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  Pref ace   

 In societies all around the globe, the population is aging. This fact will pose impor-
tant challenges to healthcare and social systems in industrialized and emerging 
economies alike. It is therefore critical to devise strategies to extend the healthy 
years of life and thus limit the exponential increase in healthcare cost associated 
with growing old and frail. Understanding the aging process at a fundamental level 
will help do so, extending healthspan and maybe even increasing lifespan. 

 Stem cells are critical for maintaining tissue homeostasis, and age-related dys-
function of stem cells is likely the underlying cause of degeneration, regenerative 
dysfunction, and aging-associated disease in a great variety of organisms and tis-
sues. Knowledge on the molecular mechanisms driving stem cell aging is thus 
expected to inspire rational interventions for a range of age-related pathologies. 

 This book summarizes our current understanding of cellular and molecular 
mechanisms of stem cell aging in a great variety of model systems while highlight-
ing promising approaches to attenuate stem cell aging. We hope that this book will 
serve as a reference in the fi eld and will also, in the long run, contribute to healthy 
aging.  

    Novato ,  CA ,  USA      Henri     Jasper   
  
   Ulm ,  Germany      Maria     Carolina     Florian   

   Ulm ,  Germany      Hartmut     Geiger      
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  1      Stem Cell Aging: An Overview 

             Heinrich     Jasper    

    Abstract  

  Stem cell dysfunction is associated with age-related degenerative and prolifera-
tive diseases. Recent work in a range of model organisms has focused on charac-
terizing the causes and consequences of stem cell aging. The insight obtained 
from these studies is likely to impact our ability to promote healthy aging and to 
develop new therapies against age-related diseases. This book provides an over-
view of such studies, aiming to present a comprehensive assessment of the cur-
rent status of the fi eld. 

      Loss of tissue homeostasis is a hallmark of aging, resulting in degenerative as well 
as proliferative diseases like cancer. A decline in stem cell (SC) function is a likely 
cause for these pathologies, and recent work in model organisms has focused on 
characterizing the causes and consequences of stem cell aging. Limiting these 
 consequences of stem cell aging is likely to impact our ability to promote healthy 
aging and to develop new therapies against age-related diseases. Furthermore, the 
promise of regenerative medicine implies that mastering stem cell biology may 
open new avenues for truly rejuvenating therapies. For this promise to become 
 reality, we need to understand not only the stem cell-intrinsic changes occurring as 
the organism ages but also the changes in local and systemic conditions that impact 
stem cell function and regenerative capacity in a variety of tissues. A wide range of 
studies in a variety of model systems have begun dissecting the mechanisms and 
consequences of stem cell aging, resulting in a coalescence of new concepts and 
models that promise to provide a comprehensive understanding of the decline of 
regenerative capacity in aging tissues (Jones and Rando  2011 ; Rando  2006 ; 
Sharpless and DePinho  2007 ). 
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 This book provides an overview of such mechanisms, aiming to present a 
 comprehensive assessment of the current status of the fi eld. To achieve an accurate 
and exhaustive account of our understanding of stem cell aging, we have assembled 
a group of authors that study aging processes in a variety of model systems,  including 
yeast, worms, and fl ies, as well as various mouse models of regenerative processes. 
The work of these authors thus represents a broad overview of stem cell aging 
 ranging from cell-intrinsic mechanisms of replicative aging in yeast, over germline 
and somatic stem cell aging and niche-stem cell interactions in fl ies and worms to 
complex tissue/stem cell interactions in various vertebrate tissues, and strategies to 
improve regeneration and potentially design rejuvenating therapies in vertebrate 
models. We believe that this comprehensive approach is likely to achieve the most 
informative and timely overview of the fi eld and allows identifying similarities and 
differences between individual stem cell systems. Here, I provide a broad overview 
of themes and insights that are elaborated on in more detail in the corresponding 
chapters. 

