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Preface

The continued improvements in high performance computing and high resolution
sensing capabilities are resulting in data of unprecedented size and complexity.
Historically topological and statistical techniques have been deployed as indepen-
dent alternatives in the analysis of a variety of data types. However, the continued
increases in size, dimensionality, and number of variables create new challenges
that traditional approaches cannot address. New methods that leverage the mutual
strengths of both topological and statistical techniques are needed to support the
management, analysis and visualization of such complex data.

In an effort to characterize the current challenges and research trends, and to
foster collaborations, we organized the Workshop on the Analysis of Large-scale,
High-dimensional, and Multivariate Data using Topology and Statistics, held June
12–14 in Le Barp, France. Around 30 researchers from 20 European and American
universities, companies, and national research laboratories were in attendance.
The program comprised 18 presentations, including a keynote talk by Herbert
Edelsbrunner from the Institute of Science and Technology Austria, titled “Per-
sistent Homology: Theory and Practice.” A number of interesting challenges were
addressed during the workshop, with presentations covering a wide range of topics,
including topological techniques for large data, high-dimensional data analysis,
computational challenges, multivariate visualization and analysis techniques.

In this book, we present 16 peer-reviewed chapters, divided into 6 parts as the
outcome of this workshop. Parts I and II focus on large-scale data, Parts III and IV
focus on multivariate data, and Parts V and VI focus on high-dimensional data.
The chapters in Part I include recent results in the area of in-situ and distributed
analysis. We start with a distributed-memory algorithm for labeling connected
components in simulation data (Harrison et al.), followed by a discussion of in-
situ visualization in fluid mechanics (Ribes et al.). Part I concludes with a survey of
recent discoveries in sublinear algorithms for extreme-scale data analysis (Seshadhri
et al.). Part II focuses on the efficient representation of large functions and includes

v
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a report on optimal general simplification of scalar fields on surfaces (Tierny et
al.), an algorithm for piecewise polynomial monotonic interpolation of 2D gridded
data (Allemand-Giorgis et al.), and a technique for shape analysis using real
functions (Biasotti et al.). The chapters in Part III focus on structural techniques
for multivariate data. This part includes a survey on 3D symmetric tensor fields
that highlights what we know and where to go next (Zhang and Zhang), followed
by a comparison of Pareto Sets and Jacobi Sets (Huttenberger and Garth), and a
report on deformations preserving total curvature (Berres et al.). Part IV focuses
on classification and visualization of vector fields, and includes a presentation of
Lyapunov time for 2D Lagrangian visualization (Sadlo), followed by a survey of
geometric algebra for vector field analysis and visualization (Ausoni and Frey). This
part concludes with a report on a technique for computing accurate Morse-Smale
complexes from gradient vector fields (Gyulassy et al.). Part V includes chapters
focused on the exploration of high-dimensional models, including a presentation of
high-dimensional sampling techniques (Ebeida et al.), and a report on the realization
of regular maps of large genus (Razafindrazaka and Polthier). Lastly, Part VI
presents recent results in the analysis of large, high-dimensional systems, and
includes a technique for faster localized solving of systems of equations (Anthony
et al.), followed by a system for ensemble analysis of electrical circuit simulations
(Crossno et al.).

Fig. 1 Workshop participants, June 2013

In summary, this book brings together recent results from some of the most
prominent and recognized leaders in the fields of statistics, topology, and computer
science. The book’s contents cover both theory and application, providing an
overview of important key concepts and the latest research trends. The algorithms
detailed in this book are broadly applicable and can be used by application scientists
to glean insight from complex data sets.
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Part I
Large-Scale Data Analysis: In-Situ

and Distributed Analysis



A Distributed-Memory Algorithm for Connected
Components Labeling of Simulation Data

Cyrus Harrison, Jordan Weiler, Ryan Bleile, Kelly Gaither, and Hank Childs

1 Introduction

Parallel scientific simulations running on today’s state of the art petascale computing
platforms generate massive quantities of high resolution mesh-based data. Scientists
often analyze this data by eliminating portions and visualizing what remains,
through operations such as isosurfacing, selecting certain materials and discarding
the others, isolating hot spots, etc. These approaches can generate complex derived
geometry with intricate structures that require further techniques for effective
analysis, especially in the context of massive data.

