and organ cultures have been demonstrated an effi -
cient, cost effective and eco-friendly alternative to classical technologies (i.e. by 
harvest from wild) and chemical (semi)synthesis. The progress has resulted in 
development of several commercial processes for large-scale production of plant 
biomass and high value molecules, besides numerous proof-of-concept studies at 
laboratory- and pilot-scale. This chapter summarizes the bioreactor confi gurations 
for plant cell and organ cultures, and attempts to outline the immense potential of 
plant  in vitro  culture-based bioprocesses for sustainable supply of biomass and 
value-added molecules for various purposes along with the major challenges that 
remain.  

  Keywords     Bioreactors   •   Cell cultures   •   Organ cultures   •   Mechanically driven 
 systems   •   Pneumatically driven systems  

1.1         Introduction: From Simple Carboy Systems 
to Large- Scale Bioreactors 

 Per defi nition bioreactor is any device or vessel that is used to carry out one or more 
biochemical reactions in order to convert any starting material ( inter alia  substrate) 
into product(s) [ 1 ]. Bioreactor cultivation and subsequent up-scaling represent the 
fi nal steps in the development of bio-based processes. In general, the basic function of 
a bioreactor is to provide optimal conditions for effective cell growth and metabolism 
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by strict regulation of various environmental (chemical and physical) key factors [ 2 ,  3 ]. 
Though it is diffi cult to dedicate the very fi rst attempt to cultivate plant cells in biore-
actors, the pioneering work of Routien and Nickell [ 4 ] is a benchmark. In 1956, 
authors were granted the fi rst patent for the cultivation of plant cells  in vitro  in simple 
20-L carboy systems. Soon after that, the National Aeronautics and Space 
Administration (NASA) started a research program on plant cell culture for regenera-
tive life support systems. Plants and the relevant  in vitro  cultures were grown under 
various conditions of microgravity (space shuttles, parabolic fl ights, biosatellites, the 
orbital stations Salyut and Mir) along with ground studies using rotating clinostat ves-
sels (reviewed in Sajc et al. [ 5 ]). In the 1970s, further attempts to develop bioreactor 
confi gurations suitable for plant cells resulted in the development of a conical glass V 
shaped reactor (as called by the authors V-shape fermenter) for plant cell suspension 
cultures. This V shaped reactor has proved useful for both biomass and metabolite 
production [ 6 ]. Later, the concept of high shear sensitivity of plant cells was devel-
oped and only air-lift reactors were considered suitable [ 7 ,  8 ]. For instance, Kurz and 
Constabel [ 9 ] wrote “The most suitable reactor developed so far is the airlift reactor.... 
However this design is only applicable to cultures with a cell dry weight lower than 
20 g L −1 ”. Accordingly,  Nicotiana tabacum  cell suspension culture was up-scaled in 
360-L and 1,500-L bubble aeration-type bioreactors [ 10 ]. However, several indus-
trial-scale processes developed in early 1980s utilizing stirred-tank reactors (STRs) 
subsequently challenged these perceptions [ 2 ,  8 ]. Nowadays, ca. 60 years after fi rst 
dedicated attempts to grow plant cells in bioreactors has become nearly impossible to 
select the “best” bioreactor confi guration for different plant  in vitro  cultivations. 

 The selection and design of each bioreactor confi guration and operational mode 
are unique, which however, underlying some basic principles, as low stress environ-
ment, adequate mixing, and oxygen and heat transfer [ 2 ]. In most cases, bioreactors 
available for microbial fermentation can be implemented for hosting plant cells with 
some slight modifi cations. In general, reactor design should ensure that nutrients are 
effectively provided to the cells. Cell growth and product formation kinetics should 
be assessed (by respective sampling) so that, the optimal environmental conditions 
can be defi ned and thus the most suitable operational mode to be determined. 
Transport phenomena, including mixing, shear forces, and oxygen transfer, should 
be continuously followed during the cultivation process in order to defi ne the crite-
ria for bioreactor design and up-scaling. Operating parameters, such as dissolved 
oxygen concentration (DO 2 ) and substrate concentration(s), temperature of cultiva-
tion, pH and agitation speed, among others, should be easy to monitor and set-up. 
In addition, the bioreactor confi guration should be as simple and inexpensive as 
possible and it should be easily operated while ensuring long-term sterility [ 2 ].  

