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Preface

Vortical flows are flows with vortices as their skeleton structures. Vortices are seen
everywhere in our universe and on the earth: from spiral galaxies, atmospheric and
oceanic circulations to hurricanes and typhoons, tornadoes to bath stub vortices;
from volcanoes’ erupted smoke rings and mushroom clouds of nuclear explosions
to vortex rings ejected from the mouth of dolphin and smoker, or formed in a heart
downstream of the mitral valve that separates the left atrium and left ventricle; from
tip vortices of aircraft, rotor blade, and turbo fan to complicated ring-like structures
in the wake of birds, insects and fishes; from well organized laminar vortices to
coherent turbulent structures.

This book provides a systematic introduction to the physical theory of vortical
flows at graduate level. It grew from our monograph Vorticity and Vortex Dynamics
(Springer 2006), but has been thoroughly rewritten. Some advanced topics in the
monograph have been removed, and more basic topics have been added. Recent
advances since 2006 in the field of fundamental interest are included. Nevertheless,
two basic characteristics of the monograph are inherited and further enhanced,
which make both the monograph and the present book differ from other existing
books on the subject:

(1) We consider the theory of vortical flows as a branch of fluid dynamics
focusing on shearing process in fluid motion, measured by vorticity. A vortex is
defined as a fluid body with high vorticity concentration. The evolution of vorticity
field is governed by vorticity dynamics. Coexisting with this process is the com-
pression—expansion process (compressing process for short) measured by dilata-
tion, pressure, or other thermodynamic variables, of which the main structure is
shock waves where entropy process is naturally involved. The three fundamental
processes in fluid motion are coupled with each other both inside the flow field and
at solid boundary. We believe that only on the basis of this broad background can
the physics of vortical flows be fully understood.

(2) We study vortical flows according to their natural evolution stages, from
being generated to dissipated. As preparation, the first three chapters of the book
provide background knowledge for entering vortical flows. Due to the coupling of
shearing process with other processes, this knowledge appears wider and more
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profound than common books on vortical flows. Chapter 1 reviews standard fun-
damental kinematics and dynamics of generic viscous and compressible flow,
including some elementary results of process identification and decomposition. The
whole of Chap. 2 is devoted to the basic theory of fundamental processes in fluid
motion, their splitting and coupling. Chapter 3 discusses general theory and physics
of vorticity dynamics. Although later chapters will be mainly confined to incom-
pressible flow, Chaps. 1-3 cover much broader materials with a hope to facilitate
future exploration of more complicated compressible vortical flows.

The rest of the book deals with vortices and vortical flows. Of various vortices
the primary form is layer-like vortices or shear layers, and secondary but stronger
form is axial vortices mainly formed by the rolling up of shear layers. Thus, Chap. 4
is on attached shear layer (namely boundary layer) and free shear layers. As
Reynolds number approaches infinity, these layers become asymptotically attached
and free vortex sheets, which are the subject of Chap. 5. This chapter ends with
vortex-sheet rolling up and initial formation of axial vortices, so it is naturally
followed by Chaps. 6 and 7 on typical solutions of columnar vortices and vortex
rings, respectively. Chapter 8 studies flow separation first, which is a key localized
dynamic process turning a simple attached flow to complex, namely to become
global separated flow with concentrated vortices that is studied next. Chapter 9 is an
introduction to total force and moment acting to a body moving through the fluid, in
terms of various vortical structures.

Chapters 10 and 11 discuss the instability and breakdown of axial vortices, and
vortical structures in transitional and turbulent shear flows, respectively. Both
chapters require some elementary knowledge of flow instability and turbulence,
which are placed (somewhat artificially) in the beginnings of Chaps. 10 and 11,
respectively. Finally, A general theory of vector and tensor field is presented in the
Appendix for readers’ convenience.

Problems are given at the end of each chapter and Appendix, some for helping to
understand the basic theories, and some involving specific applications; but the
emphasis of both is always on physical thinking. Problems with asterisk may need
more effort.

The reader of this book is assumed to have learned undergraduate fluid
mechanics or aerodynamics in majors of mechanics, aerospace and mechanical
engineering, and be familiar with physics, advanced calculus and differential
equations. Better background of these fields will make it easier to understand the
present book. Most part of the book materials has been used as Lecture Notes and
were taught by J.Z. at Peking University over the past 15 years as a one-semester
graduate course of advanced fluid dynamics. The course has been proved accept-
able by most students with warm and inspiring feedback.

