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Foreword

Weakly wandering (ww) sets made their first appearance over 50 years ago in
[23, 39] (see also [32, 40]). The late Professor Shizuo Kakutani of Yale University
was instrumental in advising and directing us in the development of the above
works. Initially, the appearance of ww sets and sequences was a surprising event,
yet at the same time quite useful in the study of problems connected with the
existence of finite invariant measures. Soon it was realized that ww sequences were
always present for all ergodic transformations that did not preserve a finite measure.
Professor Kakutani felt that this was an important fact and strongly encouraged us
to study the role of these sequences in the classification of infinite ergodic trans-
formations. During the years that followed, we would meet periodically with him
in the southern New England region from New Haven, to Providence, Boston, and
Amherst, spend long periods studying various problems in ergodic theory, and often
discuss questions connected with properties of ww sequences. He was aware that
the ww and related sequences associated with infinite ergodic transformations were
powerful isomorphism invariants, and he urged us to investigate their properties.
More than anyone else he had a keen sense of understanding the nature of infinite
measure spaces and properties of the transformations defined on them.

During the following 40 years we continued our joint work and published several
articles on the properties of infinite ergodic transformations. It was during one of our
frequent meetings that Professor Kakutani suggested the writing of a monograph
which gathered most of the published and unpublished results that we had obtained.
We had just started on that project when it was interrupted by his untimely departure.

Professor Kakutani was a constant force guiding and encouraging us to continue
working and looking into the effect of ww and related sequences on the behavior of
infinite ergodic transformations. This monograph is a result of that. Eliminating the
contribution of any of the co-authors from this monograph would make it noticeably
weaker. On the other hand, without Professor Kakutani’s contribution and constant
encouragement this monograph would not exist.
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Preface

The material in this monograph is self-contained. A basic knowledge of measure
theory as taught to beginning graduate students is the only prerequisite needed to
read and understand the material presented. Prior knowledge of ergodic theory is
useful but not necessary. Some fundamental properties of ergodic transformations
preserving a �-finite infinite measure as discussed in Chap. 3 follow easily from
Birkhoff’s Individual Ergodic Theorem. However, even these properties are devel-
oped and proven directly.

In Chap. 1 we discuss in some detail various conditions for the existence of a
finite invariant measure. In 1932, E. Hopf [37] presented an interesting geometric
condition that was necessary and sufficient for the existence of a finite invariant
measure for a measurable and nonsingular transformation. Later in 1956, Y. Dowker
[8] discussed the same problem and presented a different condition involving the
measure of iterates of the images of measurable sets. Initially, the two conditions,
the one presented by Hopf (H) and the other by Dowker (D1), did not seem
to be obviously related except for the fact that they were both necessary and
sufficient conditions for the solution of the same problem. The attempt to prove
their equivalence by direct arguments on the other hand revealed the interesting
and unexpected fact that all infinite ergodic transformations possessed weakly
wandering (ww) sets: these are sets of positive measure with an infinite number
of mutually disjoint images under a sequence of integers called a ww sequence. We
also mention some minor facts that emerged during our attempt to show by direct
arguments the equivalence of the various conditions of the Finite Invariant Measure
Theorem 1.2.1. One of these is Proposition (subadditive) 1.2.2, which is a slight
generalization related to a well-known result on the equivalence of finite measures,
and another is Proposition (additive) 1.2.4, which exhibits the additive nature of
the Cesaro sums of the measure of iterates of measurable sets. We also point out
that condition (W*), which is a (seemingly) stronger condition than condition (W),
happens to be equivalent to it. The following interesting-sounding remark is a
consequence of Theorems 1.1.3 and 1.2.1: a simple strengthening of the statement
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x Preface

A measurable transformation is recurrent if and only if it does not possess wandering sets

is

A measurable transformation is strongly recurrent if and only if it does not possess weakly
wandering sets,

and both statements are true.
In Chap. 2 we discuss properties of transformations that do not possess a finite

invariant measure. While writing this monograph we were often tempted to relabel
this chapter: “The Non-Existence of a Finite Invariant Measure.” The appearance
of ww sequences for such transformations turned out to be a powerful tool in the
classification of infinite ergodic transformations. In time the existence of these
sequences implied the existence of even more interesting sequences connected
with ergodic transformations without finite invariant measure. One such was
the appearance of an equally unexpected sequence that we called an exhaustive
weakly wandering (eww) sequence: this is a ww sequence where the images of
a corresponding ww set cover the whole space. In Definition 2.1.1 we introduce
a more complicated sequence for measurable transformations, which we call a
strongly weakly wandering (sww) sequence. At first encounter it seems that sww
sequences have unnecessarily complicated properties and are difficult to understand.
However, for ergodic transformations without a finite invariant measure we are able
to show without too much effort the existence of sww sequences, and these in turn
imply the existence of a special kind of eww sequence. Moreover, we do not know a
better way of proving the existence of eww sequences for transformations without a
finite invariant measure. Initially, after we were confronted with the existence of ww
and eww sequences, for a very long time we were not aware of any general property
of a ww sequence that insured its possessing an eww subsequence. To our surprise
Proposition 2.2.4 accomplishes that.