1.1     SC-Intrinsic Changes in the Aging Organism: 
SC Dysfunction as Anticancer Mechanism 

 Age-related dysfunction of SCs is caused by both cell-intrinsic and cell-extrinsic 
mechanisms. While the germline stem cell lineage is in principle immortal, and 
should therefore have acquired mechanisms to prevent age-related decline, their 
proliferative activity is affected by changes in local and systemic support processes 
that decay in aging animals, leading to reproductive senescence. Somatic SCs, in 
turn, while being affected by systemic changes, also seem to age due to intrinsic 
mechanisms that limit their replicative lifespan. These include telomere dysfunc-
tion, DNA damage-induced cellular senescence, and age-related increases in the 
expression of cell cycle inhibitors (Gunes and Rudolph  2013 ; Jones and Rando 
 2011 ; Rando  2006 ; Sharpless and DePinho  2007 ). It has been proposed that these 
age-related changes in somatic stem cells are part of anticancer mechanisms that 
prevent deregulation of SC proliferation. The inability of somatic SCs to sustain 
effi cient tissue regeneration in aging organisms would thus be a trade-off of pro-
cesses required for cancer prevention (Campisi  2013 ; Sharpless and DePinho  2007 ). 
Supporting this view, recent studies confi rm that deregulation of stem cell prolifera-
tion can contribute to tumor formation (Barker et al.  2009 ; Lapouge et al.  2011 ; 
White et al.  2011 ; Youssef et al.  2010 ). Furthermore, the identifi cation of molecular 
similarities between cancer stem cells and tissue-specifi c stem cells highlights the 
importance of preventing deregulation of these cells to ensure long-term tissue 
homeostasis (Merlos-Suarez et al.  2011 ). This insight suggests that to promote tis-
sue health and ultimately organismal lifespan, it is key to fi nd strategies to modulate 
somatic SC function and increase their regenerative capacity without promoting 
excessive and deregulated proliferation.  

H. Jasper
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1.2     Diverse Aging Processes in SCs 

 While stereotypical age-related processes that limit regeneration can thus be defi ned, 
somatic SCs exhibit a large proliferative diversity, refl ecting the specifi c require-
ment of individual tissues. Specifi c modes of SC proliferation include (i) continu-
ously cycling stem cells of high-turnover tissues, such as intestinal stem cells (Li 
and Clevers  2010 ; Simons and Clevers  2011 ; van der Flier and Clevers  2009 ) and 
short-term hematopoietic stem cells (HSCs) (Fuchs  2009 ); (ii) SCs whose prolifera-
tion is induced by injury, including airway basal epithelial stem cells and muscle 
satellite cells (Abou-Khalil and Brack  2010 ; Dhawan and Rando  2005 ; Rock et al. 
 2011 ); and (iii) stem cells with alternate quiescent and proliferative periods, such as 
hair follicle stem cells (Fuchs  2009 ). This diversity results in distinct age-associated 
defi ciencies that contribute to regenerative decline of individual tissues and 
 highlights the need to study aging of distinct SC systems separately to achieve a 
comprehensive understanding of the regenerative decline in aging organisms. Here, 
we take account of this diversity of aging processes in different stem cell popula-
tions by focusing on the age-associated dysfunction of individual stem cell 
 populations separately in individual chapters.  

1.3     SC Aging Through Evolutionarily Conserved 
Stress Responses 

 While cell-intrinsic age-related changes in somatic stem cells often specifi cally 
impact cell cycle regulation (and can thus be defi ned as anticancer “programs” that 
contribute to tissue aging), somatic SCs are also impacted by the random age-related 
accumulation of molecular damage, as well as by changes in local and systemic 
conditions in the aging organism. This includes infl ammatory conditions and 
 oxidative stress, as described in the hematopoietic system of the mouse and in the 
posterior midgut of fl ies (Biteau et al.  2011 ; Tothova and Gilliland  2007 ). The 
resulting accumulation of damage to DNA and other macromolecules is thus likely 
an important accelerator of SC aging (Biteau et al.  2011 ; Jones and Rando  2011 ; 
Rudolph et al.  2009 ; Tothova and Gilliland  2007 ). Mechanisms that allow cells to 
cope with these challenges and processes that contribute to the development of pro-
liferative dysfunction in aging SCs are likely to be conserved from yeast to humans, 
and studies exploring the regulation of replicative lifespan in yeast are thus expected 
to provide important insight into somatic SC aging. One interesting example is the 
observation that budding yeast ensures rejuvenation of newly formed cells by asym-
metrically segregating damaged and old macromolecules, providing a new “young 
copy” of such molecules to daughter cells (Aguilaniu et al.  2003 ; Shcheprova et al. 
 2008 ). Recent studies suggest that similar processes occur in human embryonic 
stem cells and in germline and somatic stem cells of fl ies (Bufalino et al.  2013 ; 
Fuentealba et al.  2008 ). 