August 2014 Jie-Zhi Wu
Hui-Yang Ma
Ming-De Zhou
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Chapter 1
Fundamentals of Fluid Dynamics

1.1 Basic Fluid Kinematics

1.1.1 Description and Visualization of Fluid Motion

Fluid dynamics studies the motion of continuous media with fluidity. A fluid then has
a dual feature and can be described in two ways. On the one hand, the fluid consists
of continuously distributed material elements or particles, each of which retains its
identity all the time so that one can trace the fluid motion and evolution by tracking
each element. We may define the identity or “label” of a fluid particle by a known
particle’s location x( at ¢ = 1y, say xo = X. As it moves smoothly as ¢ increases, its
new position x at ¢ > t is a differentiable function of X and #:

x=fX,1). (1.1.1a)

Note that as the label of a fixed particle, X does not change with time; namely there
must be 0X /0t = 0. Inversely, we may write

X =F(x,1). (1.1.1b)

Initially separated particles cannot merge to a single particle at later time, even though
they could be tightly squeezed together. Meanwhile, a single particle cannot be split
into two or more particles at later time. This implies that the mapping between x and
X is one-to-one. Their transformation Jacobians are never zero nor infinity. Figure 1.1
sketches the mapping of a material fluid body from the X-space (a reference space)
to the x-space (the physical space) and its reverse.

Now, following the movement of a particle X, its position x becomes a function
of ¢, so that the particle has a velocity

Ox 8x,~
u=—X,t) or uj=—, i =1,2,3, 1.1.2
r X, 1) i =5 (1.1.2)
© Springer-Verlag Berlin Heidelberg 2015 1
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Fig. 1.1 One-to-one Y
mapping between the

X-space and x-space for a

material fluid body

with X; being parameters. This way of description, known as particle or Lagrangian
description, is a direct extension of Newton’s particle kinematics.

On the other hand, fluid motion can be treated by a field theory where, like in
an electromagnetic field, the spatial position x and time ¢ are independent variables.
The fields of velocity u, pressure p, and other derived physical quantities are all
functions of (x, #) and will be assumed sufficiently smooth except on certain surfaces
of discontinuity. If the fluid is unbounded, except otherwise stated it is assumed to be
at rest at infinity or, by a Galilean transformation, have uniform motion. If the flow
has a boundary, the boundary is assumed to be piecewise smooth. The collection
of these fields constitutes a flow field. This way of description is known as field or
Eulerian description. The two descriptions enrich each other.

To see this duality of material and field in fluid motion, consider an elementary
manifestation of the fluidity: the velocity difference at two neighboring points xy and
x = xo + 0x with |0x] = dr — 0. In the field description, a use of Taylor expansion
gives

Su = ux) —u(xg) = 6x - Vu(xo) + 0(6r2). (1.1.3)

In contrast, in the material description, after d¢ the particles at the two ends of dx, x¢
and x, will move to

X0 — X0 + u(x0)dt,
X = x +u@)0t = x + u(xo)dt + 6x - Vu(xg)ot + O(5r?).

Hence, there is
ox(x,t 4+ 0t) = dx(x,t) + du(x, t)ét, Ju(x,t) = ox - Vu(xo,1),

so that

@=5u=6x-VuED—5x

, 1.1.4
dt Dt ( )

which is the same as (1.1.3) but enriches the latter’s implication by comparing the
velocities at neighboring points and identifying du as the rate of change of a material
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line element dx. The operator D/ Dt is used to emphasize that the derivative is taken
by following the particle, and is called material derivative.

In general, the field description and material description are not fully equivalent.
The former does not care which specific particle is moving through a field point x at
time 7, but the latter does and has to ensure the identification of all infinitely many
particles at all time. In other words, the two descriptions will become fully equivalent
only if to the field description we add a vectorial constraint 90X /0t = 0 or

DX—O (1.1.5)
D7 = V- 1.

For most of fluid dynamics problems it suffices to stay on the simpler field description
without constraint (1.1.5), as we do in the major portion of the book.! But, as will
be seen in Sect. 1.2, in developing the formulation of fluid dynamics in terms of the
field description, tracking material fluid elements is still necessary because the link
between the flow field evolution and its causes, i.e., the forces acting on the fluid, is
provided by the Newton mechanics which is formulated for material fluid body and
particles.

