

Tetsuko Noguchi · Shigeyuki Kawano · Hirokazu Tsukaya · Sachihiro Matsunaga Atsushi Sakai · Ichirou Karahara · Yasuko Hayashi *Editors*

Atlas of Plant Cell Structure

Atlas of Plant Cell Structure

Tetsuko Noguchi Editor-in-Chief

Shigeyuki Kawano • Hirokazu Tsukaya Sachihiro Matsunaga • Atsushi Sakai Ichirou Karahara • Yasuko Hayashi Editors

Atlas of Plant Cell Structure

Editor-in-Chief Tetsuko Noguchi Professor, Course of Biological Sciences Faculty of Science Nara Women's University Kitauoya-nishimachi, Nara, Japan

Editors Shigeyuki Kawano Professor, Department of Integrated Biosciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa, Chiba, Japan

Sachihiro Matsunaga Professor, Department of Applied Biological Science Faculty of Science and Technology Tokyo University of Science Noda, Chiba, Japan

Ichirou Karahara Professor, Department of Biology Graduate School of Science and Engineering University of Toyama Toyama, Toyama, Japan Hirokazu Tsukaya Professor, Department of Biological Sciences Graduate School of Science The University of Tokyo Bunkyo-ku, Tokyo, Japan

Atsushi Sakai Professor, Course of Biological Sciences Faculty of Science Nara Women's University Kitauoya-nishimachi, Nara, Japan

Yasuko Hayashi Associate Professor, Department of Environmental Science and Technology Graduate School of Science and Technology Niigata University Ikarashi, Niigata, Japan

ISBN 978-4-431-54940-6 ISBN 978-4-431-54941-3 (eBook) DOI 10.1007/978-4-431-54941-3 Springer Tokyo Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942687

© Springer Japan 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This is a photo catalog of the world's cellular diversity, which plant morphologists have been studying for over a quarter of a century. We assembled this atlas for science students, their teachers, and anyone who is curious about the extraordinary variety of living things studied in the field of plant morphology. Much of the knowledge described here, particularly about flowering plants, mosses, liverworts, algae, fungi, and lichens, has been gathered only in the past quarter century and represents the frontiers of research.

"Seeing is believing" is an idiom first recorded in 1639 that means "only physical or concrete evidence is convincing" and is a popular saying throughout the world. It is extremely difficult to describe in full any given state via text alone. Properly shot photos, on the other hand, can show such states with vastly more precision and detail. The saying leads to the mistaken belief that "seen evidence" can be easily and correctly interpreted, when in fact, interpretation may be difficult. An advanced transmission electron microscopy (TEM) technology, 3D images reconstructed from a series of TEM images, provides many insights into structural differences of organelles in a single cell and between cell types. As further evidence that seeing is believing, fluorescence microscopy is an excellent methodology for analyzing mitochondrial dynamics, for instance. A particularly important methodology is to use fluorescent dyes to stain special cell structures in many types of living cells, either by natural affinity or by tagging. Today, the use of green fluorescent protein (GFP) for visualizing a particular protein in living cells has been applicable to the research of cell organelle dynamics. Some variants of GFP contain unique optical properties which can provide marvelous, elegant experiments and lead to breakthrough findings by cell biologists.

Morphological research on plant bodies and their structures began in ancient Greece over 2,000 years ago. It is the biologist's drive to see and learn more about the formation of individual plants and organs that has paved the way to various microscopes and visualization techniques. In the seventeenth century, the light microscope was invented, which led to Robert Hooke's presenting his observations of what he called "cells" in cork, a dead plant organ, in 1655. In the nineteenth century, nuclei, mitochondria, chloroplasts, and vacuoles were identified in living cells, and 46 years after the first observation of the nucleus, the behavior of chromosomes during mitosis was reported. With the development of electron microscopy, biologists came to understand that individual organelles have the same basic ultrastructure, and discovered that organelles such as the endoplasmic reticulum, plant Golgi body, and cytoskeleton microscopes is greatly advanced and the techniques for specimen preparation have improved. With transgenic techniques, high-resolution fluorescent microscopy, and so on, we can detect not only the behaviors of organelles but also the dynamic movements of molecules to carry out a variety of functions that are critical for life.