1.2     High-Value Molecules Produced by Plants 
and Relevant  In Vitro  Culture 

 The vast chemical diversity of the plants has been exploited since time immemorial 
by humans to diminish and prevent pain, to produce pleasure, for use in religious 
ceremony and to cure various human disorders. The chemical entities responsible 
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for this biological activity are, in most cases, low-molecular weight compounds that 
are often accumulated at very low amounts in plants [ 11 ]. For instance, paclitaxel 
(Fig.  1.1 ) content in  Taxus  plants accounts on <0.02 % of the dry weight of the bark, 
where its levels are highest, therefore, commercial production of this complex diter-
penoid by natural harvest is not economically feasible as  Taxus  plants grow very 
slow [ 12 ]. Recently, Wilson and Roberts [ 13 ] estimated that 340 tons of  Taxus  bark 
or 38,000 trees would be required to meet the 25 kg/year demand for the antineo-
plastic drug paclitaxel. In search of alternative solutions, two different routes for the 
total synthesis of paclitaxel were developed 20 years ago, however, the process 
involves 40+ reactions, utilizes harsh solvents, and has overall low product yields, 
which makes chemical synthesis of paclitaxel economically and environmentally 
unfavourable so far (reviewed in Wilson and Roberts [ 13 ]).

   In addition, several plants accumulating metabolites of pharmaceutical interest 
are listed as endangered species (due to continuous overharvesting of natural popu-
lations), and therefore novel approaches have to be found in order to ensure the 
sustainable production of value-added molecules. 

 Today, over 25 % of modern medicines are derived either directly or indirectly 
from plants, especially in case of cancer therapy (60 %), infectious diseases (75 %), 
but also in metabolic syndrome and immuno-suppression therapy. Of course, these 
numbers also include microbial sources, but the signifi cance of plants in the produc-
tion of pharmaceuticals is undoubtful. To name a few, paclitaxel (Taxol ® ), galan-
thamine (Nivalin ®  and Reminyl ® ) and artemisinin (Fig.  1.1 ) are currently good 
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  Fig. 1.1    Selected examples of high-value molecules produced by plant cell/organ culture, grown 
in bioreactors       

 

1 Design of Bioreactors for Plant Cell and Organ Cultures



6

examples in this approach and amongst the blockbuster drugs worldwide [ 14 ]. The 
most important commercially relevant pharmaceuticals, derived from plants, are 
valued at over $ 25 billion per year in the USA alone [ 11 ]. In addition, World Health 
Organization (WHO) estimates, at least 80 % of the population in developing coun-
tries still relies exclusively on traditional medicine for their primary health care 
needs (Georgiev [ 14 ] and the literature cited therein). According to Food and 
Agriculture Organization of UN (FAO), world population is expected to grow by 
over a third, or 2.3 billion people, between 2009 and 2050 [ 15 ]. This purely means 
that in near future humans will face multiple challenges such as: (1) more food and 
fi bre have to be produced to feed the growing population; (2) more feed stocks for 
a potentially huge bioenergy market and (3) more medicines ( inter alia  of natural 
origin) to cure human diseases. 

 Continuously increasing demands for plant biomass and therapeutic molecules, 
produced by ever greener processes, along with dramatic reduction in plant biodi-
versity, are the driving force to develop alternative ways to supply value-added mol-
ecules [ 8 ,  16 ]. Biotechnological production of secondary plant metabolites has been 
of interest for many decades. Nowadays, plant cell and organ cultures have become 
increasingly attractive and cost-effective alternatives to classical approaches (i.e. 
natural harvest and chemical synthesis) for the mass production of plant-derived 
metabolites (“green cell factories” concept), because of their several advantages. 
First, genetic modifi cation in a contained system can readily be applied without the 
regulatory barriers associated with fi eld grown crops. Second, a cell/organ culture 
system can be up-scaled in bioreactors with controllable production rates [ 16 – 18 ]. 
Furthermore, plant cell/organ culture is the only economically feasible way of pro-
ducing some high-value molecules from rare and/or threatened plants. The progress 
in this fi eld so far has resulted in the mass production of biomass and high-value 
molecules ( see below ) by different companies [ 2 ,  13 ,  19 ,  20 ].  