In Chap. 3 we discuss infinite ergodic transformations and mention the following
important property that these transformations possess: for any two sets A and
B of finite measure limn!1 1

n

Pn�1
iD0 m.T iA \ B/ D 0. This property follows

immediately from Birkhoff’s Individual Ergodic Theorem. However, we present
a direct and elementary proof of it. Next we introduce recurrent sequences for
infinite ergodic transformations. These are sequences of integers that have a finite
intersection with every ww sequence for an infinite ergodic transformation. As we
shall see in Chap. 4 there exist infinite ergodic transformations that possess recurrent
sequences and others that do not. We discuss both classes of infinite ergodic transfor-
mations. The infinite ergodic transformations that possess recurrent sequences are
interesting in connection with the various conditions discussed in Theorem 1.2.1
(the Finite Invariant Measure Theorem). The infinite ergodic transformations that
do not possess recurrent sequences happen to be even more interesting. For such
transformations we prove Theorems 3.3.11 and 3.3.12 where we show that these
transformations possess ww and eww growth sequences. A consequence of this
is the fact that for infinite ergodic transformations without recurrent sequences
every infinite sequence of integers contains an eww subsequence. Incidentally, after



Preface xi

working with the presence and absence of recurrent sequences and discussing their
connection with ww and eww sequences, we urge the reader to refrain from naming
any feature of an infinite ergodic transformation as being some sort of mixing. As
tempting as it may seem, we feel that labeling any property of an infinite ergodic
transformation as some type of “mixing” is wrong.

In Chap. 4 we present three important and basic examples of infinite ergodic
transformations. The First Basic Example was constructed soon after it was
realized that a consequence of the main theorem of [32] was the fact that every
infinite ergodic transformation possesses ww sets. Initially, this fact was a bit
difficult to digest. In particular, among all the existing examples of infinite ergodic
transformations we could not exhibit a single ww set. This prompted us to construct
the First Basic Example in [33]. Our object was to see a concrete ww set and the ww
sequence associated with it. Employing the machinery of induced transformations
we succeeded in constructing the desired transformation together with the ww
sequence and set. Subsequently, we were compensated with a few extra and
unexpected rewards. The ww set that we had constructed happened to be, in fact,
an eww set as well. Up to that point the existence of an eww set for any infinite
ergodic transformation was unthinkable. Our surprise was even greater when we
noticed that this eww set was actually a set of finite measure. A number of years
later the Second Basic Example was constructed in [31] with the purpose of showing
that the existence of an eww set of finite measure was not shared by all infinite
ergodic transformations. This was accomplished by showing that the commutators
of the Second Basic Example contained a non-measure-preserving transformation.
This fact was used in showing how to construct in a systematic way an ergodic
transformation that does not preserve any �-finite invariant measure. The Third
Basic Example that we present next was actually constructed well before the two
preceding examples. It was originally constructed in [23] to show that the further
weakening of condition (D3) of Theorem 1.2.1 of Chap. 1 as a necessary and
sufficient condition for the existence of a finite invariant measure was not possible.
Later it was also realized that, unlike the previous two examples, this basic example
was an infinite ergodic transformation that did not possess recurrent sequences.
Finally, a variant of an example discussed by E. Hopf in his book [38] is sketched as
another example of an infinite ergodic transformation that does not possess recurrent
sequences. This example can also be regarded as a simple realization of symmetric
random walk on the integers as an infinite ergodic transformation.

In Chap. 5 we consider various collections of infinite subsets of the integers Z

associated to an infinite ergodic transformation, and discuss a number of properties
of these collections. In particular we give descriptions of collections of ww,
recurrent, and dissipative sequences for the transformation T . We end the chapter
with a topological description of these and other collections in terms of the Stone–
Čech compactification ˇZ of Z. Theorem 5.1.2 of this chapter is a particularly
interesting theorem concerning the behavior of transformations that possess an eww
set of finite measure.

In Chap. 6 we examine various isomorphism invariants for infinite ergodic
transformations. We begin with eww sequences and note that an isomorphism,



xii Preface

besides leaving an eww sequence invariant, must also map eww sets to each other.
We then show by example that two such sets for a common sequence may sit quite
differently within a transformation. We then introduce the ˛-type of an ergodic
transformation as an isomorphism invariant and show its relation to the recurrent
sequences of the transformation. In the second part of the chapter we examine a class
of transformations for which a complete characterization of the recurrent sequences
can be described. We end the chapter with a result on how the growth rate of the ww
sequences for a transformation is also an isomorphism invariant.

In Chap. 7 we show that eww sequences are related to complementing pairs
of subsets of integers which tile the set of integers. We begin with a review of
known results for tilings of the integers and point out that the tools used when
one member of a pair is finite are not applicable when both members are infinite.
We then show how such tilings of the integers arise in ergodic theory and use
the fact that one member is the hitting times of a generic point to an eww set
to obtain a characterization of eww sequences. A number of examples are given
which indicate the difficulties of the subject. Finally, we conclude the chapter by
showing how p-adic analysis is related to eww sequences for some infinite ergodic
transformations.