The main concept of this book is visualization: seeing is believing. It presents beautiful photographs and 3D-reconstruction images of cellular structures in plants, algae, fungi, and related organisms taken by a variety of microscopes and visualization techniques. The book is subdivided into nine chapters: 1. Nuclei and Chromosomes, 2. Mitochondria, 3. Chloroplasts, 4. The Endoplasmic Reticulum, Golgi Apparatuses, and Endocytic Organelles, 5. Vacuoles and Storage Organelles, 6. Cytoskeletons, 7. Cell Walls, 8. Generative Cells, and 9. Meristems.

The topics in each chapter are restricted with the hope that they will be interesting, useful, and comprehensible. Each photo plate is accompanied by an explanation to introduce readers to the cell morphology, structures, and functions depicted. The explanations are intended to be the minimum necessary, because we hope readers will deeply consider and understand the minute ultrastructure within cells directly from the photographs. The references that are included will help readers to understand the topics in depth, but references are avoided in some photo plates showing popular cell structures.

This *Atlas of Plant Cell Structure* is published to celebrate the 25th anniversary of the Japanese Society of Plant Morphology. The Society was founded in 1988 to promote studies of plant morphology and discussion among researchers in this academic field. The members are scientists in plant morphology (micro- and macro-structure, function, and development), all levels of organization (molecular to macro-structure), and all plant groups and related organisms (cyanobacteria, algae, fungi, and lichens).

Included are 92 beautiful photographs, contributed mostly by members of the Society. Some of the photographs are originals, made especially for this atlas, and some have been featured on the cover of journals such as *Plant Morphology* (the official journal of the Society), the *Journal of Cell Science*, the *Journal of Plant Research*, *Molecular Biology of the Cell*, and *Nature*. We hope readers will enjoy this visual tour within cells and get new insights into plant cell structure.

Nara, Japan Chiba, Japan Tokyo, Japan Chiba, Japan Nara, Japan Toyama, Japan Niigata, Japan

September 2014

Tetsuko Noguchi Shigeyuki Kawano Hirokazu Tsukaya Sachihiro Matsunaga Atsushi Sakai Ichirou Karahara Yasuko Hayashi

Acknowledgments

The photographs in this book were taken by 66 members of the Japanese Society of Plant Morphology using the best methods and techniques available to capture the objects in cells and tissues: by light and fluorescent microscopy, by transmission and scanning electron microscopy, and by other processes. In addition, 25 non-members of the society kindly agreed to allow their photographs to be reproduced in the book.

Morphologists recognize how important it is for them to observe objects closely. In addition, they always try to capture real images of cell structures that reflect active functions being carried out by complex molecular mechanisms. The photographs in this book were taken by such plant morphologists.

We deeply thank Reiko Suzuki and Kayoko Morita of Nara Women's University for their help in digital processing of the images and preparation of the manuscripts for this book.

We extend our thanks to all those who have encouraged the publication of this atlas.

September 2014

Contents

1	Nuclei and Chromosomes	1
2	Mitochondria	25
3	Chloroplasts	45
4	The Endoplasmic Reticulum, Golgi Apparatuses,and Endocytic OrganellesTetsuko Noguchi, Sachihiro Matsunaga, and Yasuko Hayashi	71
5	Vacuoles and Storage Organelles	89
6	Cytoskeletons	107
7	Cell Walls	137
8	Generative Cells	157
9	Meristems	187