1.3     Bioreactors for Dedifferentiated Plant Cell Culture 

 Stainless steel stirred tank reactors, bubble column reactors and air-lift reactors 
(Fig.  1.2a–c ) directly derived from microbial bioprocesses are commonly used – 
with slight modifi cations – to grow plant cell suspension cultures up to 75 m 3  of 
culture volume [ 21 ]. Nowadays, stirred tank reactors are the most widely used reac-
tor confi gurations for growing plant cells, because of their several advantages such 
as easy scale-up, good fl uid mixing and oxygen transfer capacity, availability of 
numerous impellers types (reviewed in Georgiev et al. [ 2 ]) and compliance with 
current Good Manufacture Practices (cGMP) requirements [ 3 ]. Reasonably, most of 
the existing commercial processes with plant cell suspension cultures (discussed 
below) are based on STRs of m 3 -scale. Towards minimization of production costs 
and validation efforts under cGMP regulations, several single-use bioreactor con-
fi gurations for hosting plant cell culture have been developed recently, e.g. the 
wave-mixed reactors (Fig.  1.2d ), slug bubble bioreactor (Fig.  1.2e ), wave and 
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undertow bioreactor (Fig.  1.2f ), CELL-Tainer, AppliFlex, Saltus Virbormix reactor, 
and OrbShake reactor [ 2 ,  8 ], among others. Single-use bioreactors are comprised of 
cultivation containers/bags, made of US Food and Drug Administration-approved 
plastics [ 21 ,  22 ]. Single-use bioreactors become increasingly accepted for biotech-
nological processes at small and medium size scale during the past decade. 
Numerous studies [ 23 – 25 ] have clearly shown their advantages, such as reduced 
contamination and cross-contamination rates, easy compliance with cGMP regula-
tions, savings in time and costs, and reduced waste and thus clear environmental 
impact. Thus, single-use bioreactors have a wide range of applications for the pro-
duction of therapeutic proteins [ 20 ,  26 ] and in the production of plant biomass and 
secondary metabolites for cosmetics purposes [ 2 ].

   An effective bioreactor operational mode should provide adequate volumetric 
yield and overall high system productivity, which means more product(s) are formed 
per unit time per liter of bioreactor volume [ 2 ]. A major drawback of batch  processes 
is that signifi cant amount of time is taken up by the system and media sterilization, 

a b c

d

e

f

  Fig. 1.2    Bioreactor confi gurations for plant cell culture. ( a ) Stirred tank reactor, ( b ) Bubble col-
umn reactor, ( c ) Air-lift reactor, ( d ) Wave bioreactor, ( e ) Slug bubble reactor, ( f ) Wave and under-
tow (Georgiev et al. [ 8 ] and the literature cited therein)       
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fi lling and emptying, and cleaning the system. Thus, towards improving the cost-
effectiveness of the plant cell culture-based bioprocesses, various operational modes 
have been developed, including multi-stage batch, fed-batch, single- or multi-stage 
continuous (chemostat), semi-continuous (draw-and-fi ll) and perfusion (continuous 
with cell retention) cultivation [ 2 ,  8 ]. A comparison of different cultivation modes 
and feeding regimes is summarized in Table  1.1 . Among these, the most promising 
towards high productivity and thus most successfully applied ones for suspended 
plant cells are fed-batch and perfusion.

