
Springer Proceedings in Mathematics & Statistics

Mihir K. Chakraborty
Andrzej Skowron
Manoranjan Maiti
Samarjit Kar    Editors 

Facets of 
Uncertainties 
and 
Applications
ICFUA, Kolkata, India, December 2013



Springer Proceedings in Mathematics & Statistics

Volume 125



Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including operation research and optimization. In addition to an overall
evaluation of the interest, scientific quality, and timeliness of each proposal at the
hands of the publisher, individual contributions are all refereed to the high quality
standards of leading journals in the field. Thus, this series provides the research
community with well-edited, authoritative reports on developments in the most
exciting areas of mathematical and statistical research today.

More information about this series at http://www.springer.com/series/10533

http://www.springer.com/series/10533


Mihir K. Chakraborty • Andrzej Skowron
Manoranjan Maiti • Samarjit Kar
Editors

Facets of Uncertainties
and Applications
ICFUA, Kolkata, India, December 2013

123



Editors
Mihir K. Chakraborty
Jadavpur University
Kolkata
India

Andrzej Skowron
Institute of Mathematics
University of Warsaw
Warszawa
Poland

Manoranjan Maiti
Vidyasagar University
Paschim Medinipur, West Bengal
India

Samarjit Kar
Department of Mathematics
National Institute of Technology (NIT)
Durgapur
India

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-81-322-2300-9 ISBN 978-81-322-2301-6 (eBook)
https://doi.org/10.1007/978-81-322-2301-6

Library of Congress Control Number: 2015936163

Mathematical Subject Classification: 03Bxx, 41Axx, 68Uxx, 90Bxx, 93Exx

Springer New Delhi Heidelberg New York Dordrecht London
© Springer India 2015, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer (India) Pvt. Ltd. is part of Springer Science+Business Media
(www.springer.com)



Preface

The international conference on “Facets of Uncertainties and Applications”
(ICFUA 2013) was organized under the joint collaboration of the Operational
Research Society of India (the Calcutta chapter) and Department of Applied
Mathematics, University of Calcutta.

The conference aimed at contributing to better understanding between practi-
tioners (both the theoreticians and researchers involved in applications) dealing
with uncertainties, mainly of nonprobabilistic category. These papers, but one,
presented at the conference, focus on various types of uncertainties which are
essentially nonprobabilistic in nature. These types include vagueness, roughness,
incompleteness, ambiguity, and such other features. Various mathematical for-
malisms have emerged during the past few decades to deal with such uncertainties,
for example, fuzzy set theory, rough set theory, soft set theory, uncertainty theory.
Papers compiled here are of two categories: invited articles presented at the plenary
sessions and contributed articles read at regular sessions of the said conference.
Invited articles are from experts of high standing in the field, while contributed
articles are by senior and young researchers. The papers deal with the state of the art
of the theories as well as their applications.

The scope of the conference included the following topics:

• Modeling different types of uncertainty (nonprobabilistic)
• Logic of uncertainty (fuzzy logic and rough logic)
• Rough sets and fuzzy sets in approximate reasoning
• Rough fuzzy hybridization and applications
• Analysis of complex systems and complex network
• Applications of fuzzy sets and rough sets in optimization and decision-making
problems

• Image and speech signal processing, prediction, and control
• Robotics
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• Expert systems
• Biology and medicine
• Business and management
• Noncomputational mathematics
• Complex system analysis
• Risk management
• Environment engineering
• Data mining
• Other applications

The program of the conference was organized mainly along four tracks:

• Uncertainty modeling
• Logic of uncertainty
• Hybridization of uncertainties
• Role of uncertainties in real problems

Each track contained a plenary session followed by three concurrent parallel
sessions. Both the plenary and parallel sessions provided participants ample
opportunity to exchange ideas on further research, research collaboration, and
training.

The conference was highly interactive and intensive in nature and attracted
budding researchers and young faculties working in related disciplines. The con-
ference attracted more than 80 participants from India and abroad. The exchange
among these participants has provided them with a comprehensive overview of the
techniques and approaches being applied to uncertainty theory and applications.

The program committee for this conference consisted of:

• Didier Dubois, University Paul Sabatier, Toulouse
• Baoding Liu, Tsinghua University, China
• Andrzej Skowron, Warsaw University, Poland
• Roman Slowinski, Poznan University of Technology, Poland
• Dominik Slezak, University of Warsaw, Poland
• Piero Pagliani, Research group on Knowledge and Communication, Italy
• Davide Ciucci, Italy
• Manoranjan Maiti, Vidyasagar University, India
• Amit Konar, Jadavpur University, India
• Mohua Banerjee, IIT Kanpur, India

The conference was supported by the Department of Applied Mathematics,
University of Calcutta; Board of Research in Nuclear Science (BRNS), Department
of Atomic Energy (DAE), India; Department of Science and Technology (DST),
West Bengal; Department of Higher Education, West Bengal; and Indian Statistical
Institute (ISI), Kolkata. We are grateful to these organizations for their very gen-
erous support.
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We thank all the authors for kindly submitting their articles to the conference
proceedings. We are very thankful to all the reviewers for their constructive
comments and suggestions for the finalization of the papers and to the editorial
board of Springer for supporting the publication of the present volume.

Mihir K. Chakraborty
Andrzej Skowron
Manoranjan Maiti

Samarjit Kar
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Part I
Uncertainty Modelling



Rough Sets and Other Mathematics:
Ten Research Programs

Piero Pagliani

Abstract Since its inception, interesting connections between Rough Set Theory
and different mathematical and logical topics have been investigated. This paper is
a survey of some less known although highly interesting connections, which extend
from Rough Set Theory to other mathematical and logical fields. The survey is
primarily thought of as a guide for new directions to be explored.