1 Stem Cell Aging: An Overview
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 The complexity of somatic stem cell lineages in vertebrates often causes 
 diffi culties in defi nitively characterizing age-associated dysfunctions at the stem 
cell level in vivo. Characterization of stem cell aging in simpler model organisms in 
which lineage relationships are clearly defi ned, and which allow lineage tracing 
with relative ease to study stem cell proliferation and pluripotency, is thus necessary 
to provide a conceptual framework of stem cell aging and the loss of regenerative 
capacity. Work in fl ies and worms has provided such insight in recent years. This 
work initially focused on the effects of aging on germline stem cells (GSCs), and 
a large body of literature has examined mechanisms of stem cell aging in the worm 
and fl y germline, as well as identifi ed endocrine mechanisms by which GSCs 
 infl uence metabolism and longevity of the animal (Arantes-Oliveira et al.  2002 ; 
Crawford et al.  2007 ; Drummond-Barbosa and Spradling  2001 ; Hsin and Kenyon 
 1999 ; Hsu et al.  2008 ; Jones and Rando  2011 ; LaFever and Drummond-Barbosa 
 2005 ; Mair et al.  2010 ; Pan et al.  2007 ; Pinkston et al.  2006 ; Toledano et al.  2012 ; 
Ueishi et al.  2009 ; Wang et al.  2008 ). These studies have established that in the 
aging animal, GSC maintenance is affected by a decline in specifi c niche factors, by 
metabolic imbalances, as well as by oxidative stress. 

 Adult somatic stem cells have been identifi ed in the fl y gonad, the intestine, and 
the Malpighian tubules (Decotto and Spradling  2005 ; Fox and Spradling  2009 ; 
Gonczy and DiNardo  1996 ; Margolis and Spradling  1995 ; Micchelli and Perrimon 
 2006 ; Ohlstein and Spradling  2006 ; Singh et al.  2007 ; Takashima et al.  2008 ). 
Among these stem cell populations, intestinal stem cells (ISCs) have served as a 
model to characterize processes and signaling mechanisms that regulate regenera-
tive responses and whose deregulation contributes to the age-related decline in 
regenerative capacity (Biteau et al.  2011 ; Casali and Batlle  2009 ). These include 
signaling pathways required for homeostatic epithelial renewal (such as EGF and 
insulin signaling), stem cell maintenance (such as Wnt and Tor signaling), as well 
as stem cell stress responses (JNK, Jak/Stat, and Hippo signaling). Characterizing 
these signaling mechanisms is likely to not only provide insight into basic mecha-
nisms of stem cell regulation but also elucidate the molecular etiology of tissue 
dysfunction, including age-related degeneration and cancer (Radtke and Clevers 
 2005 ; Rossi et al.  2008 ; Sharpless and DePinho  2007 ). It is important to note that 
the processes driving stem cell aging appear to be conserved from fl ies to mammals. 
FoxO transcription factors, for example, promote stem cell maintenance and func-
tion in both mice and fl ies (Biteau et al.  2010 ,  2011 ; Tothova and Gilliland  2007 ).  

1.4     Oxidative Stress and Diet: Major Environmental 
Parameters Promoting Stem Cell Aging 

1.4.1     Redox State and Stem Cell Function 

 The intracellular redox state has an important infl uence on stem cell function, and 
age-related changes in redox state or redox homeostasis have been implicated in 
age-related stem cell dysfunction of a wide range of stem cells. In mice, elevated 
ROS levels result in reduced regenerative potential and self-renewal in a wide range 
of stem cell populations, including neuronal and glial progenitors and HSCs (Diehn 
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et al.  2009 ; Ito et al.  2004 ; Le Belle et al.  2011 ; Liu et al.  2009 ; Miyamoto et al. 
 2007 ; Smith et al.  2000 ; Tothova and Gilliland  2007 ; Tothova et al.  2007 ; Tsatmali 
et al.  2005 ). In fl ies, oxidative stress has been implicated in the age-associated loss 
of germline stem cells and in the age-associated deregulation of intestinal stem cell 
proliferation (Hochmuth et al.  2011 ; Pan et al.  2007 ). A low intracellular concentra-
tion of reactive oxygen species (ROS) is thus increasingly recognized as a critical 
condition for stemness, self-renewal, and pluripotency of stem cells. 