   Towards the development of new bioreactor confi gurations, we designed a glass- 
column bioreactor, operated with pulsed aeration in the Laboratory of Applied 
Biotechnologies, Plovdiv, Bulgaria [ 27 ]. In bubble column reactors, the sole source 
of agitation is the pneumatic power input provided by isothermal expansion of the 
sparged gas from the bottom [ 1 ,  28 ]. The air balloon type of aeration (created  via  
pulsed aeration) signifi cantly reduces cell exposure to the local zones of high shear 
stress. Moreover, such type of aeration (also called slug bubble or Taylor-like) 
ensures both effective mass transfer of oxygen into the liquid medium and homog-
enization of the culture medium [ 3 ,  27 ]. The bioreactor was further used for cultiva-
tion of  Harpagophytum procumbens  (devil’s claw) cell suspension and to study the 
production of pharmaceutically important verbascoside (a phenylethanoid glyco-
side, possessing desirable pharmacological activities for human health, such as anti-
oxidant, antiinfl ammatory, antineoplastic, wound-healing and neuroprotective 
properties) [ 29 ]. As a result, both accumulated devil’s claw biomass and the high- 
value verbascoside productivity in the column reactor with pulsed aeration were 
higher than the respective levels, reached in the shaken fl asks and STRs. 
Consequently, the biomass [expressed as g biomass/(L day)] and verbascoside 
[expressed as mg verbascoside/(L day)] productivity were up to 30 % and threefold 
higher, respectively, in the pulse-sparged column bioreactor than other cultivation 
systems. The accelerated growth of the devil’s claw cells and their high productivity 
imply that the pulse-aerated glass column bioreactor might be quite suitable system 
for hosting the plant cell suspension cultures. The construction of the bioreactor 
from glass also allows cultivation of phototrophic/photomixotrophic cultures [ 27 ]. 
A similar type of bioreactor, named the “slug bubble reactor”, has been developed 
for the cultivation of  Nicotiana tabacum  cell suspension culture [ 30 ]. The slug bub-
ble reactor is made of fl exible gamma-sterilized biopharmaceutical grade polyethyl-
ene and can be operated in a single-use cultivation mode, as discussed above. 

 Nowadays, 30 years after the development of the fi rst  industrial process  based on 
plant cells (shikonin production by  Lithospermum erythrorhizon  cell suspension cul-
ture), dozens of molecules are produced commercially using plant cell cultures. These 
include paclitaxel (Taxol ® ), berberine, ginseng biomass,  Echinacea  polysaccharides 
and several therapeutic and heterologous proteins, among others [ 2 ,  8 ,  13 ]. At present, 
in Ahrensburg (Germany), Phyton Biotech operates the world's largest cGMP plant 
cell culture facility with bioreactors specifi cally designed to meet the needs of plant 
cells in culture. The total production capacity of the taxanes train runs is up to 
880,000 L/year. The Phyton Biotech is a global provider of chemotherapeutic agents 
including paclitaxel, docetaxel APIs (active pharmaceutical ingredients) and taxane 
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intermediates (  www.phytonbiotech.com    ; accessed March 2014). The  Taxus  cell cul-
ture-based paclitaxel bioproduction was also commercialized by Samyang Genex 
Corporation (Taejon, South Korea) at m 3 -scale [ 18 ]. In addition to relatively well 
established bioproduction of plant-derived molecules, in recent years, several biotech 
companies have been turning plants (and relevant cell suspension cultures) into drug 
factories in order to produce therapeutic proteins that could not be made otherwise or 
to make them cheaper [ 31 ]. Protalix BioTherapeutics (Israel) uses the next-generation 
recombinant protein expression system platform to produce a wide range of complex 
and biologically equivalent human proteins (e.g. ELELYSO, a plant cell-expressed 
form of the glucocerebrosidase enzyme for treatment of Gaucher’s disease) in trans-
genic carrot and tobacco cell cultures in single- use plastic bag bioreactors (  www.
protalix.com    ; accessed March 2014). Another remarkable example includes the 
development of recombinant animal vaccine against Newcastle Disease virus, pro-
duced by transgenic tobacco cell cultures and marketed by Dow Agrosciences [ 20 ].  

