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Preface

With the development of space techniques, more and more curious solar system
bodies are being explored by humans. For example, several countries have launched
orbiters and landers to the moon recently, focusing on unprecedented resources, ori-
gins and evolutions of the moon, including Japan’s SELenological and ENgineering
Explorer (SELENE), China’s Chang’E-1/2/3 and India’s Chandrayaan-1 and US’s
Lunar Reconnaissance Orbiter (LRO) and Gravity Recovery and Interior Laboratory
(GRAIL). These missions provided direct observations on space environments,
surface processes, rocks and minerals, water ice, interior structure and the origin
of the moon. Furthermore, a number of upcoming lunar missions programmes have
been planned, e.g., India’s Chandrayaan-2, (2014), Russia’s Lunar Glob 1 and 2
(2014/2015), China’s Chang’ E-4 (2017), and International Lunar Network (2018),
which will enable us to answer more unknown questions on lunar exploration and
sciences. In addition, with recent Mars Global Surveyor (MGS), Mars Express, Mars
Odyssey, Mars Reconnaissance Orbiter (MRO), Venus Express, Phoenix, and so on,
the atmosphere, surface processes and interior structure of the Mars, Venus and
other planets were well explored and understood. However, the origin, formation
and evolution on planets and exoplanets are still unclear, as well as seeking life
beyond Earth.

This book will present the recent developments of planetary exploration tech-
niques and the latest results on planetary science as well as future objectives
of planetary exploration and science, e.g., lunar surface iron content and Mare
Orientale basalts, Earth’s gravity field, Martian radar exploration, crater recognition,
ionosphere and astrobiology, exoplanetary atmospheres and planet formation in
binaries. It will help readers to quickly familiarize themselves with the field of
planetary exploration and science. In addition, it is also useful for planetary probe
designers, engineers and other users’ community, e.g., planetary geologists and
geophysicists. This work was supported by the National Basic Research Program
of China (973 Program) (Grant No. 2012CB720000) and Main Direction Project
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of Chinese Academy of Sciences (Grant No. KJCX2-EW-T03). Meanwhile, we
would like to gratefully thank Springer Publisher for their processes and cordial
cooperation to publish this book.

Shanghai, China Shuanggen Jin
Honolulu, HI, USA Nader Haghighipour
Chung-Li, Taiwan Wing-Huen Ip
May 2015
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Chapter 1
Partial Least Squares Modeling of Lunar
Surface FeO Content with Clementine
Ultraviolet-Visible Images

Lingzhi Sun and Zongcheng Ling

Abstract To accurately predict the iron abundance of the Moon has long been the
goal for lunar remote sensing studies. In this paper, we present a new iron model
based on partial least squares regression (PLS) method and apply this model to
map the global lunar iron distribution using Clementine ultraviolet-visible (UVVIS)
dataset. Our iron model has taken into account of more calibration sites other than
Apollo and Luna sample-return sites and stations (i.e., the six additional highland
or immature sites) in combination with more spectral bands (5 bands and 2 band
ratios), in order to derive reliable FeO content and improve the robustness of the
PLS model. By comparing the PLS-derived iron map with Lucey’s band-ratio FeO
map and Lawrence’s Lunar Prospector (LP) FeO map, the differences are mostly
within 1 wt% in FeO content. Moreover, PLS-derived FeO is more consistent
with LP’s result which was derived by direct measurement of Fe gamma-ray line
(7.6 MeV) rather than the Lucey’s experiential algorithm applying only two bands
(750, 950 nm) of Clementine UVVIS dataset. With a global mode of 5.1 wt%,
PLS-derived iron map is also validated by FeO abundances of lunar feldspathic
meteorites and in support of the lunar magma ocean hypothesis.

Keywords Lunar iron content • Partial least squares regression (PLS) •
Spectroscopy • Clementine UVVIS

1.1 Introduction

As one of the major rock-forming elements, iron is closely related to lunar mafic
mineral assemblages and rock types; thus the accurate estimation of iron abundance
would provide important information of lunar geochemistry, petrogenesis, as well

L. Sun • Z. Ling (�)
School of Space Science and Physics, Shandong Provincial Key Laboratory of Optical
Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences,
Shandong University, Weihai 264209, China
e-mail: zcling@sdu.edu.cn
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1

mailto:zcling@sdu.edu.cn


2 L. Sun and Z. Ling

as the crustal evolution. Iron is often expressed as FeO in astrochemistry. The
absorption properties in the ultraviolet-visible (UVVIS) and near-infrared (NIR)
spectral regions of iron-bearing minerals (e.g., pyroxene, olivine, and ilmenite)
are dominated by Fe2C or Ti4C/Ti3C (Lucey et al. 1998). The absorption features
from lunar sample or remotely sensed spectra would mix up influences from
the exposures of lunar soils to the space environment, i.e., the Moon has been
suffering from bombardments by micrometeorites, solar wind ions, cosmic rays,
and solar flare particles (Fischer and Pieters 1994, 1996). Sustained bombard-
ments will cause the lunar surface material change in petrography and chemistry.
These changes include reduction of mean grain size, the production of nanophase
iron (npFe0) and complex glass-welded aggregates of lithic and mineral frag-
ments (agglutinates), and so on (Fischer and Pieters 1994, 1996; Mckay et al.
1974). This so-called process “space weathering” will bring about the maturation
of lunar regolith, i.e., the mature regolith usually has suffered from a longer
time of space weathering compared to immature regolith. Space weathering will
cause an overall reduction in the reflectance, and reduce the absorption band
strengths, creating and steepening a red-sloped continuum (Fischer and Pieters
1994, 1996).