In these instances, representations of the topological structure of a mesh is often
helpful (Fig. 1). Specifically, a labeling of the connected components in a mesh
provides a simple and intuitive topological characterization of which parts of the
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Fig. 1 (Left) Sub-volume mesh extracted from a 21 billion cell structured grid decomposed across
2,197 processors. (Right) Sub-volume mesh colored by the results from the connected components
labeling algorithm described in this chapter

mesh are connected to each other. These unique sub-meshes contain a subset of
cells that are directly or indirectly connected via series of cell abutments.

The global nature of connectivity poses a challenge in distributed-memory
parallel environments, which are the most common setting for analyzing massive
data. This is because massive data sets are typically too large to fit into the memory
of a single processor, so pieces of the mesh are distributed across processors.
Cells comprising connected sub-meshes may span any of the processors, but the
relationships of how cells abut across processors frequently has to be derived.
To deal with this problem, sophisticated techniques to resolve connectivity are
necessary.

This chapter explores an algorithm that operates on both structured and unstruc-
tured meshes and scales well even with very large data, as well as its underlying
performance characteristics. The algorithm executes in multiple stages, ultimately
constructing a unique label for each connected component and marking each vertex
with its corresponding connected component label. This final labeling enables
analyses such as: calculation of aggregate quantities for each connected component,
feature based filtering of connected components, and calculation of statistics on
connected components.

In short, the algorithm provides a useful tool for domain scientists with applica-
tions where physical structures, such as individual fragments of a specific material,
correspond to the connected components contained in a simulation data set. This
chapter presents the algorithm (Sect. 4), results from a weak scaling performance
study (Sect. 5), and further analysis of the slowest phase of the algorithm (Sect. 6).
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2 Related Work

The majority of research to date in connected components algorithms has been
focused on computer vision and graph theory applications. This previous research is
useful for contributing high-level ideas, but ultimately the algorithms themselves are
not directly applicable to the problem considered here. Computer vision algorithms
typically depend on the structured nature of image data, and so cannot be easily
applied to unstructured scientific data. Graph theory algorithms are more appropri-
ate, since the cell abutment relationships in an unstructured mesh can be encoded as
an undirected graph representation. But this encoding results in a very sparse graph,
with the edges having special properties—neighboring cells typically reside on the
same processing elements, although not always—that graph theory algorithms are
not optimized for. For more discussion of these algorithms, we refer the reader
to [11]. That said, previous graph theory research on connected components has
used the Union-find algorithm [8], which is also used for the algorithm described
in this chapter. Further, the Union-find algorithm and data structures have been
used in topology before, for the efficient construction of Contour Trees [5], Reeb
Graphs [17], and segmentations [2, 3]. Union-find is discussed further in Sect. 3.1.

The algorithm described in this chapter is intended for distributed-memory paral-
lelism. With this technique, Processing Elements (PEs)—instances of a program—
are run on each node, or on each core of a node. By using multiple nodes, the
memory available to the program is larger, allowing for processing of data sets
so large that they cannot fit into the memory of a single node. Popular end user
visualization tools for large data, such as ParaView [1] and VisIt [7], follow this
distributed-memory parallelization strategy. Both of these tools instantiate identical
visualization modules on each PE, and the PEs are only differentiated by the sub-
portion of the larger data set they operate on. The tools rely on the data set being
decomposed into pieces (often referred to as domains), and they partition these
pieces over their PEs. This approach has been shown to be effective; VisIt performed
well on meshes with trillions of cells using tens of thousands of PEs [6]. The
algorithm described in this chapter follows the strategy of partitioning data over the
PEs and has been implemented as a module inside VisIt. It uses the Visualization
ToolKit (VTK) library [15] to represent mesh-based data, as well as its routines
for identifying cell abutment within a piece. Finally, we note that other topology
algorithms have also been ported to a distributed-memory parallel environment,
specifically segmentations [18] and merge trees [13].

3 Algorithm Building Blocks

This section describes three fundamental building blocks used by the algorithm.
The first is the serial Union-find algorithm, which efficiently identifies and merges
connected components. The second is binary space partitioning trees, which enable
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efficient computation of mesh intersections across PEs. The third is the concepts of
exteriors cells and ghost data, which significantly accelerate the algorithm.

3.1 Union-Find

The Union-find algorithm enables efficient management of partitions. It provides
two basic operations: UNION and FIND. The UNION operation creates a new
partition by merging two subsets from the current partition. The FIND operation
determines which subset of a partition contains a given element.