 Work in fl ies over the last decade has begun unraveling the signaling mecha-
nisms mediating this effect. Increased ROS concentration primes hematopoietic 
progenitors of the larval lymph gland for differentiation (Owusu-Ansah and 
Banerjee  2009 ) and promotes ISC proliferation in the adult gut (Biteau et al.  2008 ; 
Buchon et al.  2009 ; Choi et al.  2008 ; Hochmuth et al.  2011 ). In the intestine, a 
Duox-mediated innate immune response in ECs produces ROS to control commen-
sal and pathogenic bacteria, stimulating ISC proliferation (Biteau et al.  2008 ; 
Buchon et al.  2009 ; Choi et al.  2008 ; Ha et al.  2005 ; Hochmuth et al.  2011 ; Yang 
et al.  2009 ). The  Drosophila  homologue of the Nrf2 transcription factor, CncC, 
which regulates the expression of antioxidant enzymes, regulates ISC proliferation 
rates and limits ISC hyper-proliferation in aging fl ies (Hochmuth et al.  2011 ). It is 
likely that this mechanism is conserved in vertebrates, as mice defi cient in Keap1, 
the negative regulator of Nrf2, show signifi cant hyperkeratosis of the esophageal 
epithelium (Wakabayashi et al.  2003 ). Redox regulation by the Keap1/CncC regula-
tory module thus emerges as central to the control of SC proliferation and epithelial 
regeneration.  

1.4.2     Metabolic/Dietary Effects on Stem Cell Function 

 Dietary conditions signifi cantly infl uence lifespan, as exemplifi ed by the robust 
lifespan extension observed in most tested organisms that are maintained on low- 
calorie food (dietary restriction, DR) (Jasper and Jones  2010 ; Kapahi et al.  2010 ; 
Katewa and Kapahi  2010 ). Somatic (as well as germline) stem cell function is 
strongly affected by nutritional conditions, suggesting that the longevity effects of 
DR are, at least in part, mediated by the enhanced regenerative capacity of a large 
number of tissues (Arantes-Oliveira et al.  2002 ; Mair et al.  2010 ). Many studies 
elucidating the interaction of dietary conditions, stem cell function, and lifespan 
have been performed in invertebrate model organisms, but recent work has also 
extended this inquiry into vertebrates. 

 In fl ies and worms, GSC proliferation is regulated by the nutrient-sensing insu-
lin/IGF signaling (IIS) pathway (Drummond-Barbosa and Spradling  2001 ; Hsu 
et al.  2008 ; LaFever and Drummond-Barbosa  2005 ; Pinkston et al.  2006 ; Ueishi 
et al.  2009 ). IIS activity acts cell autonomously to maintain male GSCs (Drummond- 
Barbosa and Spradling  2001 ; Hsu et al.  2008 ; LaFever and Drummond-Barbosa 
 2005 ; McLeod et al.  2010 ; Ueishi et al.  2009 ), and DR conditions that extend lifes-
pan delay the age-associated loss of GSCs (Mair et al.  2010 ). At the same time, poor 
diets can increase the rate of GSC loss during aging in females, where IIS activity 
also infl uences GSC maintenance in a non-autonomous manner by regulating the 
interaction between GSCs and the niche (Hsu and Drummond-Barbosa  2009 ). The 
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Tor signaling pathway contributes to the regulation of GSC and somatic stem cell 
maintenance in the  Drosophila  ovary, as it promotes germline and somatic stem cell 
proliferation independently of insulin signaling, and needs to be suppressed by the 
tuberous sclerosis complex (TSC) to prevent premature differentiation of GSCs 
(LaFever et al.  2010 ; Sun et al.  2010 ; Voog and Jones  2010 ). 