Many authors have obtained the empirical relationships between spectral prop-
erties and iron abundance of lunar soils with intent to get a more accurate lunar
iron model (Lucey et al. 1995, 2000; Blewett et al. 1997; Gillis et al. 2004; Wilcox
et al. 2005). Lucey et al. (1995) firstly provided a method for the derivation of
iron from Clementine multispectral images, utilizing the laboratory spectra and iron
abundance of lunar soils. A Fe parameter was defined based on compositional and
maturity-related trends on a plot of 950 nm/750 nm versus 750 nm reflectance,
which was found to have a strong linear relationship with iron abundance (Fig. 1.1)
(Lucey et al. 1995). It can be seen from Fig. 1.1 that iron content has an orthogonal
effect, where low iron abundance has high reflectance and high ratio whereas high
iron abundance has low reflectance and low ratio. This trend has a hypothetical

Fig. 1.1 A schematic
diagram of NIR/VIS ratio
versus VIS for lunar samples.
Samples with high iron
abundance toward lower left
on the plot. Samples with
same iron abundance but
different maturities locate
along a line radial to a dark
red mature end-member at the
upper left. The Fe parameter
(� ) could decouple iron
content from maturity
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end-member (“Optimized origin” in Fig. 1.1), which is dark and “red.” However,
Blewett et al. (1997) pointed it out that the directional-hemispherical laboratory
spectra that Lucey used in his algorithm may induce error when applying to the
bidirectional spacecraft measurements. He improved Lucey’s method by collecting
image of lunar landing sites and applying them to iron mapping algorithms. Lucey
et al. (1998) examined and quantified important aspects, e.g., maturity, grain size
and mineralogy, and topographic shading, in his new iron modeling. He then
obtained an improved iron abundance model by using their final processing of
Clementine UVVIS datasets (Lucey et al. 2000). Later on, Gillis et al. (2004) noted
that TiO2 abundance has an effect on the relationship between Fe content and Fe
parameter, and they optimized this method by adding TiO2-sensitive regression
parameters into the regression of iron content. Wilcox et al. (2005) developed a new
algorithm to determine the iron content in lunar mare regions based on the findings
that the maturity trends in lunar mare area are more parallel than radial. They
collected more than 9,000 craters from mare regions and make a 950/750 nm vs.
750 nm reflectance plot with these data and found the radial trends were disobeyed.
While iron abundance was still orthogonal to maturity trends, the maturity trends
were parallel to each other, suggesting new trends of iron distribution in lunar
mare. Their new iron model has absolute uncertainty similar to Lucey 2000’s
model (1.5 wt%), while it allows better compensation for the maturity-induced iron
uncertainties (<0.5 wt%).

Except for NIR/VIS ratio methods mentioned above, many other approaches like
utilizing infrared continuum slope of the spectrum in order to suppress the effect
of topography (Le Mouelic et al. 2002) and iron absorption band depth (Fischer
and Pieters 1994) have been proposed in the iron modeling. These methods are
limited by the data calibration and quality of Clementine NIR dataset. Statistical
relationships between spectral and chemical abundance of lunar soils have also been
evaluated by Pieters et al. 2002 for their applications of remotely compositional
analysis. She firstly applied principle component analysis (PCA) regression method
with lunar mare soil spectra produced by Lunar Soil Characterization Consortium
(LSCC) to define and evaluate the correlations between chemical abundance and
spectral parameters (Pieters et al. 2002). Then she also derived three statistical
relations between spectral and mineral parameters using LSCC data and applied
them to Clementine UVVIS data (Pieters et al. 2006).

Although many iron models have been put forward as discussed above, a
quantitatively accurate iron model is still in need, especially for the exploration of
the potentials of multispectral imaging data like Clementine UVVIS and other lunar
hyperspectral datasets (e.g., data from Moon Mineralogy Mapper (M3), Interference
Imaging Spectrometer (IIM), etc.). In this paper, we choose to build iron abundance
models with partial least squares (PLS) regression method. PLS is known as the
second generation of regression method, which performs well in multivariable
regression especially when multiple correlations exist among variables. Li (2006)
made a comparison between PLS and PCA in deriving chemical and mineral
abundances using data from LSCC. He found PLS models use less components
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and perform better than PCA in the estimation of lunar chemical and mineral
abundances. However, Li didn’t apply his result to lunar remotely sensed images.
Our PLS-derived iron model is developed with intent to explore the potential of
the UVVIS imaging dataset. During the modeling, we find it is easy to reach a
good regression relationship (high correlation efficient (R2) value) between spectra
parameters and iron contents, while maturity suppressing is more difficult to attain.
We have tested many different variables in PLS modeling to find the most applicable
one for Clementine UVVIS images and compare our results with previous studies
to evaluate the robustness of the PLS model.