1.4     Bioreactors for Differentiated Plant Organ Culture 

 In general, the differentiated plant organ culture consist of plantlets, shoot culture, 
adventitious (=normal roots) and transformed root culture (=hairy roots; harbouring 
T-DNA of  Agrobacterium rhizogenes  pRi plasmid). In the past two decades, plant 
organ culture have become increasingly considered as an attractive platform for 
bioproduction of plant-derived metabolites and therapeutic proteins, because of 
their several advantages, such as genetic and biochemical stability, and capacity for 
organogenesis-associated synthesis of metabolites, to name a few [ 2 ,  7 ,  19 ,  32 ,  33 ]. 

 Diverse bioreactor designs (Fig.  1.3 ) have been used for cultivation of differenti-
ated plant organ culture, including mechanically driven reactors (e.g. STRs, wave- 
mixed and rotating drum reactors), pneumatically driven systems (e.g. air-lift 
reactors and bubble column reactors), besides abundant bed reactors (e.g. mist reac-
tors and trickle-bed reactors) and temporary immersion systems [ 2 ,  34 ]. The mor-
phology of differentiated plant organ culture demands a special consideration for 
the adequate bioreactor confi guration, which should (1) provide low-shear environ-
ment for tissue growth and (2) ensure reduced mass transfer limitations. The forma-
tion of strong nutrient and oxygen gradients in the tissue is a major issue in densely 
packed plant tissue beds, e.g. non-homogeneous growth [ 2 ,  21 ,  34 ,  35 ].

   Thus, the use of ordinary STRs is, in general, not highly recommended because of 
the high stress-sensitivity of plant organ culture. However, slight changes in the STR 
internal hardware confi guration – e.g. separation of the plant tissue from the impeller 
(by using a mesh for instance) or just a simple reduction of the agitation speed – have 
resulted in successful cultivation of transformed root cultures of  Beta vulgaris  [ 36 ] 
and  H. procumbens  [ 37 ] and  Atropa belladonna  [ 38 ] in bioreactors of different scale 
(Table  1.2 ). Pneumatically driven air-lift and bubble column reactors are probably the 
most frequently used confi gurations for hosting differentiated plant organ culture [ 2 ]. 
Among others, a modifi cation of air-lift reactor, named balloon type bubble  bioreactor 
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(Fig.  1.3b ), appeared quite suitable for large-scale biomass and metabolite mass pro-
duction by adventitious root culture of  Panax ginseng ,  Hypericum perforatum , 
 Morinda citrifolia  and  Echinacea  (Baque et al. [ 19 ] and the literature cited therein). 
In a recent interesting study, Georgiev et al. [ 43 ] reported the successful cultivation 
of  Leucojum aestivum  shoot culture in modifi ed glass- column bioreactor with inter-
nal sections (Fig.  1.3c ) for production of galanthamine (naturally occurring alkaloid 
used in the treatment of mild-to-moderate Alzheimer’s disease, marketed as Nivalin ®  
and Reminyl ® ). The introduction of internal sections ensures submerged cultivation 
of the shoot culture and adequate mass and oxygen transfer, which resulted in high 
biomass accumulation (>20 g L −1 ) and galanthamine production (1.7 mg L −1 ).

   Furthermore, mist bioreactor (Fig.  1.3d ), trickle-bed reactor (Fig.  1.3e ), wave 
induced bioreactor (Fig.  1.3f ) as well as several temporary immersion systems 
(Fig.  1.3g, h ) have been validated as suitable for cultivation of plant organ culture 
(Table  1.2 ) (recently reviewed in Georgiev et al. [ 2 ]). It should be, however, 
noted that most of the temporary immersion systems are still of laboratory-scale, 
therefore, further more detailed experiments in large-scale volumes are pending to 
prove their effi cacy. 