Keywords Rough sets · Algebraic logic · Topology

1 Information from Data and Information as Metaphor

As is well known, the starting point of Rough Set Theory is an indiscernible space
〈U, E〉, where U is a set and E ⊆ U × U is an equivalence relation such that
〈x, y〉 ∈ E states that items x and y take exactly the same attribute-values according
to an evaluation recorded in an Information System.

Given any relational structure 〈U, R〉, with R ⊆ U × U , and X ⊆ U , the set
R(X) = {y : ∃x ∈ X (〈x, y) ∈ R)} will by named the R-neighborhood of X. If
X = {a} we shall write R(a). Thus, by means of E−neighborhoods, from any
indiscernibility space the following operators are defined on ℘(U ):

(l E)(X) = {x : E(x) ⊆ X} = {x : ∀y(〈x, y〉 ∈ E ⇒ y ∈ X)} (1)

(uE)(X) = {x : E(x) ∩ X 
= ∅} = {x : ∃y(〈x, y〉 ∈ E ∧ y ∈ X)} (2)

(l E)(X) is called the lower approximation of X (via E), while (uE)(X) is called the
upper approximation of X (via E), and 〈U, (uE), (l E)〉 is called an approximation
space. Any equivalence class modulo E is a neighborhood E(a) for some a ∈ U , and
represents a “basic property,” that is, a unique array of attribute-values, hence a subset
of U definable by means of the given evaluation. Moreover, forany X , (l E)(X) and

P. Pagliani (B)

Rome, Italy
e-mail: pier.pagliani@gmail.com

© Springer India 2015
M.K. Chakraborty et al. (eds.), Facets of Uncertainties and Applications,
Springer Proceedings in Mathematics & Statistics 125,
DOI 10.1007/978-81-322-2301-6_1

3



4 P. Pagliani

(uE)(X) output either an E−equivalence class or a union of equivalence classes,
which represents nonelementary definable set.

The well-known properties of (l E) and (uE) depend on the fact that E is an
equivalence relation. Particularly, it is possible to show that {(l E)(X) : X ⊆ U } =
{(uE)(X) : X ⊆ U }. This set will be denoted by D f (U ). It collects the definable
subsets of U . If X ∈ D f (U ), then X = (l E)(X) = (uE)(X): a definable set does
not need to be approximated.

All the concepts not introduced in the paper can be found in [16]1

Observation 1 The second part of definitions (1) and (2) displays the dual logical
constructions (∀,⇒) and (∃,∧). They are the backbone to a number of mathematical
concepts. Notably, (∀,⇒) is the logical core of interiorandnecessityoperators, while
(∃,∧) is that of closure and possibility operators.

We remind that an operator φ on a lattice L is an interior (resp. closure) operator if
it is (i) decreasing: φ(x) ≤ x (resp. increasing: x ≤ φ(x)), (ii) monotone: x ≤ y
implies φ(x) ≤ φ(y) and (iii) idempotent: φ(φ(x)) = φ(x). An interior (resp.
closure) operator φ is topological if it is (iv) multiplicative: φ(x ∧ y) = φ(x)∧φ(y)

(resp. additive: φ(x ∨ y) = φ(x)∨φ(y)) and (v) co-normal: φ(1) = 1 (resp. normal:
φ(0) = 0).

Indeed, (l E) and (uE) are interior and, respectively, closure topological operators.
This was one of the first results of Pawlak’s approximation spaces and it can be stated
under different points of views:

Facts 1 1. (l E) is an interior, I, and (uE) a closure, C, operator of a topological
space with a basis of clopen - closed and open - subsets.

2. AS(U ) = 〈D f (U ),∩,∪,−,∅, U 〉 is a subalgebra of the Boolean on ℘(U ).
3. 〈℘(U ),∩,∪,−,∅, U, (uE), (l E)〉 is a topological Boolean algebra.
4. 〈℘(U ),∩,∪,−,∅, U, (uE), (l E)〉 is a model for S5 modal logic, where (l E)

stands for the necessity operator �, and (uE) for the possibility operator ♦.

By extension, AS(U ) will also be called an approximation space. Since the two
approximation operators are defined by means of E-neighborhoods, straightforward
generalizations were proposed in the Rough Set literature since its inception, by
considering other types of binary relations, R. However, problems arise if definitions
(1) and (2) aremerely traced. For instance, (l R)(X) could fail to be decreasing, which
is “strange” for a lower approximation. In viewof these problems, usually generalized
approximation operators do not mechanically trace the original definitions (see for
instance [6]). Anyway, in view of Observation 1, when definitions (1) and (2) are
used, properties of generalized upper and lower approximations can be easily derived
from the literature on modal logics with Kripke models (see [16], Chap. 4.13). The
following issue arises:

1Except for [7], this book is the only work of the author’s that will be cited. The story of the results
can be found in the mentioned chapters.
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Issue A. Informational interpretation of Kripkean modal logics,

through rough sets: For any binary relation R, give (l R) and (u R) a mean-
ingful informational interpretation. That is, a concretely justified interpretation of
R, such as that of relative accessibility relation (as defined in [15]). Conversely, give
a modal interpretation to generalized approximation operators.