Plates

1	Nucle	ei and Chromosomes	1
	1.1	Ultrastructural appearance of nuclei at different	
		cell stages in high pressure frozen onion epidermal cells	2
		Ichirou Karahara, Lucas Andrew Staehelin,	
		and Yoshinobu Mineyuki	
	1.2	Morphology of nucleoli in tobacco BY-2 cultured cells	4
		Junko Hasegawa and Sachihiro Matsunaga	
	1.3	Nuclear lamina localized at the nuclear periphery	
		in interphase and at chromosomes in mitotic phase	6
		Yuki Sakamoto and Shingo Takagi	
	1.4	Nuclei of multinucleate cells in <i>Hydrodictyon reticulatum</i>	8
		Manabu Tanaka and Kyoko Hatano	
	1.5	Meiotic chromosomes of Arabidopsis thaliana pollen	
		mother cells	10
		Yoshitaka Azumi	
	1.6	Multicolor FISH of <i>Pinus</i> chromosomes	12
		Masahiro Hizume and Fukashi Shibata	
	1.7	Chromosome painting and FISH of distal end satellite	
		DNAs in dioecious plants with sex chromosomes	14
		Fukashi Shibata, Yusuke Kazama, Shigeyuki Kawano	
		and Masahiro Hizume	
	1.8	Kinetochore and microtubule dynamics during cell division	
		of tobacco BY-2 cells visualized by live-cell imaging	16
		Daisuke Kurihara and Sachihiro Matsunaga	
	1.9	Visualization of chromatin dynamics in the root	
		of Arabidopsis thaliana	18
		Takeshi Hirakawa and Sachihiro Matsunaga	
	1.10	Specific contribution of condensin II to sister centromere	•
		resolution in <i>Cyanidioschyzon merolae</i>	20
		Takayuki Fujiwara and Tatsuya Hirano	~~
	1.11	Endomitosis induces a giant polyploid cell on the leaf epidermis	22
		Sachihiro Matsunaga and Masaki Ito	
2	Mitoo	chondria	25
	2.1	Mechanisms of division and inheritance	
		of mitochondria and chloroplasts	26
		Tsuneyoshi Kuroiwa and Isamu Miyakawa	
	2.2	Mitochondrial nucleoid of <i>Physarum polycephalum</i>	28
		Narie Sasaki	
	2.3	Uniparental inheritance of mitochondria during mating	
		of Didymium iridis	30
		Yohsuke Moriyama and Shigeyuki Kawano	

	2.4	Giant mitochondrion in synchronized <i>Chlamydomonas</i> cells	32
		Tomoko Ehara and Tetsuaki Osafune	
	2.5	Dynamic transition of mitochondrial morphologies	
		during germination in living zygospore	
		Hiroaki Aoyama and Soichi Nakamura	
	2.6	Mitochondrial nucleoids in the Euglena gracilis	
		mitochondrial network	36
		Yasuko Hayashi and Katsumi Ueda	
	2.7	Mitochondrial fission and fusion in an onion epidermal cell	38
		Shin-ichi Arimura	
	2.8	Mitochondria in Arabidopsis guard cells	40
		Chieko Saito	
	2.9	Mitochondria of thermogenic skunk cabbage	42
		Mayuko Sato and Yasuko Ito-Inaba	
3	Chlor	oplasts	45
·	3.1	Chloroplast division by the plastid-dividing ring	46
		Shin-ya Miyagishima and Tsuneyoshi Kuroiwa	10
	3.2	Chloroplasts divide by contraction of a bundle	
		of polyglucan nanofilaments	48
		Yamato Yoshida, Haruko Kuroiwa, and Tsuneyoshi Kuroiwa	10
	3.3	Cyanelle division of the glaucocystophyte	
	0.0	alga Cyanophora paradoxa	50
		Haruki Hashimoto, Mayuko Sato, and Shigeyuki Kawano	50
	3.4	3D distribution of RuBisCO in synchronized <i>Euglena</i> cells	52
		Tetsuaki Osafune, Tomoko Ehara, and Shuji Sumida	02
	3.5	Developing and degenerating chloroplasts	
		in Haematococcus pluvialis	54
		Shuhei Ota and Shigeyuki Kawano	
	3.6	Monoplastidic cells in lower land plants	56
		Masaki Shimamura	
	3.7	Dimorphic chloroplasts in the epidermis	
		of the aquatic angiosperm <i>Podostemaceae</i> family	58
		Rieko Fujinami	
	3.8	Distribution of chloroplasts and mitochondria	
		in Kalanchoë blossfeldiana mesophyll cells	60
		Ayumu Kondo	
	3.9	Etioplast prolamellar bodies in Arabidopsis thaliana	
		etiolated cotyledon	62
		Yasuko Hayashi	
	3.10	Chloroplasts and mitochondria in Sorghum	
		bundle sheath cells	64
		Chieko Saito, Yoshihiro Kobae, and Takashi Sazuka	
	3.11	Chloroplast division machinery in <i>Pelargonium zonale</i>	66
		Haruko Kuroiwa and Tsuneyoshi Kuroiwa	
	3.12	Active digestion of paternal chloroplast DNA	
		in a young Chlamydomonas reinhardtii zygote	68
		Yoshiki Nishimura	
4 The Endoplasmic Reticulum, Golgi Apparatuses,		Endoplasmic Reticulum, Golgi Apparatuses.	
-			71
	4.1	Endoplasmic reticulum throughout the cytoplasm	72
		Haruko Ueda, Etsuo Yokota, and Ikuko Hara-Nishimura	
	4.2	Endoplasmic reticulum in the green alga <i>Botryococcus braunii</i>	74
		Tetsuko Noguchi	