It is appropriate here to introduce four different types of lines in a flow field,
defined based on the above two descriptions. First, a curve tangent to the velocity
u(x, t) everywhere at a time ¢ is a streamline at this time. Let it be represented as
x(s) in terms of parameter s. Then its equation follows from eliminating d in the
component form of (1.1.2):

d. d d d
d =u(x,t) or Al 2 B

ds ui(x, 1) = ur (x, 1) = D) (1.1.6)

of which the solution passing a given x(so) is the required streamline. The concept of
streamlines does not distinguish different particles and belongs to the field descrip-
tion. In an experiment, if we spread the tracer particles in the flow and take a photo
with very short time exposure, then we see a set of short line segments, of which a
smooth connection can represent a family of instantaneous streamlines.

Next, a particle-path line or pathline is the curve created by the motion of a particle
X as time goes on, which can be obtained by solving the ordinary differential equation
(1.1.2) in time:

Ox

E =ulx,1), xX, 1) =X. (1.1.7)
The concept of pathlines belongs to the material description. In flow visualization,
if we introduce a tracer particle into the fluid and photograph its motion by a long
time exposure, we obtain a pathline.

ILater in Chap. 3 we shall see that for a special class of flows the two descriptions become equivalent,
and the constraint (1.1.5) can be dropped.
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To visualize a flow, instead of taking a long-time exposure to trace a single particle,
itis more informative to introduce some dyed fluid continuously at a fixed pointx( and
take a snapshot at a later time fy. The photo shows a curve consisting of the spatial
positions at #y of all fluid particles which have passed x at any time 7 < fy and
continue to move ahead, where 7 € (—00, #p] is a parameter for identifying different
particles. Such a curve is called a streakline, the third type of lines. Mathematically,
the positions of these particles at #) can be obtained by applying (1.1.7) not to a single
particle but all particles X (7):

% =ulx,t), xX(1),7)=x9, —o0<7T<1. (1.1.8)
Changing #( continuously will yield an animation of the streak-line evolution.
While a streakline involves a time-sequence of particles X (1) passing a single x,
the visualization can be extended to releasing dyed particles from different points
of a line X (s), say, and then take a snapshot. Furthermore, one may insert a thin
metal wire X(s) in a moving fluid (e.g. water) and introduce a pulsating current
of frequency f through it. The wire will electrolyze the water and release hydrogen
bubbles on-and-off at discrete time 7;, = nT = n/f withn =0, 1,2, ..., which can
be illuminated. Thus, each current-on action produces a bright-dark strip or column
of short pathlines of the hydrogen bubbles. The strips are initially parallel to the wire
but then advected by local flow velocity, and hence exhibit approximately the local
velocity profiles including vortical structures. These pulsating strips and short bubble
traces therein are called time lines, the fourth type of lines. Photos or animations of
the velocity profiles may clearly exhibit the flow pattern and its evolution. They are
defined by x, (X (s, 7,,), t) that are governed by

ox,
ot

=uxy, 1), x,(X(s, 1), 7) = X(s). (1.1.9)

As a simple example for the behavior of these lines, consider a two-dimensional
(2D) and incompressible unsteady velocity field u = (u, v) in the (x, y)-plane:

Uu=-—x, v=y-+t.

Then by (1.1.6)—(1.1.8), the parametric expressions for the streamline, pathline, and
streakline are found to be:

Streamline : x = xge~ 7y = (yo + 1)e T — 1,
pathline :  x = xge ™0, y = (yg+1o+ De' ™0 —1 —1,

streakline: x =xpe U7, y=(o+7+ DT —t—1, 7€ (=00, ).

It is easily verified that at a given f(, the streamline passing x¢, the pathline of a
particle locating at x(, and the streakline passing xo have a common tangent vector
at xo. Thus, over a very short time interval streaklines, pathlines, and instantaneous
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Fig. 1.2 Schematic streamlines (viewed in different frames) and streaklines in a boundary layer
with travelling instability waves. C is the wave speed. Reproduced from Taneda (1985)

streamlines are identical. When the flow is steady, i.e., in (1.1.2) u is independent of
t, the three curves coincide at any time. For more general unsteady flows, however,
the three curves are entirely different. A pathline or a streakline can intersect itself,
but a streamline cannot. The behavior of streamlines and pathlines vary drastically
as the observer changes from a fixed frame of reference to a moving one, but the
streaklines will remain the same.