 Dietary conditions also infl uence somatic SC populations, affecting their prolif-
erative activity, lineage commitment, and maintenance. Not surprisingly, the IIS and 
Tor signaling pathways play important roles in infl uencing SC function in these 
conditions. FoxO transcription factors, which are activated in conditions of low IIS 
activity, promote quiescence, long-term maintenance, and regenerative capacity of 
various somatic SC populations in fl ies and mice: In the  Drosophila  midgut, insulin 
signaling and FoxO regulate proliferation of intestinal stem cells, infl uencing the 
proliferative response of ISCs to tissue damage and the extent of age-related intes-
tinal dysplasia (Amcheslavsky et al.  2009 ; Biteau et al.  2010 ). Accordingly, moder-
ate reduction of IIS activity in the ISC lineage promotes intestinal homeostasis and 
extends fl y lifespan (Biteau et al.  2010 ). The role of FoxO in the control of SC 
quiescence is conserved in mammalian hematopoietic stem cells (HSCs) and neuro-
nal progenitor cells (Renault et al.  2009 ; Tothova and Gilliland  2007 ; Tothova et al. 
 2007 ), where it affects SC proliferation, in part, by its ability to regulate antioxidant 
gene expression (Renault et al.  2009 ; Tothova and Gilliland  2007 ; Tothova et al. 
 2007 ). The Tor signaling pathway plays a critical role in promoting stem cell main-
tenance in the intestinal epithelium of fl ies, where its activity has to be suppressed 
by TSC proteins in SCs to prevent premature differentiation and loss of these cells 
(Amcheslavsky et al.  2011 ; Kapuria et al.  2012 ). 

 It can be anticipated that the role of reducing IIS/Tor signaling in the lifespan 
extension by DR is mediated, at least in part, by its benefi cial consequences for 
somatic stem cell maintenance and proliferative control (Biteau et al.  2010 ; Kapuria 
et al.  2012 ). Whether DR can promote somatic stem cell function by infl uencing the 
activity of IIS in mammalian systems remains unclear. However, the decreased can-
cer incidence in dietary-restricted mice suggests that SC maintenance and quies-
cence are improved in DR (Kalaany and Sabatini  2009 ). 

 It is likely that other nutrient-sensing signaling pathways also infl uence stem cell 
function and regenerative capacity. This includes signaling through the Sir2/SIRT1 
family of NAD+-dependent deacetylases (Firestein et al.  2008 ; Guarente and Picard 
 2005 ). 

 Understanding the signaling mechanisms translating nutritional status to stem 
cell state and regenerative capabilities is likely to not only provide new insight into 
avenues to improve stem cell maintenance in aging animals but also to provide new 
therapies for proliferative diseases associated with metabolic dysfunction.   

1.5     Age-Related Niche Dysfunction 

 A central cause of stem cell and regenerative dysfunction in aging organisms 
appears to be the loss of support from the local microenvironment, the “niche” 
(Jones and Rando  2011 ). Age-related niche dysfunction has been characterized 
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primarily in the male and female germline of  Drosophila , but studies in mice sup-
port the notion that similar processes are conserved in vertebrates. The interaction 
between GSCs and their niche is disrupted in aging females due to increased oxida-
tive stress (Pan et al.  2007 ), while a decline in trophic support from the niche drives 
GSC decline in males (Jones and Rando  2011 ; Toledano et al.  2012 ). Interestingly, 
this decline is caused by an increase in the expression of the microRNA let-7, which 
negatively regulates the RNA-binding protein Imp (IGFII mRNA-binding protein), 
which in turn is required to stabilize the mRNA of the IL-6 like ligand Upd in the 
niche. Highlighting the potential conservation of processes driving age-related stem 
cell dysfunction, the let-7 microRNA has been implicated in stem cell self-renewal 
and differentiation in vertebrates, and deregulation of IL-6 expression by inhibition 
of let-7 promotes cell transformation into cancer stem cells in a breast cancer para-
digm (Iliopoulos et al.  2009 ; Melton et al.  2010 ). 

 The infl uence of the local and systemic environment on somatic SC function has 
been explored extensively in mice. Studies using heterochronic parabiosis and 
assessing the regenerative capacity of satellite cells (muscle stem cells) suggest that 
changes in the exposure to growth and differentiation factors, including Wnt ligands, 
play a critical role in age-related stem cell dysfunction (Brack et al.  2007 ,  2008 ; 
Conboy et al.  2005 ; Conboy and Rando  2005 ; Jones and Rando  2011 ; Wagers and 
Conboy  2005 ). 