To efficiently implement these operations, relationships between sets are tracked
using a disjoint-set forest data structure. In this representation, each set in a partition
points to a root node containing a single representative set used to identify the
partition. The UNION operation uses a union-by-rank heuristic to update the root
node of both partitions to the representative set from the larger of the two partitions.
The FIND operation uses a path-compression heuristic which updates the root node
of any traversed set to point to the current partition root. With these optimizations
each UNION or FIND operation has an amortized run-time of O.˛.N // where N is
the number of sets and ˛.N / is the inverse Ackermann function [16]. ˛.N / grows
so slowly that it is effectively less than four for all practical input sizes. The disjoint-
set forest data structure requires O.N / space to hold partition information and
the values used to implement the heuristics. The heuristics used to gain efficiency
rely heavily on indirect memory addressing and do not lend themselves to a direct
distributed-memory parallel implementation.

3.2 Binary Space Partitioning (BSP)

A binary space partitioning (BSP) [10] divides two- or three-dimensional space into
a fixed number of pieces. BSPs are used in the connected components labeling
algorithm described in this chapter to determine if a component on one PE abuts
a component on another PE (meaning they are both actually part of a single, larger
component). The BSP is constructed so that there is a one-to-one correspondence
between the PEs and the pieces of the BSP tree. Explicitly, if there are N PEs,
then the BSP will partition space into N pieces and each PE will be responsible
for one piece. The PEs then relocate their cells according to the BSP; each cell is
assigned a piece from the BSP based on its partition, and then that cell is sent to the
corresponding PE.

It is important that the BSP is balanced, meaning that each piece has approxi-
mately the same number of cells. If disproportionately many cells fall within one
piece, then its PE may run out of memory when the cells are relocated. As a result,
the PEs must examine the cells and coordinate when creating the BSP.
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The BSP construction and cell relocation can be very time consuming. More
discussion of their complexity can be found at the end of this chapter (Sect. 6).

3.3 Exterior Cells and Ghost Cells

Exterior cells and ghost cells are used by the algorithm to reduce the amount of
data needed to coordinate between PEs. Both techniques identify cells that are on
the boundary of a PE’s piece. Ghost cells identify exactly the cells on the boundary,
while exterior cells identify a superset of the boundary cells.

Exterior cells are the cells that lie along the exterior of a volume, which does
not necessarily strictly correspond to the exterior of the PE’s piece. Consider the
example of removing a material: the exterior cells of the remainder will likely have
a portion along the PE piece boundary, but it will also likely have a portion along
the interior of the piece, where the material interface lies.

“Ghost cells” are the result of placing a redundant layer of cells along the
boundary of each domain. Ghost cells are either pre-computed by the simulation
code and stored in files or calculated at run-time by the analysis tool. They
are typically created to prevent interpolation artifacts at piece boundaries. More
discussion of ghost cells can be found in [7] and [12].

Ghost cells are also useful for connected components labeling. They identify
the location of the boundary of a piece and provide information about the state of
abutting cells in a neighboring piece. Note that the results discussed in this chapter
uses ghost cells that are generated at run-time, using the collective pattern described
in [7], not the streaming pattern described in [12].

4 Algorithm

The algorithm identifies the global connected components in a mesh using five
phases. It first identifies which pieces are at the boundary (Phase 1). It then identifies
the connected components local to each PE (Phase 2) and then creates a global
labeling across all PEs (Phase 3). It next determines which components span
multiple PEs (Phase 4). Finally, it merges the global labels to produce a consistent
labeling across all PEs (Phase 5). This final labeling is applied to the mesh to create
per-cell labels which map each cell to the corresponding label of the connected
component it belongs to. In terms of parallel considerations, Phases 1 and 2 are
embarrassing parallel, Phase 3 is a trivial communication, Phase 4 has a large all-
to-all communication, followed by embarrassingly parallel work, and Phase 5 has
trivial communication following by more embarrassingly parallel work (Fig. 2).