In the past, most experimental visualizations of vortical flows exhibited streak-
lines, and most numerical visualizations plot exhibited streamlines. It has now been
realized that observing more kinds of lines can lead to clearer understanding of
a complex flow field, but their interpretation needs great care since vortical flows
are inherently more or less unsteady. Figure 1.2 sketches the unsteady streamlines
and streaklines due to the instability travelling waves in a flat-plate boundary layer,
viewed from different frames of reference. Note that the streamlines in the frame
moving with the wave exhibit some vortex-like structure (so-called “cat-eyes”), but
whether or not these cat-eyes can be classified as vortices should be judged by the
degree of concentration of the vorticity rather than merely by the frame-dependent
streamlines.

Figure 1.3 shows both streamlines and streaklines due to the unsteady vortex
shedding from a circular cylinder, where their difference is obvious. However, while
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Fig. 1.3 Streamlines and streaklines in unsteady vortex shedding from a circular cylinder. From
Taneda (1985)

streaklines can tell where the vorticity resides in a flow, it tells very little about the sur-
rounding fluid and the entrainment process. In this regard instantaneous streamlines
in an unsteady flow are still useful. A correct understanding of some highly time-
dependent vortical flows, of which the evolution is essentially a material process,
should use jointly all three kinds of lines to avoid misinterpretation that could hap-
pen if only streaklines are visualized (cf. Kurosaka and Sundaram 1986). Mean-
while, Lagrangian formulation may be of crucial importance. These issues will be
further addressed in Sect. 8.5 when we study unsteady flow separation. For example,
streamlines, pathlines, and streak lines of the same unsteady flow are simultaneously
displayed in Fig. 8.28, along with a discussion of their respective roles.

Figure 1.4 is a time-line photo of the flow over a circular cylinder. The metal wire
is a vertical straight line at the far left of the photo.

Fig. 1.4 Time lines behind a circular cylinder at Reynolds number 152. From Taneda (1985)
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1.1.2 Dilatation and Vorticity

While the velocity field u(x, ¢) discussed in the preceding subsection is the most
primary vector field in any flows, our major concern is various flow structures like
those seen in Figs. 1.3 and 1.4, which are highly localized and occupy only a very
small portion of the flow domain, but play a role as the “organizers” of the entire
flow. Structures come from the variation of the velocity in space and time rather than
the velocity itself. To understand these structures, we have to consider the spatial
derivatives of the velocity field and their temporal evolution.

In a flow domain, the structures are locally characterized by various products of
the gradient operator V with u, because the vector V measures both the direction
along which the variation is steepest and the magnitude of variation in that direction
per unit length. The mathematical foundation of our study is the general vector-field
theory, of which a systematic introduction is given in Appendix,” of which the results
will be simply cited in the main text.

The most primary derived fields that describe the local spatial variation of a
velocity field u are its divergence, a scalar field called dilatation, and its curl, an
axial vector called vorticity:

ou Ov Ow
vy v v 1.1.12
9 = +8y+ 52 ( a)
ow Ov Ou Ow Ov Ju
—yxp= (X _OvOu Odw Ov Ou 1.1.12b
v o (8y 8z 0z Ox  Ox By) ( )

Intuitively, ¥} measures the isotropic expansion or compression of the fluid, while w
measures the rotation of fluid particles. Their physical meanings can be more clearly
understood by considering their volume integrals. By the generalized Gauss theorem
(A.2.8), we obtain

1
¥ = lim —/ n-udsS, (1.1.13a)
v>o0V ov
1
= lim —/ nxudsS, (1.1.13b)
V>0V ov

indicating that their net contributions are solely from the normal and tangential
components of # on the boundary, respectively, as sketched in Fig. 1.5 with V being
asmall sphere. Clearly, the dilatation represents a net isotropic outflow where only the
velocity normal to sphere’s surface plays arole. This is an outcome of the compressing
process. In contrast, the vorticity represents a non-isotropic “curl up” property where
only the velocity tangent to sphere’s surface is involved. This is an outcome of the
shearing process. Note that the velocity curling-up associated with vorticity can be

2This theory is also applicable to all other vector fields to be encountered in our study. Before moving
on, the reader is strongly recommended to get a full familiarity of the materials in Appendix as a
necessary preparation.
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Fig. 1.5 The velocities (a) (b)
associated with dilatation