 A recent study further shows the importance of niche-derived factors for long- 
term maintenance of intestinal stem cells in mice and for the effects of nutritional 
status on stem cell maintenance: Paneth cells express the ligands Wnt3, Wnt11, and 
EGF to promote stem cell function in vitro and in vivo and can be considered 
“niche” cells for these SCs (Sato et al.  2011 ). Nutrient-responsive Tor signaling in 
Paneth cells infl uences their ability to promote SC maintenance, most likely by 
regulating the expression of bone stromal antigen 1 (Bst1), an ectoenzyme that pro-
duces the paracrine factor cyclic ADP ribose (Yilmaz et al.  2012 ).  

1.6     SCs and Lifespan 

 While it is clear that improved regenerative capacity of stem cells promotes tis-
sue health, the effects of stem cell function on overall lifespan of the organism 
have only recently begun to be understood. Studies in worms and fl ies have 
uncovered signifi cant effects of germline stem cells on lifespan, primarily through 
endocrine effects on metabolism. But also somatic stem cell function in the fl y 
intestine has recently been shown to affect lifespan, primarily by infl uencing the 
integrity of this critical tissue (Biteau et al.  2010 ; Rera et al.  2011 ,  2012 ). 
Strikingly, these studies revealed that stem cell activity has to be maintained 
within a critical window to improve tissue function and extend lifespan, high-
lighting the delicate balance between maintaining regenerative capacity and pro-
moting dysplasia or cancer when stem cell proliferation is enhanced. Interestingly, 
IIS activity infl uences ISC function, suggesting that the lifespan effects of modu-
lating IIS activity are mediated, at least in part, by its effects on ISC maintenance 
and activity. Similar effects may be conserved in vertebrates: Similar to fl ies, 
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where dysplasia in the intestine is triggered by hyper-activation of IIS (Biteau 
et al.  2010 ), loss of FoxO negatively impacts NSC and HSC behavior in mam-
mals (Renault et al.  2009 ; Tothova and Gilliland  2007 ; Tothova et al.  2007 ). It is 
likely that an optimal level of IIS is achieved during DR and contributes to SC 
maintenance (Mair et al.  2010 ). 

 The relationship between stem cell deregulation and tumor formation 
 suggests that modulating somatic stem cell function in vertebrates should have 
signifi cant effects on lifespan (Radtke and Clevers  2005 ). In the intestinal epi-
thelium of mice, for example, intestinal stem cell proliferation and intestinal 
cancer have been linked: stress signaling can induce cell proliferation in the 
intestinal crypt and increases tumor incidence and growth in an infl ammation-
induced colon cancer model (Sancho et al.  2009 ). The precise role of stem cell-
specifi c stress signaling in the development of tumors remains unclear, however, 
and the detailed analysis of stem cell activity in the  Drosophila  intestine is 
providing important new insight. Chronic and excessive stress signaling in the 
ISC lineage causes intestinal dysplasia (Biteau et al.  2008 ), while overexpres-
sion of tumorigenic RasV12 predisposes ISCs to tumor formation when exposed 
to a stimulus (Apidianakis et al.  2009 ). From such studies, a detailed picture of 
stem cell regulation under stress, infection, and aging conditions is emerging 
that has clear implications for our understanding of stem cell regulation in 
 vertebrates (Biteau et al.  2008 ,  2011 ; Buchon et al.  2009 ; Jiang et al.  2009 ; 
Shea et al.  2010 ).  

1.7     GSCs and Longevity 

 While somatic SCs thus seem to infl uence lifespan of the organism primarily by 
promoting tissue health, studies in worms and fl ies indicate that germline SCs infl u-
ence longevity by endocrine mechanisms that affect somatic tissues and coordinate 
reproduction and somatic maintenance according to nutritional conditions (Arantes- 
Oliveira et al.  2002 ). 