	4.3	ER body in cotyledon epidermal cells Yasuko Hayashi and Toshiyuki Sakurai	76
	4.4	Golgi apparatuses in a <i>Brachypodium</i> root cap peripheral cell Mayuko Sato	78
	4.5	Golgi bodies in mature pollen of <i>Tradescantia reflexa</i>	80
	4.6	Golgi bodies and the <i>trans</i> -Golgi networks in <i>Botryococcus braunii</i> Tetsuko Noguchi	82
	4.7	Clathrin-coated buds and vesicles in <i>Botryococcus braunii</i>	84
	4.8	Spatio-temporal dynamics of endocytic vesicle formation in <i>Arabidopsis thaliana</i>	86
5	Voo		89
5	5.1	Central vacuole in Arabidopsis thaliana pistil cells	90
	5.2	Vacuoles under salt stress	92
	5.3	Autophagosomes and autolysosomes in plant cells	94
	5.4	Transition of peroxisomes from glyoxysomes to leaf	
		peroxisomes during greening in cotyledon	96
	5.5	Dynamics of embryonic pea leaf cells during early germination Yasuko Kaneko	98
	5.6	Lipids and astaxanthin are major contents of subcellular	
		changes during encystment in <i>Haematococcus pluvialis</i>	100
	5.7	Lipid accumulation in the green alga <i>Botryococcus braunii</i> Reiko Suzuki and Tetsuko Noguchi	102
	5.8	Production of oil bodies in response to nitrogen starvation	
		in Chlamydomonas reinhardtii	104
6	Cyto 6.1	oskeletons	107
		tips visualized in 3D Yoshinobu Mineyuki	108
	6.2	Microtubule-dependent microtubule nucleation	
		in a tobacco BY-2 cell	110
	()	Takashi Murata	
	6.3	Ultrastructural appearance of microtubules in high-pressure frozen onion epidermal cells	112
		Ichirou Karahara, Takashi Murata, Lucas Andrew Staehelin, and Yoshinobu Mineyuki	112
	6.4	Microtubules and their end structures in high-pressure	
		frozen onion epidermal cells visualized by electron tomography Ichirou Karahara and Yoshinobu Mineyuki	114
	6.5	Microtubule organizing centers in bryophytes	116
		Masaki Shimamura and Yoshinobu Mineyuki	
	6.6	Selective disappearance of female centrioles after fertilization	
		in brown algae	118
		Chikako Nagasato and Taizo Motomura	