Phase 1: Identify cells at PE boundaries: The goal of this phase is to identify
cells that abut the spatial boundary of the data contained on each PE, which
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Fig. 2 Example illustrating the five phases of the algorithm on a simple data set decomposed onto
three PEs. Phase 1 has two variants, and both variants are shown—“exterior cells” on the top and
“ghost cells” on the bottom

enables reduced communication in Phase 4. We consider two methods for doing
this: ghost data and exterior cells. The ghost data option marks the minimum
number of cells to be considered, since ghost data always lies along the PE
boundary. The exterior cells option marks more cells, since some cells are
external to a component, but interior to the PE boundary; these cells cannot be
distinguished and thus must be processed unnecessarily.
Ghost cells are not present in all data sets. The algorithm deployed in VisIt uses
the ghost data option when ghost data is present, and falls back to the exterior
cells option when it is not. However, we point out that the study described in this
chapter shows the two variants to have very similar performance.

Phase 1, ghost cells option: Ghost cells are useful because they are always adja-
cent to boundary cells; finding the cells adjacent to ghost cells is equivalent to
finding the list of cells on the boundary. Note that ghost cells cannot be used
directly to represent PE boundaries since they themselves lack ghost data. For
example, an isosurface operation on a ghost cell lacks the requisite additional
ghost data to perform interpolation, and therefore does not have sufficient
information to generate the correct contour. For this reason, all ghost cells are
removed after the boundary is identified.
In pseudocode:

For each c e l l c :
boundary [ c ] = f a l s e
i f ( no t I s G h o s t C e l l ( c ) )

For each n e i g h b o r n o f c :
i f I s G h o s t C e l l ( n ) :

boundary [ c ] = t r u e
RemoveGhostCel l s ( )
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Phase 1, exterior cells option: Again, exterior cells are the cells that are on the
exterior of the components. Only the cells on the boundary need to be considered
in Phase 4, and these cells are a superset of the cells on the boundary. However,
they are a subset of all cells and discarding the cells in the interior of the
components substantially improves Phase 4 performance.
The benefit of this approach varies based on the data set. If a component has
a high surface area to volume ratio, then proportionally less cells will be in
the interior and the number of cells discarded is less. Further, the proportion
of exterior cells that are not on the boundary compared to those that are on the
boundary is data dependent. That said, a factor of 4� to 10� reduction is typical
in the number of cells processed in Phase 4 by focusing on exterior cells.
The exterior cells can be calculated by using a standard “external faces”
algorithm. For each face, look at the number of cells incident to that face (or
each edge in two dimensions). The faces that have one cell incident to it are
exterior, and so those cells are marked as exterior.

Phase 2: Identify components within a PE: The purpose of this phase is for each
PE to label the connected components for its portion of the data. As mentioned
in Sect. 3.1, the Union-find algorithm efficiently constructs a partition through an
incremental process. A partition with one subset for each point in the mesh is
used to initialize the Union-find data structure. It then traverses the cells in the
mesh. For each cell, it identifies the points incident to that cell. Those points are
then merged (“unioned”) in the Union-find data structure.
In pseudocode:

UnionFind u f ;
For each p o i n t p :

u f . S e t L a b e l ( p , GetUniqueLabel ( ) )
For each c e l l c :

p o i n t l i s t = G e t P o i n t s I n c i d e n t T o C e l l ( c )
p0 = p o i n t l i s t [ 0 ]
For each p o i n t p i n p o i n t l i s t :

i f ( u f . F ind ( p0 ) != u f . F ind ( p ) )
u f . Union ( p0 , p )

The execution time of this phase is dependent on the number of union operations,
the number of find operations, and the complexity of performing a given union
or find. The number of finds is equal to the sum over all cells of how many
points are incident to that cell. Practically speaking, the number of points per
cell will be small, for example eight for a hexahedron. Thus the number of finds
is proportional to the number of cells. Further, the number of unions will be less
than the number of finds. Finally, although the run-time complexity of the Union-
find algorithm is nuanced, each individual union or find is essentially a constant
time operation, asymptotically-speaking. Thus the overall execution time of this
phase for a given PE is proportional to the number of cells contained on that PE.

Phase 3: Component re-label for cross-PE comparison: At the end of Phase 2,
on each PE, the components within that PE’s data have been identified. Each
of these components has a unique local label and the purpose of Phase 3 is
to transform these identifiers into unique global labels. This will allow the
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algorithm to perform parallel merging in subsequent phases. Phase 3 actually has
two separate re-labelings. First, since the Union-find may create non-contiguous
identifiers, it transforms the local labels such that the numbering ranges from 0

to NP , where NP is the total number of labels on Processing Element P. For later
reference, we denote N D P

NP as the total number of labels over all PEs.
Second, the algorithm constructs a unique labeling across the PEs by adding
an offset to each range. It does this by using the PE rank and determining how
many total components exist on lower PE ranks. This number is then added to
component labels. At the end of this process, PE 0 will have labels from 0 to
N0 � 1, PE 1 will have labels from N0 to N0 CN1 � 1 and so on. Finally, a new
scalar field is placed on the mesh, associating the global component label with
each cell.