 Ablation of GSCs, but not the entire gonad, extends lifespan, suggesting that 
GSCs promote aging of the organism, while somatic cells in the gonad contribute to 
the lifespan extension observed in GSC-ablated animals (Arantes-Oliveira et al. 
 2002 ; Hsin and Kenyon  1999 ), most likely by directly infl uencing metabolic homeo-
stasis (Wang et al.  2008 ). However, the exact consequences of GSC regulation for 
the lifespan of the organism can be complex: while germline ablation extends lifes-
pan robustly under normal conditions, under DR conditions GSC ablation can have 
positive or negative consequences for lifespan, depending on genetic backgrounds 
(Crawford et al.  2007 ). In the fl y, ablation of the germline extends lifespan by induc-
ing insulin resistance – like phenotypes in somatic cells (Flatt et al.  2008 ). However, 
these phenotypes are dependent on the specifi c method of GSC ablation, indicating 
that, as in the worm, lifespan extension by loss of GSCs is dependent on complex 
variables, such as timing of germline loss, presence of somatic cells in the gonad, 
genetic background, and diet (Barnes et al.  2006 ). Ovary transplantation studies 
indicate that the described effects of the germline on lifespan may be conserved in 
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vertebrates (Cargill et al.  2003 ; Mason et al.  2009 ). The role of developing oocytes 
(as opposed to the ovarian soma) in this effect remains unclear, yet these studies 
confi rm that maintenance of ovarian tissue also benefi ts life and healthspan of 
vertebrates.  

1.8     Rejuvenation and Tissue Repair 

 The signifi cant expansion of our understanding of stem cell regulation and of 
mechanisms promoting stem cell maintenance that is afforded by research in 
invertebrate model organisms is expected to inform strategies for stem cell 
 rejuvenation and tissue repair in aging humans. The feasibility of interventions 
aimed at restoring regenerative capacity of old tissues has been demonstrated by 
experiments in which exposure to a young systemic environment restored 
 regenerative capacity of muscle stem cells and neural stem cells (Conboy et al. 
 2005 ; Ruckh et al.  2012 ). 

 Whether such interventions, which aim at reactivating endogenous regenerative 
capacity of tissue stem cells, have the potential to also extend lifespan of the 
 organism remains to be established. It is likely, however, that the systemic signals 
identifi ed in these studies will enhance the effi cacy of cell replacement strategies 
using patient-derived induced pluripotent stem cells (Lamba et al.  2009 ; Lindvall 
et al.  2012 ; Robinton and Daley  2012 ). While recent successes in engrafting iso-
lated stem cells into mouse tissues highlight the potential of using lineage-restricted 
precursors or multipotent stem cells in such approaches (Yui et al.  2012 ), managing 
the aged systemic environment into which such cells are transplanted is likely to be 
required to ensure their effi cacy.     
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    Abstract  
  In the last few decades, the budding yeast  Saccharomyces cerevisiae  has emerged 
as a simple and powerful model organism to study aging. Replicative aging and 
chronological aging are the two major models that have been established in 
yeast. In this chapter, we review the two aging model systems, focusing on genes 
and pathways that modulate replicative and chronological aging. The purpose of 
this chapter is to provide an overall understanding of the aging process in the 
single-celled yeast and a basis by which to generate models of molecular 
 mechanisms that may affect aging stem cell populations in adult tissues, as well 
as the multicellular eukaryotes they inhabit.  

2.1          Introduction 

 Why include a chapter about yeast in a book on stem cells and aging? The question 
revolves around whether aging is something that occurs at the level of the organism 
or whether the pathologies we describe as part of the aging process are aggregates 
of aging in single cells. Certainly, dividing and nondividing cells in the aging organ-
ism, including adult stem cells, have altered features with age and evidence points 
to both cell autonomous and non-autonomous processes. 

 One diffi cult aspect of studying mammalian aging is the lack of an accepted cell- 
based system to assess properties of aging. Certainly, cell senescence in fi broblasts 
and other cell types has been the subject of intense investigation, yielding important 
fi ndings that may be relevant to aging of the organism. However, there are very 
likely aspects of aging that cannot be modeled in cell culture. Yeast lives as a 
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unicellular species. Thus, the cell and the organism are aligned. Moreover, it either 
replicates or enters a stress-resistant nonproliferative mode depending on environ-
mental conditions, and aging models have been derived for both states. Simplistically, 
it has been speculated that the replicative aging model may provide a window to 
aging in dividing mammalian cells and the nonproliferative model to aging quies-
cent cells. 