	6.7	Spindle formation in brown algae	120
	6.8	Helical rows of microtubules in <i>Euglena</i> pellicles	122
	()	Tetsuko Noguchi Snindla nala hadu duning maioria Lin tha hudding	
	6.9	Spindle pole body during meiosis I in the budding	104
		yeast Saccharomyces cerevisiae	124
	(10	Aiko Hirata and Shigeyuki Kawano	100
	6.10	Actin filaments in <i>Lilium longiflorum</i> pollen protoplasts	126
	(11	Ichiro Tanaka	
	6.11	Dynamics of actin filaments in the liverwort,	100
		Marchantia polymorpha	128
		Atsuko Era and Takashi Ueda	
	6.12	Two actin structures in dormant <i>Dictyostelium discoideum</i> spores	130
		Masazumi Sameshima	
	6.13	Actin-microtubule interaction during preprophase band	
		formation in onion root tips visualized	
		by immuno-fluorescence microscopy	132
		Miyuki Takeuchi and Yoshinobu Mineyuki	
	6.14	Microtubules direct the layered structure of angiosperm	
		shoot apical meristems (SAMs)	134
		Shuichi Sakaguchi	
7	Coll V	Wolle	137
1	7.1	Walls	157
	/.1	Ribbon-like fibrillar network of glucan in reverting	120
		Schizosaccharomyces pombe protoplast	138
	7.2	Masako Osumi	
	7.2	Mother and daughter cell walls during autosporulation	1.40
		in the green alga <i>Chlorella vulgaris</i>	140
		Maki Yamamoto and Shigeyuki Kawano	
	7.3	Great-grandmother, grandmother, mother, and daughter cell	
		walls during budding in the green alga Marvania geminata	142
		Maki Yamamoto, Satomi Owari, and Shigeyuki Kawano	
	7.4	Formation of amphiesmal vesicles and thecal plates	
		in the dinoflagellate Scrippsiella hexapraecingula	144
		Satoko Sekida and Kazuo Okuda	
	7.5	The elaborate shape of <i>Micrasterias</i> is formed by a primary	
		cell wall containing pectin	146
		Tetsuko Noguchi	
	7.6	Cellulose-synthesizing rosettes in the green algae	
		Micrasterias and Closterium	148
		Tetsuko Noguchi	
	7.7	Localization of typical cell wall polysaccharides pectin	
		and β -1,3/1,4 mixed linkage glucan in <i>Arabidopsis thaliana</i>	
		and Oryza sativa	150
		Ryusuke Yokoyama, Hideki Narukawa, and Kazuhiko Nishitani	
	7.8	Plasmodesmata directly connect the cytoplasm of neighboring	
		plant cells	152
		Yasuko Hayashi	
	7.9	Meshwork structure of the Casparian strip	154
		Yoshihiro Honma and Ichirou Karahara	