2 Algebras of Rough Sets

Given an approximation space AS(U ), a rough set is an equivalence class modulo
(l E) and (uE) on the powerset ℘(U ). Thus, the rough set of X can be identi-
fied by the ordered pair 〈(uE)(X), (l E)(X)〉, called decreasing representation, or
〈(l E)(X),−(uE)(X)〉, called disjoint representation. The symbol rs(X)will denote
both of these representations. However, not all the ordered pairs of decreasing (dis-
joint) elements of AS(U ) represent a rough set. In fact, if S ⊆ U is a singleton
equivalence class, then for any X ⊆ U the following equivalent conditions hold (cf.
[16], Chap. 7):

(a) S ⊆ (uE)(X) iff S ⊆ (l E)(X); (b) S ⊆ (l E)(X) or S ⊆ −(uE)(X) (3)

The informational explanation of this fact is that singletons represent completely
defined objects. Thus, U divides into two parts: an exact part, given by the union B
of all singleton equivalence classes, and an uncertain part, given by its complement
P = U ∩ −B. Indeed, a clause equivalent to conditions (3) is (uE)(X) ∩ B =
(l E)(X) ∩ B. It states a local property: on B there is no roughness because lower
and upper approximations coincide, which is the characteristic of definable sets.
Consequently, the set of all and only the rough sets of an approximation spaceAS(U )

is definable as follows.
In decreasing representation:

Dc≡J B (AS(U )) = {〈A1, A2〉 ∈ AS(U )2 : A2 ⇒ A1 = U, A1 ⇒ A2 ≡J B U } (4)

where for all X, Y ∈ AS(U ), X ⇒ Y is −X ∪ Y and X ≡J B Y if and only if
B ⇒ X = B ⇒ Y . So, the first clause just means A2 ⊆ A1, while conditions (3)
follow from the second clause.
For the disjoint representation we have:

Dj≡J B (AS(U )) = {〈A1, A2〉 ∈ AS(U )2 : A1 ∩ A2 = ∅, A1 ∪ A2 ≡J B U }. (5)

With D≡J B (AS(U )) we denote either of these collections. Now, notice that ≡J B is
a (Boolean) congruence on AS(U ). In general, given any Heyting algebra H and
a Boolean congruence ≡ on it (i.e. H/≡ is a Boolean algebra), the operations in
the following table are definable on the set Dj≡(H). If H is a Boolean algebra,
corresponding operations are definable on the set Dc≡(H). It is understood that
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a = 〈a1, a2〉, b = 〈b1, b2〉 and the operations between elements of the pairs are
those of H:

Symbol Dc≡(H) Dj≡(H) Name
0, 1 〈0, 0〉, 〈1, 1〉 〈0, 1〉, 〈1, 0〉 Bottom, resp. Top
∼ a 〈¬a2,¬a1〉 〈a2, a1〉 Strong negation
a −→ b 〈a2 ⇒ b1, a2 ⇒ b2〉 〈a1 ⇒ b1, a1 ∧ b2〉 Weak implication
a ∧ b 〈a1 ∧ b1, a2 ∧ b2〉 〈a1 ∧ b1, a2 ∨ b2〉 Inf
a ∨ b 〈a1 ∨ b1, a2 ∨ b2〉 〈a1 ∨ b1, a2 ∧ b2〉 Sup

Derived operations:

Symbol Definition Name

−�a a −→ 0 Weak negation
a ⊃ b ∼ −� ∼ a ∨ b ∨ (−�a ∧ −� ∼ b) Pre-relative pseudocomplementation
¬a a ⊃ 0 =∼ −� ∼ a Pre-pseudocomplementation
a ⊂ b ∼ (∼ a ⊃∼ b) Pre-relative co-pseudocomplementation
a

c=⇒ b ∼ −� (a ⊃ b) Pre-relative pseudosupplementation
a

c⇐= b −� ∼ (a ⊂ b) Pre-relative co-pseudosupplementation
! 1

c=⇒ a Pre-pseudosupplementation
¡ 0

c⇐= a Pre-copseudosupplementation

Facts 2 (cf. [16], Chaps. 7, 8 and 9.6) (1)∼∼ a = a; (2)∼ (a ∧b) =∼ a∨ ∼ b; (3)
∼ (a ∨b) =∼ a∧ ∼ b; (4) −� a = 〈¬a2,¬a2〉in Dc≡(H) and 〈¬a1, a1〉 in Dj≡(H),
(5) ¬a = 〈¬a1,¬a1〉 in Dc≡(H) and 〈a2,¬a2〉 in Dj≡(H). If H is a Boolean
algebra: (6) ⊃ is a relative pseudocomplementation in the lattices 〈Dc≡(H),≤〉 and
〈Dj≡(H),≤〉, where a ≤ b if and only if a ∧ b = a. Hence, for all a, b, c of these
lattices, c ∧ a ≤ b iff c ≤ a ⊃ b. As a consequence, ¬ is a pseudocomplementation.
(7) ⊂ is a relative co-pseudocomplementation, that is, c ∨ a ≥ b iff c ≥ a ⊂ b.
Since −� a = a ⊂ 1, −� is a co-pseudocomplementation; (8) ¡a =∼ ¬a = −� ∼ a =
¬¬a = −� ¬a; (9) !a =∼ −� a = ¬ ∼ a = −� −� a = ¬−� a.