(a) and vorticity (b) in a

small sphere

further revealed by the circulation of u along a closed loop C, which by the Stokes

theorem gives
]{u-dx:/awnds, (1.1.14)
c s

where S is any directional surface spanned by C. A further taste of the behavior of
dilatation and vorticity can be felt by considering a simple plane-wave fluctuating
velocity field u = @ (r)e' ®**=") where k = key is the wave vector with k = 27/\
being the wave number of u and e the unit vector in the wave propagation direction,
n = 27 f is the circular frequency, and # is a uniform amplitude. For this wave the
differentiation operation by V is reduced to the multiplication by ik, so that

Veu=ik-u, Vxu=ikxu. (1.1.15)

Thus, the ¥-wave is a longitudinal wave propagating along the velocity direction,
while the w-wave is a transverse wave propagating perpendicular to the velocity
direction. This is in consistency with (1.1.13), with n there being analogous to ik
here. Note that in an arbitrary bounded domain the geometric relations between wave
oscillating and propagating directions may not be as simple as that given by (1.1.15).
In general, we may split the velocity field into two parts, u = U(x) + u'(x, 1),
where U (x) is an arbitrary steady basic flow which can have both divergence and
curl, and #’(x, r) describes an unsteady velocity wave. Then, if V x u’ = o’ = 0,
we say the wave is longitudinal; while if V - &’ = 19’ = 0, we say it is transverse.
Later we shall see that the two waves are qualitatively different; their propagation
speeds are determined by different dynamic mechanisms and have different values.
Physics fields that have these wave behaviors are usually called longitudinal field
and transverse field, respectively (cf. Morse and Feshbach 1953); we now see that in
fluid motion the longitudinal and transverse fields are specified to compressing and
shearing fields.?

3In this book the two pair of names will be used alternatively.
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Fig. 1.6 Geometric

.- ele-u
orthogonal decomposition / \e(e, u)
of u with respect to wave u

vector k

e, xu

(e, xu)xe,

If a u-fluctuation emits simultaneously both longitudinal and transverse waves,
the fluctuation u-field as a whole must be a composite wave. For the above plane
wave the composition is simple, since (ignoring factor i) the two waves in (1.1.15)
are just orthogonal. Indeed, since k = exk, ex(ex - u) is a component vector of u
along k; while e; x u differs from the perpendicular components of u (which is
u — er(ey - u)) by a 90° on the plane normal to k. The former can be turned back to
the latter simply by its one more cross product with ey, see Fig. 1.6. Therefore, we
construct the composite u as

k|’u = k(k -u) —k x (k x u). (1.1.16)
Then, recalling the rule V — ik, from (1.1.16) we arrive at a differential identity
VZu=V(V-u)—Vx(Vxu=V)—Vxw, (1.1.17)

which clearly reveals the functional relation between u, ¥, and w. The above elemen-
tary observations suggest that the dilatation and vorticity fields are measures of two
physically distinct processes, which are mutually independent of and complementary
to each other in many aspects.

1.1.3 Velocity Gradient and Its Decompositions

We now move to the next product of the gradient operator V and u: the dyad Vu known
as the velocity gradient tensor. Once again, our interest is the intrinsic decompositions
of Vu.*

Like any matrix, the second-order tensor Vu can be split into a symmetric part
and an antisymmetric part:

4Whenever written in component form, throughout this book we use the convention that the (i, j)th
component of Vuis Viu; = Ojuj = uj;.
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Vu =D+ Q, (1.1.18)

where, with the superscript 7' denoting transpose,

D= —[Vu+ (Va)T) (1.1.19a)

Q=

| =N =

[Vu — (Vu)'] (1.1.19b)

are the symmetric strain-rate tensor and antisymmetric vorticity tensor (or spin
tensor), respectively. These tensors are associated with dilatation and vorticity via
the following relations:

19=V~u=Di,-, (1.1.208.)
1
w; = eiijjk, ij = Eeijkwi, (1.1.20[))

where ¢; ;. are the components of the permutation tensor (Appendix A.1.4). Thus, w
is equivalent to 2. Note that for any vector b there is identity

2b - R=wxb=—-bx w, (1.1.21a)
so there also is
2V Q= -V x w. (1.1.21b)

From (1.1.20) we see a remarkable difference of the two fundamental processes
measured by ¥ and w or : the compressing process can exist in any of one-, two-, or
three-dimensional flow, but the shearing process does not appear in one-dimensional
flow at all, appears merely in part in two-dimensional flow like a scalar (its direction
is always perpendicular to the flow plane), and exhibits its full behavior in and only
in three-dimensional flow. Moreover, as a divergence-free vector, w has just two
independent components in three dimensions. This geometric difference of the two
processes is transformed to a more intuitive difference in their integrals (1.1.13),
where the value of ¥ and the two independent components of w produce the normal
component and two tangential components of the velocity at boundary, respectively.
Similar contrast appears in (1.1.15) as well, where the normal vector n is replaced
by the wave vector k.
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As a very basic application of (1.1.18), let us revisit the velocity difference of two
neighboring points x and x( given by (1.1.4), which can now be decomposed to