•	^	
,	`	v

0	Como	notive Celle	157
8	Gene 8.1	rative Cells Cells A mating-pair of seaweed Ulva compressa gametes	157
	0.1	with asymmetrical mating structure positions	158
		Yuko Mogi and Shigeyuki Kawano	130
	8.2	Spermatogenesis in <i>Marchantia polymorpha</i>	160
	0.2	Katsumi Ueda and Tetsuko Noguchi	100
	8.3	Motile sperms released in the ovule of an extinct	
	0.5	Permian gymnosperm <i>Glossopteris</i>	162
		Harufumi Nishida	102
	8.4	Multiflagellated sperm of <i>Ginkgo biloba</i> L	164
	0.4	Shinichi Miyamura	104
	8.5	Pollen exine and male gametic nucleus of <i>Lilium longiflorum</i>	166
	0.0	Norifumi Mogami and Ichiro Tanaka	100
	8.6	Developing <i>Arabidopsis</i> pollen grain containing a young	
	0.0	generative cell with some mitochondria and no plastids	168
		Chieko Saito and Keiko Shoda	100
	8.7	The selective increase or decrease of organelle DNAs in young	
		generative cells controls cytoplasmic inheritance in higher plants	170
		Noriko Nagata	
	8.8	Dimorphic <i>Plumbago auriculata</i> sperm cells	172
		Chieko Saito	
	8.9	Pollen tube guidance toward the ovule	174
		Masahiro M. Kanaoka	
	8.10	Semi-in vitro Torenia system for live-cell analysis	
		of plant fertilization	176
		Tetsuya Higashiyama	
	8.11	Protoplasts from plant female gametophytes	178
		Masahiro M. Kanaoka	
	8.12	Egg cells with giant mitochondria in a higher plant,	
		Pelargonium zonale Ait	180
		Haruko Kuroiwa and Tsuneyoshi Kuroiwa	
	8.13	Zygote and sperm cells during early embryogenesis	
		in a higher plant, <i>Pelargonium zonale</i> Ait	182
		Haruko Kuroiwa and Tsuneyoshi Kuroiwa	
	8.14	Cell geometry in a whole Arabidopsis seed visualized	
		by X-ray micro-CT	184
		Yoshinobu Mineyuki, Aki Fukuda, Daisuke Yamauchi,	
		and Ichirou Karahara	
9	Meri	stems	187
	9.1	Two types of meristem involved in development	
		of the fern gametophyte	188
		Ryoko Imaichi	
	9.2	Structures of fern and lycophyte shoot apical meristems (SAMs)	190
		Ryoko Imaichi	
	9.3	Structures of angiosperm SAMs	192
		Ryoko Imaichi	
	9.4	Arabidopsis thaliana leaf blade and leaf petiole	194
		Yasunori Ichihashi, Kensuke Kawade, and Hirokazu Tsukaya	
	9.5	Structures of fern and lycophyte root apical meristems (RAMs)	196
		Ryoko Imaichi	

9.6	Structures of angiosperm RAMs	198
	Ryoko Imaichi	
9.7	Asymmetric cell division forms endodermis and cortex	
	in Arabidopsis thaliana root	200
	Mai Takagi and Sachihiro Matsunaga	

Contributors

Hiroaki Aoyama Center of Molecular Biosciences, Tropical Biosphere Research Center University of the Ryukyus, Okinawa, Japan

Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, Japan

(Plate 2.5)

Shin-ichi Arimura Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (Plate 2.7)

Yoshitaka Azumi Department of Biological Sciences, Faculty of Science Kanagawa University, Kanagawa, Japan (Plate 1.5)

Tomoko Ehara Department of Microbiology, Tokyo Medical University, Tokyo, Japan (Plates 2.4 and 3.4)

Atsuko Era Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan (Plate 6.11)

Masaru Fujimoto Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (**Plate 4.8**)

Rieko Fujinami Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan (**Plate 3.7**)

Takayuki Fujiwara Chromosome Dynamics Laboratory RIKEN, Saitama, Japan (Plate 1.10)

Aki Fukuda Department of Life Science, Faculty of Science University of Hyogo, Hyogo, Japan

(Plate 8.14)

Kohei Hamaji Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan

(Plate 5.2)

Ikuko Hara-Nishimura Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan (Plate 4.1)

Junko Hasegawa Department of Applied Biological Science, Faculty of Science and Technology Tokyo University of Science, Chiba, Japan (Plate 1.2)

Haruki Hashimoto Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan (Plate 3.3)

Kyoko Hatano Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan (**Plate 1.4**)

Yasuko Hayashi Department of Environmental Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan (Plates 2.6, 3.9, 4.3, 5.4 and 7.8)

Tetsuya Higashiyama Division of Biological Science, Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science/JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Aichi, Japan (**Plate 8.10**)

Takeshi Hirakawa Department of Applied Biological Science, Faculty of Science and Technology Tokyo University of Science, Chiba, Japan (Plate 1.9)

Tatsuya Hirano Chromosome Dynamics Laboratory RIKEN, Saitama, Japan (**Plate 1.10**)

Aiko Hirata Bioimaging Center of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan (**Plate 6.9**)

Masahiro Hizume Faculty of Education, Ehime University, Matsuyama, Japan (Plates 1.6 and 1.7)

Yoshihiro Honma Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan (**Plate 7.9**)