1.2 Data

The lunar remote sensing images used in this study are from Clementine UVVIS
Digital Image Model (DIM) published by US Geological Survey (USGS) Astrogeol-
ogy Team at Flagstaff, Arizona (NASA PDS Geosciences Node). The DIM has five
bands with a nominal ground resolution at 100 m/pixel, and the center wavelengths
(spectra resolutions) of the five filters are A, 415 nm (40 nm); B, 750 nm (10 nm);
C, 900 nm (20 nm); D, 950 nm (30 nm); and E, 1,000 nm (30 nm) (Eliason et al.
1999). This dataset is archived in the NASA Planetary Data System, and each image
has undergone radiometric and geometric correction, spectral registration, and
photometric normalization by Integrated Software for Imagers and Spectrometers
(ISIS) processing system.

The PLS modeling data points include those extracted from Apollo and Luna
sampling stations (from Wilcox et al. (2005), Table 2) and supplementary data from
farside highlands and optically fresh (immature) areas (shown in Table 1.1). From
our experiments, the statistical prediction of chemical abundance rely significantly
on the input variables, i.e., an obvious deviation of iron abundance would appear
when the modeling didn’t include data points from farside highland and immature
areas. Note that the iron abundances of supplementary data in Table 1.1 were
calculated with Lucey’s (2000) parameters.

Table 1.1 Iron abundance and reflectance values of supplementary data from Clementine UVVIS

Clementine spectra
Sites 415 nm 750 nm 900 nm 950 nm 1,000 nm FeO (wt%)

Farside-1 0.1196 0.2022 0.2178 0.2250 0.2302 2.3
Farside-2 0.1195 0.2032 0.2183 0.2271 0.2336 1.7
Farside-3 0.1330 0.2271 0.2372 0.2447 0.2546 3.8
Fresh-1 0.0794 0.1265 0.1140 0.1108 0.1111 17.2
Fresh-2 0.0767 0.1229 0.11155 0.1088 0.1103 17.4
Fresh-3 0.0811 0.1353 0.1202 0.1174 0.1203 16.8
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1.3 Partial Least Squares Regression Method and Data
Processing

PLS is a new kind of multivariate statistics regression method, which was developed
by Herman Wold in 1966 (Li 2006). Comparing to other regression methods
(like PCA regression), PLS has many advantages, especially in resolving mutual
influence problems among variables. PLS has already been utilized for analyzing
material compositions from laboratory and remote sensing spectra datasets. Li
(2006, 2008) resampled LSCC bidirectional reflectance data into the airborne
visible/infrared imaging spectrometer (AVIRIS) spectral resolution and derived
several composition derivation models such as iron and TiO2 with PLS regression
method (Li 2006, 2008, 2011). Li’s model was based on laboratory data and was
not applied to remotely sensed data, making it difficult to evaluate the ability of the
model in maturity suppressing.

As an advanced statistical method, the principle of PLS analyzing can be
expressed as: PLS D PCA C CCA C MLR (CCA, classical component analysis;
MLR, multiple linear regression). The key to PLS modeling is to determine the
number of latent variables (LVs), which are also called the components. Covariance
between each corresponding component of independent variable and dependent
variable should be kept maximum; this can be considered as a combination of LVs
searching conditions of PCA and CCA.

Assuming the independent variance is an n � m matrix X, and dependent variance
is an n � p matrix Y, we first standardize matrixes X and Y before modeling in
order to reach a more stable result. Following PLS rules while regressing X and
Y, finally, we can get the relations listed below (Eqs. 1.1 and 1.2). Both X and Y are
decomposed into two parts: a matrix product term and a residual term. The matrix
product term consists of a score matrix and a loading matrix, score matrixes are T
for X and U for Y, and they are both n � a matrixes; loading matrixes are P for X
and Q for Y, and they are both m � a matrixes. E and F are residual matrixes. The
goal of regression is to find the correlative relation between X and Y (Eq. 1.3) while
keeping residual matrixes E and F minimum:

X D TPT C E D
X

a

tap
T
a (1.1)

Y D UQT C F D
X

a

uaq
T
a (1.2)

Y D XB C F (1.3)

In order to find better relations between spectral data and iron content, we transfer
reflectance spectra into effective absorbance spectra first. With zero transmittance
given, absorbance can be roughly expressed as log reflectance based on Beer’s Law
(Eq. 1.4), where R denotes reflectance and ˛ is absorbance. The derived absorbance
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˛ is assumed to have a linear relationship with the abundance of composition
(Li 2006; Yen et al. 1998; Whiting et al. 2004; Milliken and Mustard 2005):

� lnR D � ln .1 � ˛/ (1.4)

1.4 PLS Modeling

1.4.1 Iron Modeling

In our PLS model, modeling data points including 47 lunar sampling sites from
Wilcox et al. (2005) and 6 added data from lunar farside highlands and fresh areas,
so there are 53 modeling sites in total, and X is a 53 � 5 matrix, and Y is a 53 � 1
matrix. After transforming reflectance into absorbance, we standardized both X and
Y in order to get a more stable model. While modeling, the most important thing
is to derive reasonable iron content as well as suppress the space weathering effect
at the same time. All of the five bands are included in the dependent variables to
keep the maximum potential, and they are expressed by A1 � A5, respectively. Band
ratios are helpful especially when extracting chemical abundances, and they are also
indications of maturity degree. Our model takes account of the typical NIR/VIS ratio
(950 nm/750 nm), which is used in Lucey’s algorithm. Pieters et al. (2002) have
tested the correlations between composition and spectral ratios, and experiments
showed that the highest correlation for iron is 1,000/400 nm. Hence, we also bring
it into our model, expressed by 1,000/415 nm. Finally, all the variables chosen to
build model are listed in Eq. 1.5, c0 � c7 are regression coefficients, and A1 � A5

represent five absorption bands of Clementine data:

Iron D c0 C
5X

iD1
Aici C

�
A4

A2

�
c6 C

�
A5

A1

�
c7 (1.5)

After inputting all the data into PLS toolbox, leave-one-out cross-validation is
executed during modeling. The cross-validation means modeling with one variable
left out until all the variables have been left out once; thus we would derive a
regression model in each cross-validation and compute the root mean square error
of cross-validation (RMSECV) for every leave-one-out model by Eq. 1.6; k is the
number of variable that is left out. Usually, the one with minimum RMSECV will
be chosen as the best LV number. After the number of components is determined,
the total root mean square (RMSE) can be calculated by Eq. 1.7.

Figure 1.2 is the plot of RMSE and RMSECV values, the minimum RMSECV
is 1.51 wt%, and the corresponding LV number is 1. Measured abundances of iron
and those derived from the PLS model are plotted in Fig. 1.3. Correlation coefficient
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Fig. 1.3 Regression result of PLS modeling. The correlation coefficient is 0.918, and RMSE is
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(R2) of this model is 0.918, and RMSE is 1.44 wt%, indicating a good regression of
iron abundance has been achieved:

RMSECVk D

vuuuut

8X

iD1
.byi � yi /2k
8

(1.6)

RMSE D

vuuuut

8X

iD1
.byi � yi /2

8
(1.7)

1.4.2 Results and Analysis

We apply the PLS model mentioned in Sect. 1.4.1 to a small area near the southern
rim of Mare Crisium (Fig. 1.4a) for preliminary check and validation. This region is
chosen for two reasons. First, its location is near the boundary of mare and highland,
so bimodal distribution of FeO is expected to exist; moreover, there are many small
spectrally fresh craters (low maturity degree) in the mare area, which could be used
as an indicator for the maturity-suppressing ability of our model (Ling et al. 2011).

PLS-derived iron map is shown in Fig. 1.4c in comparison with the result
of Lucey’s work (Fig. 1.4b). Considering the maturity-suppressing ability can be
indicated by the small fresh craters in the mare region, the difference between our
model and Lucey’s is subtle, i.e., most of small fresh craters (bright spots in the
750 nm reflectance image (Fig. 1.4a)) are invisible in the PLS-derived FeO map
in Fig. 1.4b, c. The distribution of FeO in the mare area is relatively homogenous,
which indicates that the maturity-suppressing ability of our model is comparable to
Lucey’s algorithm.

It can be seen from Figs. 1.4 and 1.5 that FeO abundance is high in mare regions
and low in highland regions. Generally, FeO abundance of mare regions is higher
than 10 wt%, which is due to the large concentration of iron-bearing silicates in
mare basalts such as pyroxene, olivine, ilmenite, etc. Highland region is deficient in
iron, as its rock type is dominated by anorthosite (Lucey et al. 1995, 1998). From the
histogram of iron abundance (Fig. 1.5), we can distinguish a bimodal distribution of
FeO in this region; the peak on the left represents FeO concentration in highland
region and right peak represents that in mare region. Comparing the PLS model
to Lucey et al.’s (2000) algorithm, it can be recognized that the two models have
similar peak positions for the mare region (right peak), and the peak FeO abundances
are about �16.5 wt%; while the FeO abundances for the highland (left peak) have a
little difference, our result is around 9 wt%, about 1 wt% higher than Lucey’s. This
discrepancy may result from various causes such as model input parameters (e.g.,
different bands or sampling sites). Further discussions will be given in Sect. 1.4.3.
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750nm Lucey 2000 PLS Model

FeO(wt.%)

19.0

9.5

0

Fig. 1.4 (a) 750 nm reflectance of a small area from southern Mare Crisium, (b) iron map derived
from Lucey’s algorithm, and (c) iron map derived from PLS model. It can be seen that most of the
bright fresh craters are invisible in our iron map

Fig. 1.5 Statistical result of Fig. 1.4 (a) Lucey’s result, corresponding to Fig. 1.4b; (b) our result,
corresponding to Fig. 1.4c. Both of them have obvious bimodal structure, the left peak represents
iron concentration in highland area, and the right peak represents iron concentration in mare area.
Iron peak in highland area is 9 wt% in our model and 8 wt% in Lucey’s, while iron peak in mare
area is about 16.5 wt%, which is the same with Lucey’s



10 L. Sun and Z. Ling

1.4.3 PLS Modeling of Highland Areas

As discussed above, although the two iron maps behave similarly in iron abundance
and maturity suppressing, they still exhibit discrepancy in FeO modeling of highland
regions. The iron abundance of our model for highland region is a little higher
than Lucey’s, which is shown both in iron map (Fig. 1.4b, c) and the statistical
results of iron map (Fig. 1.5). As is known to all, statistical methods strongly
depend on the sampling data points, i.e., when the sampling data points lack of
a specific range of FeO abundance, the result may tend to behave deviate from
that range. During the modeling, although six supplementary data are added for
lunar sampling stations, the highland data sources are only composed of Apollo 16
sampling stations and 3 added lunar farside sites. The limited proportion of highland
spectra to the total modeling data may lead to the overestimation of iron abundance
in highland areas during the PLS modeling. To testify this hypothesis, we derive
another iron model using only Apollo 16 and Apollo 17 sampling sites, in order to
increase the proportion of highland sampling sites. Data processing pipeline follows
the first PLS model (Eq. 1.5).