_ Déx
Dt

1
ou =x-Dgy + Ewo X 0X, (1.1.22)

where dx = x — x( is a material line element and suffix 0 denotes taking values at
fixed x¢. Thus, like rigid-body rotation, the role of wy is to rotate the line element
ox around x( with angular velocity wq/2. Namely, the vorticity can be understood
as twice of the angular velocity of a fluid element.

In contrast, the first term of (1.1.22) is unique to deformable body and deserves a
detailed examination. Let ds = |0x|, the inner product of (1.1.22) and dx yields’

1D
EE(‘SSZ) =dx-Dy - ox = 2¢, (1.1.23)

and hence the relative velocity solely “induced” by pure straining,
duy =0x-Dy =V, (1.1.24)

isirrotational or has a potential. It is along the normal to surfaces ¢ = constant, which
are quadric center surfaces (ellipsoid, hyperboloid, and paraboloid, etc. centered at
X0), known as the tensor surfaces of D (Appendix A.1.3).

How the specific elements of D;; affect §u¢ can be further clarified.® First, con-
sider the diagonal components of D;; with i = j. Since

¢.ii = 0x;j,iDoji = Doi; = Uo,

the trace of D simply represents an isotropic expansion/compression, which vanishes
if the flow is incompressible. Then, similar to the derivation of (1.1.23), the rate of
change of §s reads

1 D i dx;
1D so=p dx; dx;

ji——. 1.1.2
os Dt 0ij ds ds ( >

In particular, if dx is along the x1 -axis, say, such that dx; /ds = 6;1 anddx; /ds = 6;1,
(1.1.25) implies

1 D
gD—t((SS) = D(),'j(s,'l(sj'l = Do11. (1.1.26)

Thus, the diagonal elements of D;; are responsible for the relative stretching rate of a
line element parallel to x;-axis. They are called normal components of the strain-rate.

3Since only material line element dx is involved, operator D/Dt can be replaced by d/dt, see
(1.1.4).

6See, e.g. Aris (1962), Zhuang et al. (2009), and Panton (2013).
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Next, for understanding the off-diagonal elements of D;;, consider two material
line elements dx and dx” initiated from x¢ with angle 6, such that dx-0x" = dsds’ cos 6.
Then one finds

dx; dx}

1 d
D0 I o di

= cos
cos0 7

1d _, . do
(6s) + ga(és )i| — smﬂE. (1.1.27)

In particular, when dx and dx’ are along the x| - and x;-axes, respectively, we simply
have

Doy = —z—. (1.1.28)

Namely, the off-diagonal elements of D;; measure half of the decrease rate of change
of the angle of two material line elements originally along the ith and jth axes,
respectively. These off-diagonal elements of D;; are called shearing components of
the strain-rate.

The strain-rate tensor D has three real principal values. D has a principal-axis
coordinate systemin which with D;; = Ofori # j (Appendix A.1.3). Then the above
results show that each instantaneous principal axis keeps straight. It experiences a
stretching (shrinking) along its direction and rotating with angular velocity w/2, but
with no tilting.

In summary, the velocity at x = xg + dx is

1
u(x) = uo + Vo + Swo x dx. (1.1.29)

This result is known as the Cauchy-Stokes theorem or fundamental theorem of
deformation kinematics (Truesdell 1954): The instantaneous state of a fluid motion
at every point is the superposition of a uniform translation, an irrotational stretching
or shrinking along three orthogonal principal axes, and a rigid rotation around an
axis. Figure 1.7 illustrates this theorem schematically.

Example: Simple shear flow. Consider a unidirectional shear flow on the (x, y)-
plane, u = (ky, 0, 0) with constant shear rate k. Its velocity-gradient tensor and
strain-rate tensor are

000 0 k/20
{ujit=1k00 ), {Di}=1k/2 0 0],
000 0 00

respectively, while by (1.1.12) there is ) = 0 and w = (0, 0, —k). This is a simplified
prototype of boundary layer and free shear layer to be addressed in Chap. 4, in which
both the strain rate and vorticity are very strong. Here, D;; has principal values
+k/2 and can be reduced to diagonal form by rotating the axes counter-clockwise
through an angle 7 /4. This strain rate represents a uniform elongation in one principle
direction and a uniform foreshortening in the second one at right angle to the first,
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Fig. 1.7 The deformation of small fluid sphere. Only the pattern on the (x1, x3) plane is shown

so that the solenoidality condition ©} = 0 is ensured. Thus, a small sphere of radius €
will deform to an ellipsoid during a time interval d¢, with the lengths of its semi-axes
being

e(1 +kdt/2), e(1 —kdt/2), «.