In what follows we set D1 = φ1 =¡, D2 = φ2 =!, e0 = 0, e2 = 1 and e1 = 〈U, B〉
if D≡J B is Dc≡J B , while e1 = 〈B,∅〉 if D≡J B is Dj≡J B .
Since any approximation space AS(U ) is a Boolean algebra one can prove:

Facts 3 (cf. [16], Chaps. 6–10) Let B ∈ AS(U ), then:

1. 〈D≡J B (AS(U )),∧,∨,−→,∼,−� , 0, 1〉 is a semi-simple Nelson algebra.
2. 〈D≡J B (AS(U )),∧,∨,∼, φ1, φ2, 0, 1〉, is a three-valued Łukasiewicz algebra.
3. 〈D≡J B (AS(U )),∧,∨,¬,⊃, 0, 1〉, is a Heyting algebra.
4. 〈D≡J B (AS(U )),∧,∨,−� ,⊂, 0, 1〉, is a co-Heyting algebra.
5. 〈D≡JU (AS(U )),∧,∨,∼, 0, 1〉 is a Boolean algebra isomorphic to AS(U ).
6. 〈D≡J∅ (AS(U )),∧,∨,¬,⊃, D1, D2, e0, e1, e2〉, is a Post algebra of order three.
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We have enough material for a number of interesting observations.

Observation 2 Given a topological space on a set U and X ⊆ U, the boundary
B(X) of X is given by C(X)∩−I(X). In [10] William Lawvere pointed out that in co-
Heyting algebras the topological notion of a boundary is definable as ∂(x) = x∧−� x,
and observed that for all x, y:

(1) ∂(x ∧ y) = (∂(x) ∧ y) ∨ (x ∧ ∂(y)); (2) ∂(x ∧ y) ∨ ∂(x ∨ y) = ∂(x) ∨ ∂(y).

The first equation is essentially the usual Leibniz rule for differentiation of a product.
Lawvere emphasizes that though its validity for boundaries of closed sets is supported
by our space intuition, nevertheless it is virtually unknown in general topology liter-
ature. Moreover, given an element x of a co-Heyting algebra, Lawvere calls −� −� x
the regular core of x. In the context of Continuum Physics, he claimed that a part
x may be considered a sub-body (or shortly a body) if and only if −� −� x = x and
noticed that any element x is the join of its core and its boundary: x = −� −� x ∨∂(x).

In view of Lawvere’s observations and Fact 3.(4), the notion of a co-Heyting bound-
ary was exploited by the author in the context of Rough Set analysis. Given an
Approximation Space AS(U ), X ⊆ U and a = 〈(uE)(X), (l E)(X)〉, a ∧ −� a (or,
equivalently, a∧ ∼ a), is 〈B(X),∅〉. In order to obtain the rough set of B(X) it is
sufficient to compute ¬¬(a ∧−� a). Moreover, −� −� a = 〈(l E)(X), (l E)(X)〉, which
is the rough set of (l E)(X). But (l E)(X) is the internal or necessary part of X , (in
a literal sense when AS(U ) is interpreted as an S5 modal space). This part is stable
because (l E) is idempotent. This means that δ(−� −� a) = 0; that is, the boundary of
(l E)(X) is empty.

In a private communication, Lawvere said that to his knowledge this was the first
nontrivial, albeit simple, example of his algebraic characterization of topological
boundaries. A new issue arises, thus:

Issue B. More general algebraic characterization of topological

boundaries through generalized rough sets: Exhibit more general exam-
ples of rough set systems in which Lawvere’s algebraic descriptions of a “body”, a
“core” and a “boundary” can be expressed.

Rough set systems induced by pre or partial orders P = 〈U,≤〉 are natural can-
didates, because the set F(P) of order filters of P is a Heyting algebra H(P)

(for X ⊆ U the order filter ↑ X , or ↑ x if X = {x}, is nothing but the
≤ −neighborhood of X ). But, given a Heyting algebraH, and a Boolean congruence
≡ on it, N≡(H) = 〈Dj≡(H),−→,∼,−� ,∧,∨, 0, 1〉 is a Nelson algebra, which is
a model for Constructive Logic with Strong Negation, CL SN (from this result one
obtains Fact 3.(1)). But when is N≡(H) a Heyting algebra? When a bi-Heyting alge-
bra? Is it possible a characterization of these cases and, moreover, a rough set, hence
informational, interpretation as it is done in [7] for finite algebras and particular
infinite cases (see Facts 6)?

Observation 3 An operator J on a Heyting algebra H, is a Lawvere-Tierney oper-
ator if it is idempotent, increasing and multiplicative. The operator J B of definitions
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(4) and (5) is such an operator. A Lawvere-Tierney operator J on the dual Heyting
algebra H(P) of a preorder P = 〈U,≤〉 defines an association between elements p
of U and subfilters of ↑ p, in the following manner:

J[p] = {↑ p ∩ X : p ∈ J (X), X ∈ H(P)}. (6)

The family Γ = {J[p] : p ∈ U } is called a Grothendieck topology and the system
〈P, Γ 〉 an ordered site (see [16], Chap.7.3). The logical importance of ordered sites is
the following. H(P) is the set of possible evaluations �A� from intuitionistic formulas
A to the Kripke model 〈P,�〉. Given an element x ∈ U, a formula A is said to be
locally valid on x, x � 〈l〉A, if �A� ∈ J[x] for some Grothendieck topology Γ on P.

This formalizes our intuition that locally on B sets are not rough but exact (see [16],
Chap. 7).

Issue C: Rough Set Systems and Logic: Find a faithful logic for rough set
systems. The problem is that, for instance, three-valued Łukasiewicz logic, which is
often proposed as the logic of rough set systems, is not able to grasp the distinction
between the exact behaviour on B and the inexact behaviour on P . In fact, this logic
encompasses the cases in which B = U , B = ∅ and B 
= U, B 
= ∅.Maybe, Labeled
Deduction Systems could be useful (see [4] and subsequent works).

Observation 4 From Facts 2.(8)–(9), one derives ∼ ¬¬ = −� −� ∼ and ∼ −� −� =
¬¬ ∼, which suggest that the double negations ¬¬ and −� −� behave in modal
(∼ � = ♦ ∼, ∼ ♦ = � ∼) and topological (−I = C−, −C = I−) manners.