Applying this highland model to test area, we derive a new iron map. Iron
abundance derived by highland model (Fig. 1.6c) is obviously less than that

Lucey 2000 PLS model

FeO wt.%

19.0

9.5

0

PLS model of
highland area

Fig. 1.6 Iron map comparison, highland regions are indicated by a black frame. (a) Lucey’s result;
(b) the first PLS model result; (c) highland modeling result. The iron abundance of c in the highland
regions is obviously less than b and a
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Fig. 1.7 Statistical result of iron abundance of the model build with highland spectra. The FeO
abundance peak of highland region is 7 wt%, which is lower than the first model (Fig. 1.6b, 9 wt%)
as well as Lucey’s result (Fig. 1.6a, 8 wt%)

modeling with all the data presented in Table 1.1 (Fig. 1.6b). From the statistical
results, we can find that the iron concentration peak of highland regions reduces to
7 wt% (Fig. 1.7), as compared to the former 9 wt% (Fig. 1.5b). Given the proportion
of highland data increases and PLS regression procedures remain the same, we can
conclude that the PLS model relies on the input modeling data, i.e., the spectral types
and iron abundances range of the modeling data could affect PLS model behavior
significantly. Although it looks like one can improve the PLS modeling behavior by
adding supplementary data to the original lunar sampling sites, the number of added
data should be in caution. As stated above, elemental abundance of added data is
usually calculated by empirical methods, which may induce uncertainty or even
correct conclusions. We have done tens of experiments with the number of data
points varying from dozens to hundreds; the PLS model presented in Sect. 1.4.1
is the best one when all the available Apollo and Luna ground truth data are
considered. As supplementary data for highlands and fresh areas, the added data
only accounts for a very small proportion in the modeling data compared to lunar
sampling stations. For future work, we will focus on trying to find more effective
variables or anticipating more typical sampling sites in the future missions.
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Fig. 1.8 Global iron map of PLS model. Data greater than 30.0 wt% or less than 0.0 wt% are set
to NAN (not a value) in this map

1.5 Global Iron Mapping and Analysis

1.5.1 Global Iron Mapping

Applying the PLS model from Sect. 1.4.1 to Clementine DIM global mosaic,
we can obtain a lunar global iron map (Fig. 1.8). As shown in Fig. 1.8, FeO
is obviously rich in the large basins that spread in lunar nearside such as Mare
Imbrium, Oceanus Procellarum, Mare Serenitatis, Mare Tranquillitatis, etc., all of
which are known to have been flooded by large amounts of iron-rich basalt lava flow.
The histogram of global iron distribution is shown in Fig. 1.9c. Global mean FeO
abundance is 7.6 wt% by PLS model. The bimodal structure represents decoupled
iron distribution in mare and highland region. The global mode of FeO is 5.1 wt%,
corresponding to the left peak in Fig. 1.9c, and FeO abundance peak in mare is
16.9 wt%, corresponding to the right peak.

1.5.2 Comparison with Former Works

To understand more about the global FeO map derived from PLS model, we
compare our work with Lucey’s band-ratio result and Lunar Prospector (LP)
(Figs. 1.10 and 1.11; Table 1.2). On a global view, the global mean of FeO
abundance of PLS model is 7.6 wt%, and the value is 7.8 wt% for both Lucey’s
and LP’s results. Peak values of FeO in the highland (global mode) are 5.1 wt% for
PLS model and 6.4 wt% for LP, while Lucey’s algorithm derives a relatively lower
value less than 5 wt%. Peak distribution of FeO in the mare for the three model is
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Fig. 1.9 Comparison of
statistical results. (a) Global
histogram of FeO from LP,
(b) Lucey 2000, (c) PLS
modeling
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Fig. 1.10 (a) Difference map between iron map derived from PLS model and Lucey’s algorithm
(PLS minus Lucey’s). (b) The difference of the two maps shows a Gaussian distribution with an
average of 0.27 wt%, and RMS is 1.13 wt%

around 17 wt%. Comparing from the statistical results (Fig. 1.9), FeO abundance
derived by PLS model in lunar highland areas is a little higher than Lucey’s but is
similar to LP’s. Detail comparisons between PLS model, Lucey’s algorithm, and LP
result will be discussed in the following.