Yasunori Ichihashi Department of Plant Biology, University of California at Davis, Davis, CA, USA

(Plate 9.4)

Ryoko Imaichi Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan

(Plates 9.1, 9.2, 9.3, 9.5, and 9.6)

Yuko Inoue Department of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan (Plate 5.3)

Masaki Ito Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan (Plate 1.11)

Yasuko Ito-Inaba Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan (Plate 2.9)

Masahiro M. Kanaoka Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan (Plates 8.9 and 8.11)

Yasuko Kaneko Biology Section in the Faculty of Education, Saitama University, Saitama, Japan

(Plate 5.5)

Ichirou Karahara Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan (Plates 1.1, 6.3, 6.4, 7.9, and 8.14)

Kensuke Kawade RIKEN CSRS, Kanagawa, Japan (Plate 9.4)

Shigeyuki Kawano Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan (Plates 1.7, 2.3, 3.3, 3.5, 5.6, 6.9, 7.2, 7.3, and 8.1)

Yusuke Kazama Ion Beam Breeding Team RIKEN Innovation Center, Saitama, Japan (Plate 1.7)

Yoshihiro Kobae Faculty of Agriculture, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (**Plate 3.10**)

Ayumu Kondo Faculty of Agriculture, Meijo University, Nagoya, Japan (**Plate 3.8**)

Daisuke Kurihara Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan (**Plate 1.8**)

Tsuneyoshi Kuroiwa CREST, Initiative Research Unit, College of Science, Rikkyo University, Tokyo, Japan (Plates 2.1, 3.1, 3.2, 3.11, 5.8, 8.12, and 8.13)

Haruko Kuroiwa CREST, Initiative Research Unit, College of Science, Rikkyo University, Tokyo, Japan

(Plates 3.2, 3.11, 5.8, 8.12, and 8.13)

Shoji Mano Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan

(Plate 5.4)

Sachihiro Matsunaga Department of Applied Biological Science, Faculty of Science and Technology Tokyo University of Science, Chiba, Japan (Plates 1.2, 1.8, 1.9, 1.11, and 9.7)

Tetsuro Mimura Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan (Ploto 5.2)

(Plate 5.2)

Yoshinobu Mineyuki Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan (Plates 1.1, 6.1, 6.3, 6.4, 6.5, 6.13, and 8.14)

Shin-ya Miyagishima Center for Frontier Research, National Institute of Genetics, Shizuoka, Japan

(Plate 3.1)

Isamu Miyakawa Faculty of Science, Yamaguchi University, Yamaguchi, Japan (Plate 2.1)

Shinichi Miyamura Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

(Plate 8.4)

Norifumi Mogami Department of Biological and Chemical Systems, Engineering Kumamoto National College of Technology, Kumamoto, Japan (**Plate 8.5**)

Yuko Mogi Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan (**Plate 8.1**)

Yohsuke Moriyama Department Anatomy II and Cell Biology, School of Medicine, Fujita Health University, Aichi, Japan (Plate 2.3)

Yuji Moriyasu Department of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan (**Plate 5.3**)

Taizo Motomura Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan (**Plate 6.6**)

Takashi Murata Division of Evolutionary Biology, National Institute for Basic Biology, Aichi, Japan

(Plates 6.2 and 6.3)

Chikako Nagasato Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan (Plates 6.6 and 6.7)

Noriko Nagata Faculty of Science, Japan Women's University, Tokyo, Japan (Plate 8.7)

Soichi Nakamura Laboratory of Cell and Functional Biology, Faculty of Science University of the Ryukyus, Okinawa, Japan (**Plate 2.5**)

Hideki Narukawa Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan (**Plate 7.7**)

Harufumi Nishida Department of Biological Sciences, Faculty of Science and Engineering Chuo University, Tokyo, Japan (Plate 8.3)

Yoshiki Nishimura Department of Botany, Kyoto University, Kyoto, Japan (Plate 3.12)

Kazuhiko Nishitani Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan (**Plate 7.7**)