The rough set explanation of this fact is given by the following equations:

¬¬rs(X) = rs((uE)(X)); −� −� rs(X) = rs((l E)(X)) (7)

From Facts 2.(8)-(9), ¬¬ = −� ¬ and −� −� = ¬−� . Thus they are particular
cases of two more general operators definable in bi-Heyting algebras. Indeed, let
us define the following sequences in a σ−complete bi-Heyting algebra BH: (i)
�0 = ♦0 = I d; (ii)�n+1 = ¬−��n ,♦n+1 = −� ¬♦n ; (iii)�(a) = ∧n

i=1 �i (a); (iv)
�(a) = ∨n

i=1 ♦i (a), ∀a ∈ BH. In [19] it is shown that for any a,�(a) is the largest
complemented element of BH below a, while �(a) is the smallest complemented
element above a. From Facts 3.(3)-(4), a rough set system is a bi-Heyting algebra
where � = �1 and � = ♦1 (from (7), because (l E) and (uE) are idempotent or
directly from idempotency of ¬¬ and −� −� ).

This property is related to the following laws: (DM1) LetH be a Heyting algebra.
H satisfies the De Morgan law for ¬, if ∀x, y, ¬(x ∧ y) = ¬x ∨ ¬y. (DM2)
Let CH be a co-Heyting algebra. CH satisfies the De Morgan law for −� , if ∀x, y,

−� (x ∨ y) = −� x ∧ −� y. It can be shown that in bi-Heyting algebras the law for ¬
implies �(a) = ¬−� a and that the law for −� implies �(a) = −� ¬a (the reverse of
the implications does not hold). Actually, both laws hold in rough set systems. The
proof is in the following list, as well as some consequences:
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Facts 4 1. (DM1) is equivalent to the fact that Reg(H) = {x ∈ H : x = ¬¬x}
is a sublattice of H (see [8]). Dually for (DM2) and coReg(CH) = {x ∈ CH :
x = −� −� x}.

2. Since ¬¬ is a Lawvere-Tierney operator, it is multiplicative but, in general, not
additive. This means that generally Reg(H) is not a sublattice of H. Dually,
coReg(CH) is not a sublattice of a generic co-Heyting algebra CH.

3. But in rough set systems, from (7) and Facts 1.(1), ¬¬ is a topological closure,
hence additive, while −� −� is a topological interior, hence multiplicative. It fol-
lows that both Reg(D≡J B (AS(U ))) and coReg(D≡J B (AS(U ))) are sublattices
of D≡J B (AS(U )).

4. The set of the complemented elements of a lattice L is called the center of L,
Ctr(L). One can prove that Reg(D≡J B (AS(U ))) = coReg(D≡J B (AS(U ))) =
Ctr(D≡J B (AS(U ))). Of course, if a ∈ Ctr(D≡J B (AS(U ))), then δ(a) = 0.

Issue D: Informational interpretation of the situation where the

sequences �n and ♦n do not stabilize at step 2: Longer steps for stabiliza-
tion reflect the fact that new boundaries must be included after each application of
closure and smaller internal parts must be grasped after any interior application.
Informational interpretations of this situation should be provided. In Sect.4 a first
answer is suggested.

Facts 5 1. In a Heyting algebra H, an element x is called dense if ¬¬x = 1. If
H has a least dense element d, then Reg(H) is isomorphic to H/≡Jd . It can be
proved ([16] Chap.7) that in Dj≡J B (AS(U )) the least dense element is 〈B,∅〉,
while in Dc≡J B (AS(U )) is 〈U, B〉.

2. Thus, one can prove that 〈D≡J B (AS(U )),∧,∨, !, e0, e1, e2〉, is a P2-lattice of
order three, if B 
= U. Here, e0 ≤ e1 ≤ e2 is the chain of values. Moreover, if
A is a classical tautology (with ∼, ¬ or −� as negation), then e1 ≤ �A� ≤ e2,
while if A is a classical contradiction, then e0 ≤ �A� ≤ ∼e1 (see [16] Chap.9.6).
Thus, e1 is a local classical top, and ∼ e1 is a local classical bottom.

3. Eventually, 〈D≡J B (AS(U )),∧,∨,
c=⇒,

c⇐=,⊃,⊂, !, ¡, 0, 1〉, is a P-algebra. In

this case a
c=⇒ b is the largest element e of the center such that e ∧a ≤ b, while

a
c⇐= b is the least element e of the center such that e ∨ a ≥ b.

The last result leads us to a new issue:

Issue E: Rough Set Systems and Topos Theory: In [3] it is shown that a
lattice L has a stalk (etalé) space representation when for each s ∈ L, the mapping
ϕs : Ctr(L) −→ L;ϕs(e) = e∧ s is residuated, or, equivalently, if ηs : Ctr(L) −→
L; ηs(e) = e ∨ s is residuated. But from Fact 5.(3)

c=⇒ and
c⇐= are the required

residuations, respectively. Moreover, the definition of a bi-Heyting algebra in [19] is
given in terms of a topos E , a Boolean topos B, and a surjective geometric morphism
Γ : E −→ B, such that the canonical map δ : ΩE −→ ΩB has a lax adjoint.
Finally, also the construction of rough set systems through Grothendieck (Lawvere-
Tierney) topologies is a signal that these systems are some sort of topos. Therefore,
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a unitary and coherent description of (generalized) rough sets from the point of view
of etalé spaces and topos theory would be welcome (some hints: the representation
of a rough set system in terms of the dual of a set of disjoint chains of max length
2, or as a product of a Boolean algebra and a Post algebra of order three (see [16]
Chaps.10.4 and 8.3); the fact that the prime ideals of a P−algebra lie in disjoint
maximal chains ([3])).