However, to maintain the simple shear motion, the simultaneous rotation around
the z axis with angular velocity w/2 = —k/2 just produces a clockwise turning
of the principal axes back to their original directions. For example, after a dt time
the rotation makes the actual angle between the first principal axis and the x-axis
become /4 —kdt /2. The situation is shown in Fig. 1.8, which shows that in order to
maintain the shear flow pattern it is essential for the strain rate to be accompanied
by the vorticity.

Fig. 1.8 Decomposition of a simple shear motion into a pure strain and a rotation. From Lighthill
(1986)
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Having seen the double decomposition (1.1.18) of Vu, we recall that its divergence
is the familiar V2u that has decomposition (1.1.17), or

V.Vu=V-0l+29),

indicating that while Vu has nine independent components in a three-dimensional
space, its divergence has only three. This fact suggests that from Vu one may separate
a divergence-free tensor to let the remaining part be solely expressed by ¥ and w.
Indeed, since D = DT and = —Q7, we may write

(Vi) =D — @ + 91 — 91,

so that the strain-rate tensor and, by (1.1.18) the velocity gradient tensor, have intrin-
sic triple decompositions

D=9+ Q—B, (1.1.30a)
Vu =91 +2Q — B, (1.1.30b)

where
B=9I— (Vu)! with V-B=0 (1.1.31)

is the divergence-free tensor we are seeking for, which is known as the surface-
deformation tensor due to its physical implication to be explained later in Sect. 1.1.4.
The divergence of (1.1.30b) recovers (1.1.17) at once, with no contribution from
B. This triple decomposition is very useful as one studies the velocity field near a
material surface, and in dynamic problems for which the traceless property of B can
bring considerable simplification.

Interestingly, similar to (1.1.30), a triple decomposition can be found for the
double inner-product D : D, which as will be seen in Sect. 1.2.2 plays a key role in
viscous flow dissipation into heat. In fact, Vu : Vu = u;u; ; may be alternatively
decomposed to

wjinij = (ujiug) j—uild; = (ujiu; — 0ijuid), j + 0%
1
= (Dij +2ij)(Dji +Qji) = DijDji — sz-

Then, a comparison of these two expressions yields the desired decomposition iden-
tity at once:

1
D:D:192+§w2—V-(B-u). (1.1.32)

But since this is a nonlinear product, coupling among different constituents of the
velocity must appear as can be seen in B - u.
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1.1.4 Local and Global Material Derivatives

In fluid kinematics we study not only the spatial relations of the flow quantities as
we did in the preceding subsections, but also their temporal variation in a universal
way, namely without concerning specific physical cause and effect of these temporal
variation.” Of the temporal variations the most important kind is the time rate of
change of flow quantities, which is examined now. We shall make a combined use of
the material and field descriptions to derive the governing equations of fluid motion.
Readers are assumed to have been familiar with the procedure and results, and the
focus here is a neater formulation based on tensor analysis (Appendix A.l) and
deeper physical understanding thereof.

Consider any field quantity F(x, ¢) carried by a material element located at x at
time ¢. Since the element motion makes x = x(¢) as in (1.1.1a), we have F(x, ) =
F(x(t), t); thus, the material rate of change of F is

OF  OF dx;
By P00 = G S0
which by (1.1.2) implies
D
F = a—j:-l-u~V]-'. (1.1.34)

Dt Ot

Thus, when acting on any field quantities, the material-derivative operator D/ Dt is
split to a local time-variation 0/0t and a variation by advection u - V. In particular,
the acceleration a of a material element reads

_Du_ouw ¢ (1.1.35)
_Dt_at u u. .

Here again appears the velocity gradient tensor Vu. In addition to producing the
strain rate D, the vorticity w, and the dilatation ¥, by various operations one can
generate some other important quantities from this tensor. In fact, not only the inner
products of Vu with dx and u from left yield the rate of change of dx and that of u by
advection, respectively, as we have seen, but also its inner product with u from right
is meaningful: Vu - u = u - (Vu)” = V(|u|?/2) is the gradient of kinetic energy.