In order to show the global difference between PLS model and Lucey’s method,
we apply Lucey’s algorithm to Clementine DIM and make a difference map (PLS
FeO minus Lucey’s FeO), as shown in Fig. 1.10a. Most of the difference distributes
within �0.9 to 1.0 wt% which is shown in green color in the difference map. PLS
model gets an even higher iron abundance than Lucey’s result in lunar farside,
which is consistent with the statistical result comparison (Fig. 1.9b, c). Another



1 Partial Least Squares Modeling of Lunar Surface FeO Content. . . 15

180º 0’0”

70º 0’0”N

35º 0’0”N

0º 0’0”

35º 0’0”s

70º 0’0”s

70º 0’0”N

35º 0’0”N

0º 0’0”
FeO wt.%

-23.7--5.9

-5.8--2

-1.9--1

-.9-1

1.1-2

2.1-5.9

6-16.1

35º 0’0”s

70º 0’0”s

180º 0’0”180º 0’0” 150º 0’0”W 120º 0’0”W 90º 0’0”W 60º 0’0”W 30º 0’0”W 30º 0’0”E 60º 0’0”E 90º 0’0”E 120º 0’0”E 150º 0’0”E0º 0’0”

180º 0’0”150º 0’0”W

Difference map of PLS model and LP
120º 0’0”W 90º 0’0”W 60º 0’0”W 30º 0’0”W 30º 0’0”E 60º 0’0”E 90º 0’0”E 120º 0’0”E 150º 0’0”E0º 0’0”

N

a

b

Fig. 1.11 (a) Difference map between iron map derived from PLS model and Lunar Prospector
gamma-ray spectrometer (PLS minus Lucey’s). (b) Statistical result of a, suggest an average of
0.9 wt% and RMS is 2.3 wt%

Table 1.2 Comparison of FeO abundance between different algorithms

FeO model Global mean (wt%) Global mode (wt%) Peak value in mare (wt%)

Lucey 2000 7.8 4.7 17.1
Lunar Prospector 7.8 6.4 17
PLS model 7.6 5.1 16.9
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discovery from the difference map is that iron in fresh craters derived by PLS is often
lower than Lucey’s result, represented by Tycho crater (located in south-southwest
of the map, about 43.3ıS, 11.2ıW). This may be caused by different degrees of
maturity suppressing between the two methods. Statistical result (Fig. 1.10b) shows
a nearly Gaussian distribution of the difference, with an average value around
�0.27 wt%, and root mean square error (RMS) is 1.13 wt%, indicating a relatively
small difference of the global iron abundance between the two maps.

Lawrence et al. (2002) derived a global iron map from the gamma-ray counting
rate of the lunar surface detected by Lunar Prospector (LP). The Fe derived by
gamma-ray spectrometer is a direct measurement of Fe gamma-ray line (7.6 MeV).
Moreover, gamma-ray spectrometer usually detects signal from over 10 cm below
lunar regolith, so the result would be less affected by space weathering effect, mak-
ing the FeO abundance more reliable than that derived by experienced algorithms.
The global mode of LP is 6.4 wt%, compared to 5.1 wt% derived from PLS model.
Comparing to Lucey’s result, iron abundance derived by PLS modeling is more
consistent with that detected by LP as far as highland regions are considered. In
other words, the higher iron value that is derived from PLS model for the lunar
highland regions when compared to Lucey’s algorithm may suggest a more reliable
result. As for iron distribution of Tycho crater, Lawrence et al. (2002) also found a
large discrepancy, i.e., Lucey’s results show moderate FeO abundances at 7–9 wt%,
while the LP data show very low FeO abundances at 3–4 wt%. FeO content from
PLS modeling is about 3.8 wt% which supports the LP result (Fig. 1.12a, b).

Considering the different spatial resolutions of the FeO maps from the spectral
and gamma-ray datasets, in order to compare in detail with iron map derived by LP,
we resample the Clementine iron map derived by PLS to the same spatial resolution
as LP iron map (15 km/pixel) and make a global difference map (regions exceed
70ıS–70ıN are not included) (Fig. 1.11a). The difference distribution on the global
map isn’t very homogenous, but when we take a look at the global iron distribution,
we find the global difference is concentrated within �0.9 to 1.0 which is colored by
green, and iron abundance detected by LP in mare areas and high-latitude regions
is higher than PLS model. The difference in high latitudes tends to be greater; this
effect may be the influence of topographic shading or illumination conditions.

Furthermore, our iron content of PLS model for the South Pole-Aitken (SPA)
basin is higher than LP’s but lower than Lucey’s (Fig. 1.12c). As the largest impact
crater on the Moon, the SPA impact event didn’t penetrate the materials from lunar
mantle, which are expected to be more mafic and iron rich. The specific noritic
mineralogy may account for this low FeO concentration (Lucey 2004). From the
statistical result of the difference map, the global average of iron difference is within
1 wt% and the RMS is 2.3 wt%, suggesting a good consistency of PLS model and
LP iron map.

In a word, we find the iron map from PLS model agrees with those from the
Lucey’s and LP’s, though subtle difference appears for the global maps. This
suggests our PLS model is a robust algorithm for the extraction of lunar iron content.
Furthermore, the application of PLS method on the global lunar mosaic seems to be
more consistent with LP results than those of Lucey 2000. Note that our PLS model
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Fig. 1.12 (a) PLS-derived iron map of Tycho crater; (b) statistical result of iron distribution in
Tycho crater; (c) PLS-derived iron map of SPA region

explored the potential for all the five available Clementine UVVIS bands and some
more spectral parameter than Lucey et al. (2000), who used only Clementine’s two
bands (950 and 750 nm) to derive iron content. We believe our PLS model is a good
test and validation for the lunar elemental mapping with available lunar spectral data
and those from future lunar missions.