We have seen that rough set systems induced by pre or partial orders P are well-
behaving because the dual H(P) of a preorder P is a Heyting algebra. Not only
they are useful in data-mining (cf. [5]), but in this case the construction of rough
set systems assumes an unexpected amazing meaning (see [7]) (on the topic, see
also [14]). In fact, if P is a partial order upper bounded by a set M of maximal
elements (always if it is finite), then for all m ∈ M , ↑ m is a singleton definable set.
In view of the previous discussion, the corresponding rough set system is given by
Dj≡J M (H(P)). One has, thus:

Facts 6 1. M is the least dense element of H(P) (i.e. ¬¬M = U ).
2. ≡J M is the Glivenko congruence: i.e. X ≡J M Y iff ¬X = ¬Y .
3. Dj≡J M (H(P)) belongs to the subvariety of Nelson algebras of pairs 〈a, b〉 deter-

mined by the equation ¬a = ¬¬b.
4. Dj≡J M (H(P)) is a model for the logic E0, which is CL SN plus the following

modal axioms: (∼A −→⊥) −→ T(A) and (A −→⊥) −→ ∼T(A). Logic E0
was introduced in [11] where it is proved | CL A if and only if | E0 T(A), also
in the predicative case, thus extending the well-known Gödel-Glivenko theorem
stating | CL A if and only if | INT ¬¬A, for A any classical propositional
formula, CL a classical logic system and IN T an intuitionistic system.

We arrive at a new issue:
Issue F: Rough Set Systems and substructural logics: CL SN is a sub-
structural logic ([24], but see also [23]). Is there any rough set-based informational
interpretation of this fact? (for some suggestions see [12, 13], and [25]).

3 Purely Relational Approximation Operators

Consider a structure P = 〈U, M, R〉, with U, M sets and R ⊆ U × M . We interpret
U and M as sets of objects and, respectively, properties, so that 〈g, m〉 ∈ R means
that object g fulfills property m. P will be called a property system. Let us define the
following functions, where R� is the reverse of R (see [22], cf. [16], Chap. 2.):

– 〈e〉 : ℘(M) �−→ ℘(U ); 〈e〉(Y ) = {a ∈ U : ∃b(b ∈ Y ∧ b ∈ R(a))};
– [e] : ℘(M) �−→ ℘(U ); [e](Y ) = {a ∈ U : ∀b(b ∈ R(a) ⇒ b ∈ Y )};
– 〈i〉 : ℘(U ) �−→ ℘(M); 〈i〉(X) = {b ∈ M : ∃a(a ∈ X ∧ a ∈ R�(b))};
– [i] : ℘(U ) �−→ ℘(M); [i](X) = {b ∈ M : ∀a(a ∈ R�(b) ⇒ a ∈ X)}.
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A function is decorated by ‘e’ when its application gives an extension, i.e., a set of
objects, and it is decorated by ‘i’ when it outputs an intension. From Observation
1, it is clear why two of them are ♦-shaped (possibility), and two are �-shaped
(necessity). These functions fulfill a strategic property: 〈〈i〉, [e]〉 and 〈〈e〉, [i]〉 are
Galois adjunctions: 〈i〉(X) ⊆ Y iff X ⊆ [e](Y ), 〈e〉(Y ) ⊆ X iff Y ⊆ [i](X),
for all X ⊆ G, Y ⊆ M . Exploiting this fact one immediately obtains that 〈i〉[e]
and 〈e〉[i] are pre-topological interior operators, while [i]〈e〉 and [e]〈i〉 are pre-
topological closure operators, on M and U , respectively. For this reason we set, for
all X ⊆ U, Y ⊆ M :

(a) int (X) = 〈e〉([i](X)); (b) cl(X) = [e](〈i〉(X)).
(c) A(Y ) = [i](〈e〉(Y )); (d) C(Y ) = 〈i〉([e](Y )).

A and C are the “formal” counterparts of cl and, respectively, int . One has:

int (X) ⊆ X ⊆ cl(X), any X ⊆ U. (8)

If R(U ) = M and R�(M) = U , then int is co-normal and cl is normal (in this case
we shall say that the property system is normal). It can be proved that (l R) and (uE)

are special cases of int , respectively, cl.

Issue G. Rough Set Systems from adjoint operators:What are the logico-
algebraic properties of the set of ordered pairs of the form 〈cl(X), int (X)〉 or
〈int (X),−cl(X)〉? (Some hints from [1] or [2]).

Observation 5 It is worth noticing that the above machinery can be rephrased
in the framework of Chu spaces. Since they provide models for Linear Logic
(see [17, 18]), one could add this ingredient to Issue F for a more comprehensive
description of the “substructural picture”.