 Over the last few decades, the budding yeast  Saccharomyces cerevisiae  has 
developed into one of the most prominent model organisms for aging-related 
research (Longo et al.  2012 ). The use of the yeast as an aging model organism is 
preferred due to several advantages: (1) yeasts are unicellular eukaryotic organisms 
with a short lifespan; (2) they have a relatively small genome, which is completely 
sequenced and mapped and for which a set of strains exists with each gene deleted 
individually (Goffeau et al.  1996 ; Winzeler et al.  1999 ); (3) the metabolic and regu-
latory mechanisms of the yeast are highly conserved within higher eukaryotic sys-
tems (Kaeberlein  2010 ). A large portion of genes in yeast have been shown to be 
orthologous in higher eukaryotes that have been implicated in human diseases 
(Ploger et al.  2000 ). (4) Lastly, the ease of genetic/environmental manipulation, 
maintenance and storage, low relative cost, and comprehensive integrated biologi-
cal information allow for genome-wide studies and comparisons, leading to a more 
integrative understanding of aging-related pathways (McCormick and Kennedy 
 2012 ). To date, numerous genetic manipulations have been found to modulate aging 
in yeast, and although some are specifi c to this organism, many of the important 
pathways appear to play a conserved role in the aging of multicellular eukaryotes 
(Kaeberlein  2010 ). 

 Yeasts have also been used as a model system to unravel the molecular basis for 
several aging-related diseases, such as Alzheimer’s disease, Parkinson’s disease, 
Huntington’s disease, and cancer (Outeiro and Giorgini  2006 ; Rubel et al.  2013 ; 
Willingham et al.  2003 ). Moreover, with the large amount of data collected in yeast, 
systems biology approaches are easily applied to this organism for quantitative 
description of complex phenotypes such as aging (Lorenz et al.  2009 ; Matecic et al. 
 2010 ; Yizhak et al.  2013 ). 

 There are two major lifespan assays that have been established in the study of 
yeast aging: the replicative lifespan assay and the chronological lifespan assay 
(Kaeberlein  2006 ; Longo et al.  2012 ). Replicative aging refers to a model of mitoti-
cally active cells, in which the replicative lifespan is defi ned by the number of 
daughter cells a mother cell can produce prior to senescence (Fig.  2.1 ) (Mortimer 
and Johnston  1959 ; Steffen et al.  2009 ). Chronological aging, in contrast, refers to 
an aging model of cells in a quiescent state, in which the chronological lifespan is 
defi ned by the length of time that a population of nondividing yeast cells can main-
tain viability or more often the capacity to resume cell division when restored to an 
environment conducive to proliferation (Fabrizio and Longo  2007 ; Murakami and 
Kaeberlein  2009 ). In this chapter, the main questions we address are the following: 
(1) What mechanisms underlie replicative and chronological aging? (2) To what 
extent are the two aging models related? (3) What do studies of aging in yeast tell 
us about aging in mammals? These studies of aging in a single-celled organism may 
presage important mechanisms driving the aging of adult stem cell populations.   
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2.2     Replicative Lifespan 

 The budding yeast  Saccharomyces cerevisiae  divides asymmetrically with the origi-
nal “mother” cell budding to give rise to a “daughter” cell (Barker and Walmsley 
 1999 ; Jazwinski  1990 ). The fi rst replicative lifespan studies (RLS) were published 
more than 60 years ago by Mortimer and Johnston, who designed a method to mea-
sure the number of buds or daughters produced by a single mother cell (Mortimer 
and Johnston  1959 ). Based on continual observation of individual cells and separa-
tion of the morphologically asymmetric buds, they determined that the number of 
buds produced by one “mother” cell is limited, defi ned as its lifespan. After under-
going a certain number of mitotic divisions, cells cease to divide and enter a short 
post-replicative state followed eventually by cell lysis. 

 The RLS assay is traditionally performed using a standard dissection micro-
scope with a micromanipulator. From a logarithmically growing culture, indi-
vidual newborn daughter cells are isolated onto a solid-media substrate. 

Number of
daughter cells

Survival time in
stationary phase

t5

t4

t3

t2

t1

CLSRLS

  Fig. 2.1    Schematic for yeast replicative lifespan ( RLS ) and chronological lifespan ( CLS ). 
Replicative lifespan is defi ned by the number of daughter cells a mother cell can produce prior to 
senescence. Chronological lifespan is defi ned by the length of time that a population of nondivid-
ing yeast cells can maintain replicative potential when restored to rich media       
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