1.6 Indication of Lunar Magma Ocean Hypothesis

After lunar sample returned to earth, a lot of laboratory experimental analyses have
been done to extract information of the lunar mineralogy and petrogenesis, which
are very helpful in understanding lunar origin and evolution progress in a global
or local scale. Samples from lunar highland regions contain higher plagioclase
abundance and hence are rich in Al and poor in Fe compared to those from mare
regions (Lucey et al. 1995). These rocks are interpreted as forming from a global
circling magma ocean, and plagioclase floated in it (Wood et al. 1970; Warren
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and Haskin 1991). The magma ocean hypothesis was developed following the first
sample return from the Moon. The crystallization of the magma ocean would result
in FeO poor anorthosite rocks concentrating in the crust.

As was mentioned by Lucey et al., the key test of the magma ocean hypothesis
is the abundance of anorthosite (Lucey et al. 1995). Usually, anorthosite assembles
in lunar highlands, so iron abundances in these regions could represent the global
anorthosite concentration. In remote detection, the global mode of FeO concentra-
tion represents iron abundance of lunar highland regions. The global mode of iron
abundance derived by Lucey et al. in 1995 is about 3 wt% (in Fe, and 3.96 wt% in
FeO), and he improved the algorithm in year 1998, and the new global mode of FeO
is 4.8 wt% (Lucey et al. 1998). These results are consistent with our result (5.1 wt%).
As far as lunar meteorites study are concerned, Korotev et al. studied eight best
characterized feldspathic lunar meteorites and showed the average concentration of
FeO is 4.4 ˙ 0.5 wt%, and the FeO range is 3–6 wt% (Korotev et al. 1996; 2003;
Korotev 2005). The global mode of PLS-derived FeO map is 5.1 wt%, which also
agrees well with meteorite studies and remote sensing results (Lucey et al. 1995,
1998, 2000; Lawrence et al. 2002) and thus could also support the magma ocean
hypothesis of lunar crust.

1.7 Conclusions

We derived a new iron model with PLS method, which has been verified to be able
to derive robust iron abundances for the Moon. We apply this model to Clementine
DIM and obtain global distribution of iron. Our results show that peak distribution
of iron abundance in highlands and mare regions are 5.1 wt% and 16.9 wt%,
respectively. Comparing our iron map to Lucey’s algorithm as well as that detected
by Lunar Prospector gamma-ray spectrometer, we find the three results agree well
in mare regions, while PLS model and LP iron maps show higher iron content in
highlands. Local comparisons (e.g., Tycho crater and SPA basin) also suggest our
PLS model is reliable and more consistent with the LP results. Besides, the PLS
model-derived iron abundance peak of lunar farside is 5.1 wt%, which agrees well
with the lunar meteorites that are assumed from lunar highland. Our global FeO
distributions are also consistent with the lunar magma ocean hypothesis as has been
presented by previous work (Lucey et al. 1995, 1998; Wood et al. 1970; Warren and
Haskin 1991).

Although our PLS algorithms have already shown its potential for extraction
of lunar iron abundance, it should be kept in mind that there are limitations, i.e.,
the exact physical significance of PLS is not as evident as experience algorithms,
and PLS regression highly depends on the type of the modeling data inputs. More
lunar samples and precise geographic location of them would definitely contribute
to the improvement of PLS modeling for iron. Interference Imaging Spectrometer
(IIM) onboard Chang’E-1 has achieved the abundance of some key elements of the
Moon (Ling et al. 2011; Wu et al. 2012; Jin et al. 2013). As is known, China’s new
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lunar lander and rover mission, “Chang’E-3” lander and “Yutu” rover, respectively,
have launched in December 2013, and the rover will be released to detect mineral
distribution of the lunar surface, especially in Sinus Iridum (Liu et al. 2013), which
has never been set foot on by any lander or rover before. Spectral data from VIS-NIR
Imaging Spectrometer (VNIS) onboard Yutu rover may provide good opportunities
and more constraints for lunar compositional studies and as PLS modeling of lunar
iron abundance as well.

Acknowledgements This work was supported by the National Natural Science Foundation
of China (11003012, U1231103), the Natural Science Foundation of Shandong Province
(ZR2011AQ001), Independent Innovation Foundation of Shandong University (2013ZRQP004),
and Graduate Innovation Foundation of Shandong University at WeiHai, GIFSDUWH (yjs13026).

References

Blewett DT, Lucey PG, Hawke BR (1997) Clementine images of the lunar sample-return stations:
refinement of FeO and TiO2 mapping techniques. J Geophys Res 102(E7):16319–16325

Eliason E, Isbell C, Lee E et al (1999) The Clementine UVVIS global lunar mosaic. Cited 20 May
2013. http://www.lpi.usra.edu/lunar/tools/clementine/instructions/UVVIS_DIM_Info.html

Fischer EM, Pieters CM (1994) Remote determination of exposure degree and iron concentration
of lunar soils using VIS-NIR spectroscopic methods. Icarus 111(2):475–488

Fischer EM, Pieters CM (1996) Composition and exposure age of the Apollo 16 Cayley and
Descartes regions from Clementine data: normalizing the optical effects of space weathering.
J Geophys Res 101(E1):2225–2234