4 Approximation by Means of Neighborhoods

Consider a structure N = 〈U, ℘ (U ), R〉, with R ⊆ U × ℘(U ). It can be considered
a concrete instance of a neighborhood system. If u′ ∈ N ∈ R(u), we say that u′
is a neighbor and N a neighborhood of u. We call N (U ) = {R(u) : u ∈ U } a
neighborhood system. Let us define the following operators on ℘(U ):

(a) G(X) = {u : X ∈ R(u)}; (b) (X) = −G(−X) = {u : −X /∈ R(u)}.
Consider the following conditions on N (U ), for any x ∈ U , A, N , N ′ ⊆ U :
1. U ∈ R(x); 0. ∅ /∈ R(x); Id. if x ∈ G(A) then G(A) ∈ R(x);
N1. x ∈ N , for all N ∈ R(x); N2. if N ∈ R(x) and N ⊆ N ′, then N ′ ∈ R(x);
N3. if N , N ′ ∈ R(x), then N ∩ N ′ ∈ R(x).
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They induce the following properties of the operators G and F :

Condition Equivalent properties of G Equivalent properties of F
1 G(U ) = U F(∅) = ∅
0 G(∅) = ∅ F(U ) = U
Id G(X) ⊆ G(G(X)) F(F(X)) ⊆ F(X)

N1 G(X) ⊆ X X ⊆ F(X)

X ⊆ Y ⇒ G(X) ⊆ G(Y ) X ⊆ Y ⇒ F(X) ⊆ F(Y )

N2 G(X ∩ Y ) ⊆ G(X) ∩ G(Y ) F(X ∪ Y ) ⊇ F(X) ∪ F(Y )

N3 G(X ∩ Y ) ⊇ G(X) ∩ G(Y ) F(X ∪ Y ) ⊆ F(X) ∪ F(Y )

But N is a property system, too. So it is possible to define int and cl. One can prove
that int = G and cl = F if conditions Id, N1 and N2 are satisfied. Moreover, if
N is normal, then 1 and 0 are satisfied, too. Neighborhood systems satisfying these
conditions will be classified as N2I d . A topology is a N2I d neighborhood system
which fulfills N3 in addition.

Now, we compare formal and concrete pre-topological spaces by exploiting the
formal semi-cover relation � introduced in [20]. Let b ∈ M and Y, Y ′ ⊆ M :

(basis) b � Y iff b ∈ A(Y ), (step) Y � Y ′ iff ∀y ∈ Y, y � Y ′.

Moreover, we assume M to be a monoid with a binary operation “·” and unity 1.
The operation “·” is a formal counterpart of intersection. Thenwe put for X, Y ⊆ M :

(a) X · Y = {x · y : x ∈ X & y ∈ Y }; (b) X • Y = A(X · Y ). (9)

Let us put SatA(M) = {X ⊆ M : A(X) = X} and let ⊥ be any subset of
M . Then we say that a pre-topological formal system 〈M, ·, 1,⊥,�〉 is topological
if 〈SatA(M), •,∨, M,A(⊥)〉 is a complete lattice with complete distributivity and
ordering ⊆. It can be proved that a pre-topological formal system is topological if
the following (left) and (right) properties hold:

(left)
b � Y

b · b′ � Y
; (right)

b � Y b � Y ′

b � Y · Y ′ .

Since N is a property system, we can define the operation A on ℘(U ) obtaining the
pre-topological system, τ = 〈℘(U ),∩, U,∅,�〉 which is in between a formal and
a concrete system. Thus, the question is (see [16], Chap. 14.2): given a relational
structure 〈U, ℘ (U ), R〉, is there any connection between the properties 1, 0, Id, N1,
N2, N3 and N4, of N (U ) and the properties (left) and (right) of τ? There are two
answers, for the present: (A): IfN (U ) fulfillsN3, then (right) holds in τ (the converse
does not hold). (B) N (U ) fulfills N2 if and only if (left) holds.

At this point a couple of issues arises:

Issue H. G, F , �, int and cl in partnership: Since G = int and F = cl when
conditions Id,N1 andN2 hold inN (U ), the above results provide us with a glimpse
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of the relationships between those operators and the properties of �. However, it
is worthwhile a thorough investigation of the connections which link the couples of
“concrete” operators (int, cl) and (G, F) and the abstract relation�, along with their
informational interpretations.

Issue I. SatA(M) can be made into a logical model in which � plays the role of
the sequent relation �. It happens that in such a system, (right) corresponds to the
contraction rule and (left) to the weakening rule (cf. [20, 21]). Thus an amazing
task would be to put this fact and those of Issue F and Observation 5 into a sound
comprehensive picture.

If one collects different observations about the same sets of objects and properties,
a composite system 〈U, M, {Ri }1≤i≤n〉 is obtained. If M = U , we call it a Dynamic
System (see [16], Chap. 12). In this case, one can ask what are the lower and the upper
approximations of a subset of U according to a certain number of observations. Let
us then set the following operators κ

m and εm , for 1 ≤ m ≤ n:

1. (Contraction): We say that x ∈ κ
m(A), if Ri (x) ⊆ A for at least m indices.

2. (Expansion): We say that x ∈ εm(A), if Ri (x) ∩ A 
= ∅ for at least n + 1 − m
indices.

In [16], Chap. 12.6, it is explained how to compute these operators. However an issue
arises about them:

Issue J: Algebraic and topological properties of dynamic operators:

What are the topological and algebraic properties of κ
m and εm? Do graded oper-

ators intm , clm , Gm and Fm make any sense?

A few results are available, and just for simple cases (namely if all R ∈ {Ri }1≤i≤n

are preorders, then κ
1 is a pretopological interior operator and εn is a pretopological

closure operator—see [16], Chap. 12). This topic is connected with multiple-source
approximation spaces (see [9]).

5 Conclusions

The above connections are not exhaustive. Rough Set Theory is productive of new
unexpected intersections and partnerships with surprising fields. We just mention
that it suggested a semantic interpretation of the Logic of conjectures and assertions
(see G. Bellin’s page profs.sci.univr.it/∼bellin/papers.html) and a tool for spatial
reasoning (see the works by T. Bittner and J. S. Stell at www.comp.leeds.ac.uk/jsg
and theworks on spatial reasoningby I.Düntsch andE.Orłowska). Eventually, a lot of
work is still required to understand the logico-algebraic properties of approximations
of relations (for some results in simple cases, see [16], Chap. 15.18).
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Dealing with Uncertainty: From Rough
Sets to Interactive Rough-Granular
Computing

Andrzej Jankowski, Andrzej Skowron and Roman Swiniarski

If you thought that science was certain-
well, that is just an error on your part.