Tetsuko Noguchi Course of Biological Sciences, Faculty of Science Nara Women's University, Nara, Japan

(Plates 4.2, 4.5, 4.6, 4.7, 5.1, 5.7, 6.8, 7.5, 7.6, and 8.2)

Kazuo Okuda Graduate School of Kuroshio Science, Kochi University, Kochi, Japan (Plate 7.4)

Tetsuaki Osafune Beppubay Research Institute for Applied Microbiology, Kitsuki, Japan (Plates 2.4 and 3.4)

Masako Osumi Integrated Imaging Research Support, Tokyo, Japan (Plate 7.1)

Shuhei Ota Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan (Plates 3.5 and 5.6)

Satomi Owari Neo-Morgan Laboratory Incorporated Research & Development, Biotechnology Research Center, Kanagawa, Japan (Plate 7.3)

Chieko Saito Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan (Plates 2.8, 3.10, 8.6, and 8.8)

Shuichi Sakaguchi Course of Biological Sciences, Faculty of Science Nara Women's University, Nara, Japan (Plate 6.14)

Yuki Sakamoto Department of Biological Science, Graduate School of Science, Osaka University, Osaka, Japan (Plate 1.3)

Toshiyuki Sakurai Department of Environmental Science, Graduate School of Science and Technology, Niigata University, Niigata, Japan (**Plate 4.3**)

Masazumi Sameshima Integrated Imaging Research Support, Tokyo, Japan (Plate 6.12)

Narie Sasaki Division of Biological Science, Graduate School of Science, Nagoya University, Aichi, Japan (Plate 2.2)

Mayuko Sato RIKEN Center for Sustainable Resource Science, Kanagawa, Japan (Plates 2.9, 3.3, and 4.4)

Takashi Sazuka Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan (Plate 3.10)

Satoko Sekida Graduate School of Kuroshio Science, Kochi University, Kochi, Japan (Plate 7.4)

Fukashi Shibata Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan

(Plates 1.6 and 1.7)

Masaki Shimamura Department of Biological Science, Faculty of Science Hiroshima University, Hiroshima, Japan (Plates 3.6 and 6.5)

Keiko Shoda Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Saitama, Japan (Plate 8.6)

Lucas Andrew Staehelin MCD Biology, University of Colorado, Boulder, CO, USA (Plates 1.1 and 6.3)

Shuji Sumida Department of Microbiology, Tokyo Medical University, Tokyo, Japan (Plate 3.4)

Reiko Suzuki Course of Biological Sciences, Faculty of Science Nara Women's University, Nara, Japan (Plate 5.7)

Shingo Takagi Department of Biological Science, Graduate School of Science, Osaka University, Osaka, Japan

(Plate 1.3)

Mai Takagi Department of Applied Biological Science, Faculty of Science and Technology Tokyo University of Science, Chiba, Japan (**Plate 9.7**)

Miyuki Takeuchi Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan (**Plate 6.13**)

Manabu Tanaka Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan (**Plate 1.4**)

Ichiro Tanaka Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan

(Plates 6.10 and 8.5)

Hirokazu Tsukaya Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan (**Plate 9.4**)

Haruko Ueda Department of Botany Graduate School of Science, Kyoto University, Kyoto, Japan

(Plate 4.1)

Takashi Ueda Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan (Plates 4.8 and 6.11)

Katsumi Ueda (Plates 2.6 and 8.2)

Maki Yamamoto Institute of Natural Sciences, Senshu University, Kanagawa, Japan (Plates 7.2 and 7.3)

Daisuke Yamauchi Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan (Plate 8.14)

Etsuo Yokota Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan (Plate 4.1)

Ryusuke Yokoyama Laboratory of Plant Cell Wall Biology Graduate School of Life Sciences, Tohoku University, Miyagi, Japan (**Plate 7.7**)

Yamato Yoshida CREST, Initiative Research Unit, College of Science, Rikkyo University, Tokyo, Japan

Department of Plant Biology Michigan State University, East Lansing, MI, USA (Plate 3.2)