a b c d

e

g

f

h

Generator
of mist

Balance scale

Inlet air

Exhaust gas

  Fig. 1.3    Bioreactor confi gurations for plant organ culture. ( a ) Bubble-column bioreactor, ( b ) 
Balloon type bubble bioreactor, ( c ) Column photo-bioreactor with internal sections, ( d ) Mist bio-
reactor, ( e ) Trickle-bed bioreactor, ( f ) Wave bioreactor, ( g ) Temporary immersion system RITA®, 
( h ) BioMINT reactor (Georgiev et al. [ 2 ] and the literature cited therein)       
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  Industrialization of plant organ culture  bioprocesses is not yet fully devel-
oped, mostly due to the morphological features of differentiated  in vitro  cultures 
and the resultant challenges [ 2 ,  34 ]. One such challenge is the way to transfer plant 
tissue inocula from seed reactor to large-scale reactor, which apparently cannot be 
preformed pneumatically (as usually done in suspended culture-based processes). 
The recently developed commercial system at 10 m 3 -scale for biomass and bioac-
tive ginsenoside production from  Panax ginseng  adventitious roots by CBN Biotech 
Company, South Korea [ 19 ] could contribute towards solving “inocula transfer” 
issues. Monitoring of the plant tissue growth in bioreactors during the cultivation 
process (up to several weeks) is another worth mentioning challenging issue [ 2 ,  34 ]. 
A number of methods are, therefore, developed for (indirect) estimation of the tis-
sue growth (in  off - line  or in  on - line  mode), such as measuring conductivity, osmo-
larity and redox potential of the culture medium (thoroughly summarized in 
Georgiev et al. [ 47 ]). Nevertheless, more reliable and accurate methods for bio- 
monitoring are continuously sought.  

1.5     Conclusions and Perspectives 

 For ca. 60 years of research, we have witnessed profound changes in development 
of plant  in vitro  culture-based bioprocesses for mass production of biomass, and 
plant derived-molecules and therapeutic proteins, which clearly outlined their 
immense potential for commercialization. Dozens of commercial processes were 
then developed and several others are on the pipeline. Nowadays, the design and 
confi guration of bioreactors used adequately refl ect the physiological requirements 
of plant cell and organ culture. It increasingly appears likely that single-use bioreac-
tors, originally developed for highly sensitive mammalian culture, will become 
more often used (e.g. 3D bioreactor-based systems) for growing plant cells that do 
not exhibit Newtonian fl uid behaviour. Wider commercialization of plant  in vitro  
culture-based processes implies the development of more reliable methods for bio-
process monitoring (for plant organ culture bioprocesses in particular) and improve-
ment of overall process performance. Recent and emerging “omics” platforms (and 
metabolomics in particular) are likely to accelerate this process.     
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    Abstract     The trend for using disposable bioreactors in modern biotechnological 
processes has also been adopted for plant cell cultivations. In fact, plant cell cultures 
are now being grown in disposable bioreactors with volumes up to 400 L. This trend 
has been witnessed for both the development and commercial manufacture of thera-
peutic proteins, secondary metabolite-based pharmaceuticals and cosmetic com-
pounds. Prominent examples of commercial products are Protalix’s ELELYSO and 
Mibelle Biochemistry’s Phyto Cell Tech-derived bioactive compounds. 

 This chapter discusses the current state of disposable bioreactor technology for 
plant cell cultures. After a brief introduction to the general fundamentals of dispos-
able bioreactors (relevant technical terms, advantages and limitations of disposable 
bioreactors) a current overview of disposable plant cell bioreactors and their instru-
mentation will be provided. We will describe the working principles and engineer-
ing characteristics of disposable bioreactor types that are scalable and successfully 
being used for the cultivation of plant cell suspension and hairy root cultures. In 
addition, we will provide selected application examples focusing on the cultivation 
of geraniol producing tobacco cells. The chapter will end with perspective on future 
developments of disposable bioreactor technology for plant cell cultures.  

  Keywords     Bubble column   •   Disposable bioreactor technology   •   Hairy root culture   • 
  Instrumentation   •   Mist bioreactor   •   Orbitally shaken   •   Oscillating   •   Plant cell sus-
pension culture   •   Recombinant protein   •   Secondary metabolite   •   Stirred   •   Tobacco  
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