—Richard P. Feynman,
The Nobel Prize in Physics (1965)

Abstract Wediscuss an approach for dealingwith uncertainty in complex intelligent
systems. The approach is based on interactive computations over complex objects
called here complex granules (c-granules, for short). C-granules are defined relative
to a given agent. Any c-granule of a given agent specifies a perceived structure
of local environment of physical objects, called hunks. There are three kinds of
such hunks: (i) hunks in the agent external environment creating the hard_suit of
c-granule, (ii) internal hunks of agent, creating the soft_suit of c-granule, some of
which can be represented by agent as infogranules, and (iii) hunks creating the
link_suit of c-granule and playing the role of links between hunks from the hard_suit
and soft_suit. This structure is used for recording by means of infogranules the
results of interactions of hunks from the local environment. We begin from the
discussion on dealing with uncertainty in the rough set approach and next we move
toward interactive computations on c-granules. In particular, from our considerations
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it follows that the fundamental issues of intelligent systems based on interactive
computations concern the efficiency management in controlling of computations
performed by such systems. Our approach is a step toward realization of theWisdom
Technology (WisTech) program. The approach was developed over years of work,
based on the work on different real-life projects.

Keywords Information granule · Physical object · Interaction · Complex
granule · Granular computing · Rough set · Complex vague concept
approximation · Adaptive judgment · Efficiency management

1 Introduction

There are quite many well-known different approaches for dealing with uncertainty
(e.g., [13, 16, 17, 23, 24, 43, 44]). We emphasize some basic issues related to
uncertainty in: (i) object perception, (ii) concept perception as well as (iii) reasoning
about concepts. In real-life applications, the objects and concepts we are dealing
with are complex. Moreover, they are often vague what causes additional problems
in coping with them.

We start from the rough set approach proposed by Professor Pawlak [23, 24, 27]
as a tool for dealing with imperfect knowledge, in particular with vague concepts.
Rough set theory has attracted the attention of many researchers and practitioners
all over the world. We discuss uncertainty issues in object and concept perception in
the rough set framework.

Granular Computing (GC) is now an active area of research [29]. Objects we
are dealing with in GC are information granules (or infogranules, for short). Such
granules are obtained as the result of information granulation [47]:

Information granulation can be viewed as a human way of achieving data compression
and it plays a key role in implementation of the strategy of divide-and-conquer in human
problem-solving.

The concept of granulation is rooted in the concept of a linguistic variable introduced
by Professor Lotfi Zadeh in 1973. Information granules are constructed starting from
some elementary ones. More compound granules are composed of finer granules that
are drawn together by distinguishability, similarity, and functionality [45].

Understanding of interactions of objects on which are performed computations
is fundamental for modeling of complex systems [3]. For example, in [21] this is
expressed in the following way:

[...] interaction is a critical issue in the understanding of complex systems of any sorts: as
such, it has emerged in several well-established scientific areas other than computer science,
like biology, physics, social and organizational sciences.

When we move to dealing with perception of interacting complex objects in
observed situations one should consider that due to resource bounds only some parts
of complex objects may be perceived at a given moment of time. These parts are per-
ceived as values of compound attributes computed on the basis of the delivered (e.g.,
by control of the agent) parameters of sensors and recorded in relevant information
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(decision) systems as the results of sensory measurements. Hence, uncertainty in
identification of the environment state often causes that results of interactions with
and within the environment cannot be predicted with certainty. As a consequence,
e.g., results of performed actions may be different than the predicted ones.

In this paper, we outline an extension of Interactive Rough-Granular Computing
(IRGC) approach (see, e.g., [29, 38, 41, 42]) by introducing complex granules (c-
granules, for short) making it possible to model interactive computations performed
by an agent. In such computations, interactions among physical objects and interac-
tions of these physical objects with information granules possessed by the agent are
represented.

In IRGC, the rough set approach in combination with other soft computing
approaches are used for inducing approximations of complex vague concepts.

Different problems related to dealing with uncertainty in IRGC are outlined in
the paper.

Let us mention here that our discussion on IRGC based on c-granules is strongly
related to the following sentences:

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality. (Albert Einstein, [2])

Constructing the physical part of the theory and unifying it with themathematical part should
be considered as one of the main goals of statistical learning theory. (Vladimir Vapnik, [43]
p. 721)

This paper covers some issues presented in the invited talk at ICFUA 2013.
In Sect. 2, we discuss some basic problems related to dealing with uncertainty

in the rough set approach. Section3 outlines the approach to IRGC based on
c-granules and reports some issues concerning uncertainty in IRGC. In particular,
due to uncertainty, e.g., in identification of the global environment state, develop-
ment of the efficiencymanagement techniques for controlling by agent computations
performed over c-granules for achieving goals is crucial for intelligent systems based
on IRGC.

2 Rough Sets and Uncertainty

2.1 Uncertainty in Object Perception

The rough set philosophy [23, 24, 27] is founded on the assumption that with every
object of the universe of discourse, we associate some information (data, knowl-
edge) called the object signature. Objects characterized by the same information are
indiscernible (similar) in view of the available information about them. The indis-
cernibility relation generated in this way is the mathematical basis of rough set
theory. This understanding of indiscernibility is related to the idea of Gottfried Wil-
helm Leibniz that objects are indiscernible if and only if all available functionals take