Boston, MA, USA Stanley Eigen
Boston, MA, USA Arshag Hajian
Yokohama, Japan Yuji Ito
Lowell, MA, USA Vidhu Prasad
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Chapter 1
Existence of Finite Invariant Measure

In this chapter we discuss properties of a transformation T that are equivalent to
the transformation being recurrent. We show that strengthened versions of these
properties, together with a few more properties of T , are necessary and sufficient
conditions for the existence of a finite invariant measure � for T .

We consider transformations T that are invertible (1-1, onto) maps defined on a
�-finite Lebesgue measure space .X;B; m/. Even when not mentioned explicitly,
all the transformations we consider are assumed to be measurable (A 2 B if and
only if TA 2 B) and nonsingular (m.A/ D 0 if and only if m.TA/ D 0).
Throughout this monograph all the sets we mention are assumed to be measurable,
and often we make statements ignoring sets of measure 0.

We say that m is an invariant measure for a transformation T if m.TA/ D m.A/

for all A 2 B. Two measures m and � are equivalent (m � �) if m and � have the
same sets of measure zero. When an invariant measure � � m exists for T we say
that T preserves the measure �, or T is a measure-preserving transformation.

In this section we study necessary and sufficient conditions for the existence of a
finite T -invariant measure � � m.

We remark that since .X;B; m/ is a �-finite measure space, it is always possible
to find a finite measure m0 � m. Namely, since X D S1

iD1 Ai .disj/, where Ai are
sets of finite positive measure for i D 1; 2; : : : , we define

m0.B/ D
1X

iD1

m.B \ Ai/

2im.Ai/
for B 2 B:

Therefore, whenever a transformation T is not assumed to be measure-
preserving, without loss of generality we may assume that T is defined on a
finite measure space .X;B; m/ with m.X/ D 1.

© Springer Japan 2014
S. Eigen et al., Weakly Wandering Sequences in Ergodic Theory,
Springer Monographs in Mathematics, DOI 10.1007/978-4-431-55108-9__1
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2 1 Existence of Finite Invariant Measure

1.1 Recurrent Transformations

Let us make the following definitions:

Definition 1.1.1. Let T be a measurable and nonsingular transformation defined on
the measure space .X;B; m/.

• T is a recurrent transformation if
m.A/ > 0 H) for a.a. x 2 A there is an integer n > 0 such that T nx 2 A.

• A is a wandering set for T if
m.A/ > 0, and T iA \ T jA D ; for i; j 2 Z and i ¤ j .

• Two sets A and B are finitely equivalent, A � B , if for some integer p > 0
A D Sp

iD1 Ai .disj/; B D Sp
iD1 Bi .disj/, and for a set of p integers fni W 1 �

i � pg T niAi D Bi for 1 � i � p.
• Two sets A and B are countably equivalent, A � B , if
A D S1

iD1 Ai .disj/; B D S1
iD1 Bi .disj/, and for a sequence of integers fni W

i � 1g T niAi D Bi for 1 � i < 1.
• A set A is strongly recurrent if fn W m.T nA\A/ > 0g is relatively dense in Z,

or equivalently:
there is an integer k > 0 such that max0�i�k m.T nCiA\ A/ > 0 for all n 2 Z.

• An infinite sequence of integers fni W i � 0g is a weakly wandering (ww)
sequence for T if there is a set W of positive measure such that
T niW \ T nj W D ; for i; j � 0 and i ¤ j .
Often we will say W is a ww set (for T ) (with the sequence fni g),
or fni g is a ww sequence (for T ) (with the set W ).

The following lemma about wandering sets is used in the proof of the Recurrence
Theorem that follows.

Lemma 1.1.2 (Wandering Sets). The following two conditions for a nonsingular
transformation T on .X;B; m/ are equivalent.

(1) T does not admit any wandering sets.
(2) For a measurable function f .x/, if f .T x/ � f .x/ a.e., then f .T x/ D f .x/

a.e.

Proof. (1) ) (2): Assume condition (2) does not hold. Then there is a measurable
function f .x/ so that f .T x/ � f .x/ a.e. andmfx W f .T x/ < f .x/ < 1g > 0.
Therefore there exists a constant c such that if W D fx W f .T x/ � c < f .x/g
then m.W / > 0.
For x 2 W we have: f .T nx/ � f .T n�1x/ � � � � � f .T x/ � c.
For x 2 T �nW , since T nx 2 W , we have: c < f .T nx/.
Then T nW \W D ; for all n > 0. Thus T iW \T jW D T j .T i�jW \W / D ;
for i > j . In other words, W is a wandering set for T . This is a contradiction
to (1).

(2) ) (1): Assume condition (1) does not hold.
Let W be a wandering set for T , and let W � D S1

nD0 T �nW .