Gillis JJ, Jolliff BL, Korotev RL (2004) Lunar surface geochemistry: global concentrations of Th,
K, and FeO as derived from lunar prospector and Clementine data. Geochim Cosmochim Acta
68(18):3791–3805

Jin SG, Arivazhagan S, Araki H (2013) New results and questions of lunar exploration from
SELENE, Chang’E-1, Chandrayaan-1 and LRO/LCROSS. Adv Space Res 52(2):285–305

Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65:297–346
Korotev RL, Jolliff BL, Rockow KM (1996) Lunar meteorite Queen Alexandra Rang 93069 and

the iron concentration of the lunar highlands surface. Meteorit Planet Sci 31:909–924
Korotev RL, Jolliff BL, Jolliff RA (2003) Feldspathic lunar meteorites and their implications for

compositional remote sensing of the lunar surface and the composition of the lunar crust.
Geochim Cosmochim Acta 67(24):4895–4923

Lawrence DJ, Feldman WC, Elphic RC (2002) Iron abundances on the lunar surface as measured
by the Lunar Prospector gamma-ray and neutron spectrometers. J Geophys Res 107(E12):5130

Le Mouelic S, Lucey PG, Langevin Y (2002) Calculating iron contents of lunar highland materials
surrounding Tycho crater from integrated Clementine UV-visible and near-infrared data.
J Geophys Res 107:E10,5074

Li L (2006) Partial least squares modeling to quantify lunar soil composition with hyperspectral
reflectance measurements. J Geophys Res 111:E04102

Li L (2008) Quantifying lunar soil composition with partial least squares modeling of reflectance.
Adv Space Res 42:267–274

Li L (2011) Quantifying TiO2 abundance of lunar soils: partial least squares and stepwise multiple
regression analysis for determining causal effect. J Earth Sci 22(5):549–565

Ling Z, Zhang J, Liu J et al (2011) Preliminary results of FeO mapping using imaging
interferometer data from Chang’E-1. Chin Sci Bull 56(4–5):376–379

http://www.lpi.usra.edu/lunar/tools/clementine/instructions/UVVIS_DIM_Info.html


20 L. Sun and Z. Ling

Liu B, Liu J, Zhang G et al (2013) Reflectance conversion methods for the VIS/NIR imaging
spectrometer aboard the Chang’E-3 lunar rover: based on ground validation experiment data.
Res Astron Astrophys 13(7):862–874

Lucey PG (2004) Mineral maps of the moon. Geophys Res Lett 31:L08701
Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the moon. Science

268(5214):1150–1153
Lucey PG, Blewett DT, Hawke BR (1998) Mapping the FeO and TiO2 content of the lunar surface

with multispectral imagery. J Geophys Res 103(E3):3679–3699
Lucey PG, Blewett DT, Jolliff BL (2000) Lunar iron and titanium abundance algorithms based

on final processing of Clementine ultraviolet–visible images. J Geophys Res 105(E8):20297–
20305

Mckay DS, Fruland RM, Heiken GH (1974) Grain size and the evolution of lunar soils. In:
Proceedings of the lunar science conference 3rd, Pergamon Press, New York, pp 983–995

Milliken RE, Mustard JF (2005) Quantifying absolute water content of minerals using near-infrared
reflectance spectroscopy. J Geophys Res 110:E12001

NASA PDS Geosciences Node ftp://pds-geosciences.wustl.edu/geocopy/imaging/clem1-l-u-5-
dim-uvvis-v1.0/cl_4001/catalog/

Pieters CM, Stankevich DG, Shkuratov YG et al (2002) Statistical analysis of the links among
lunar mare soil mineralogy, chemistry, and reflectance spectra. Icarus 155:285–298

Pieters CM, Shkuratov Y, Kaydash V et al (2006) Lunar soil characterization consortium analysis:
pyroxene and maturity estimates derived from Clementine image data. Icarus 184:83–101

Warren PH, Haskin L (1991) Lunar chemistry. In: Heiken GH et al (eds) Lunar sourcebook.
Cambridge University Press, Cambridge, pp 357–474

Whiting ML, Li L, Ustin SL (2004) Predicting water content using Gaussian model on soil spectra.
Remote Sens Environ 89:535–552

Wilcox BB, Lucey PG, Gillis JJ (2005) Mapping iron in the lunar mare: an improved approach.
J Geophys Res 110:E1101

Wood JA, Dickey JS, Jr, Marvin UB et al (1970) Lunar anorthosites and a geophysical model of
the moon. In: Proceedings of the Apollo 11 lunar science conference, Pergamon Press, New
York, pp 965–988

Wu Y, Xue B, Zhao B et al (2012) Global estimates of lunar iron and titanium contents from the
Chang’E-1 IIM data. J Geophys Res 117:E02001

Yen AS, Murray BC, Rossman GR (1998) Water content of the Martian soil: laboratory simulations
of reflectance spectra. J Geophys Res 103:11125–11133

ftp://pds-geosciences.wustl.edu/geocopy/imaging/clem1-l-u-5-dim-uvvis-v1.0/cl_4001/catalog/
ftp://pds-geosciences.wustl.edu/geocopy/imaging/clem1-l-u-5-dim-uvvis-v1.0/cl_4001/catalog/