Then, since Vu = Vu — (Vu)T + (Vu)T, by (1.1.18) and (1.1.21a) we can split
u - Vu into two terms, and hence refine (1.1.35) to

LY u (1.136)
a=—+wxu — . g =lul. 1.
ot 21 1

7Some authors use the term “kinematics” more restrictively, only to the spatial relations of the
relevant quantities at a single time instance.
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Namely, the advective acceleration has two causes: the gradient of kinetic energy
and a vorticity cause in the direction perpendicular to both # and w. Vector w x u is
known as the Lamb vector, which implies a transverse force to the fluid motion, and
as will be seen in Chap. 9 it is responsible for the lift of an aircraft.

So far we have traced the local variation of a field quantity by following a material
fluid element. We may now similarly trace the global variation of a field quantity
in an arbitrary domain D(t), of which the boundary may move and change shape
over time with velocity vp. To this end we recall the Newton-Leibniz formula in
elementary calculus,

d b(t)

bof . db da
at oo, f(x,t)dx:/a Syt b0 = - f(a,0). (1.1.37)

This formula can be extended to multi-dimensional space, where we replace the
speed of moving bounds, da/dt and db/dt, by the normal velocity n - v of the
moving boundary surface 0D(¢). This yields

d oOF
L Fe t)dV:/ —dV+/ n-vyFdS. (1.1.38)
dt Jpa D) Ot aD(1)

In particular, we want to trace the global variation of F in a material volume )V, which
consists of the same fluid body and whose boundary velocity is the flow velocity u.
Let D(t) = V), and notice that the time derivative on the right-hand side of (1.1.38)
has been shifted inside the volume integral, we may replace V by a fixed control
volume V that is instantaneously coincide with V. Thus, (1.1.38) yields the material
derivative of the integral:

i/}'dv:/ a;7:dV—}-/ n-ufFdS (1.1.39a)
dt Jy v Ot av
=/ [a—}_—i—v‘(u]:)}dV (1.1.39b)
v L ot
DF
= —_— . 1.1.
/V(Dt +19.7:) dv (1.1.39¢)

These formulas give alternative expressions of the time rate of the material-volume
integral of the F-field. Equation (1.1.39a) is known as the Reynolds transport
theorem. It indicates that the time variation of F in V has two parts: one is due to
the local time derivative of F in V, and the other due to the moving of VV which
brings some F across the boundary 0V with the rate u, F per unit area, see Fig. 1.9.
Equation (1.1.39b) is from (1.1.39a) by the Gauss theorem (Appendix A.2.1), which
can in turn be cast to (1.1.39¢) by using the fact V - (wF) = u - VF + J9F and
(1.1.34).
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Fig. 1.9 Fluid motion in a
control volume V that leads
to the Reynolds transport
theorem

The local and global variations of any quantity F in a flow field, (1.1.34) and
(1.1.39), are the basis of deriving basic equations of fluid dynamics in the next
section.

In addition to the above formulas, we shall also deal with the rate of change of
integrals over material lines and surfaces. Since the fluid particles forming a material
line, surface, or volume do not change as time, the operator d/dt in front of any of
such integrals can be shifted into the integration symbol to become D /Dt therein.
But line element dx and surface element® dS = ndS in these integrals all vary as
time. Thus we first need to list their material rates of change (the rate of change of
dv is also included for completeness):

D
B, (@) = dx - Va, (1.1.40)
D
+,(@S) =ds B, (1.1.41)
D
T, (dv) = ddv. (1.1.42)

where B is the divergence-free surface-deformation tensor introduced by (1.1.31).
Equation (1.1.40) follows directly from (1.1.4) by setting dr = dx, while (1.1.42)
follows from (1.1.39c¢) by setting F = 1. To derive (1.1.41), we construct a volume
element dv = dx - dS and then use (1.1.40) and (1.1.42) (Problem 1.7). Therefore,
in addition to (1.1.39¢c), we can write down the general rules of the rate of change of
the integrals of any quantity F over material line C and surface S:

d dxo]-‘ / [dxoDj:+(dx~Vu)o}"], (1.1.43)
dt Dt
d dSo}‘ / [dSo D]:—i-(dS~B)o.7:], (1.1.44)
dt Dt

8 A surface element is a vector consisting of its normal direction n and area dS.