Phase 4: Merging of labels across PEs:
At this point, when a component spans multiple PEs, each PE’s sub-portion
has a different label. The goal of Phase 4 is to identify that these sub-portions
are actually part of a single component and merge their labels. The algorithm
does this by re-distributing the data using a BSP (see Sect. 3.2) and employing
a Union-find strategy to locate abutting cells that have different labels. The
data communicated involves cells, including their current label from Phase 3,
although only the cells that lie on the boundary are needed to locate abutments.
The cells identified in Phase 1 are used in the search process, but the cells known
not to be on the boundary are excluded, saving about an order of magnitude in
the number of cells considered.
The Union-find strategy in Phase 4 has four key distinctions from the strategy
described in Phase 2:

• The labeling is now over cells (not points), which is made possible by the
scalar field added in Phase 3.

• The algorithm now merges based on cell abutment, as opposed to Phase 2,
where cells were merged if it had two points incident. This abutment captures
any spatial overlap, be it at a face, a vertex, or one cell “poking” into another.

• Each cell is initialized with the unique global identifier from the scalar field
added in Phase 3, as opposed to the arbitrary unique labeling imposed in
Phase 2.

• Whenever a union operation is performed, it records the details of that union
for later use in establishing the final labeling.

In pseudocode:

CreateBSP ( )
UnionFind u f ;
For each c e l l c :

u f . S e t L a b e l ( c , l a b e l [ c ] )
For each c e l l c :

For each n e i g h b o r n o f c :
i f ( u f . F ind ( c ) != u f . F ind ( n ) )

u f . Union ( n , c )
RecordMerge ( n , c )
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After the union list is created, the re-distributed data is discarded and each PE
returns to operating on its original data.

Phase 5: Final assignment of labels: Phase 5 incorporates the merge information
from Phase 4 with the labeling from Phase 3. Recall that in Phase 3 the algorithm
constructed a globally unique labeling of per-PE components and denoted N

as the total number of labels over all PEs. The final labeling of components is
constructed as follows:

• After Phase 4, each PE is aware of the unions it performed, but not aware of
unions on other PEs. However, to assign the final labels, each PE must have
the complete list of unions. So Phase 5 begins by broadcasting (“all-to-all”)
each PE’s unions to construct a global list.

• Create a Union-find data structure with N entries, each entry having the trivial
label.

UnionFind u f
For i i n 0 t o N�1:

u f . S e t L a b e l ( i , i )

• Replay all unions from the global union list.

For union i n G l o b a l U n i o n L i s t :
u f . Union ( union . l a b e l 1 , union . l a b e l 2 )

The Union-find data structure can now be treated as a map. Its “Find” method
transforms the labeling we constructed in Phase 3 to a unique label for each
connected component.

• Use the “Find” method to transform the labeling from the scalar array created
in Phase 3 to create a final labeling of which connected component each cell
belongs to.

For each c e l l c :
v a l [ c ] = u f . F ind ( v a l [ c ] )

• Optionally transform the final labeling so that the labels range from 0 to NC �
1, where NC is the total number of connected components.

Note that the key to this construction is that every PE is able to construct the same
global list by following the same set of instructions. They essentially “replay” the
merges from the global union list in identical order, creating an identical state in
their Union-find data structure.

5 Performance Study

The efficiency of the algorithm was studied with a performance study that used weak
scaling on concurrency levels up to 2,197 cores (and 2,197 PEs) with data set sizes
up to 21 billion cells. The study used Lawrence Livermore National Laboratory’s
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“Edge” machine, a 216 node Linux cluster with each node containing two 2.8 GHz
six-core Intel Westmere processors. The system has 96 GB of memory per node
(8 GB per core) and 20 TB of aggregate memory.

5.1 Problem Setup

The data input came from a core-collapse supernova simulation produced by the
Chimera code [4]. This data set was selected because it contains a scalar entropy
field with large components that span many PEs. A data set was generated for each
concurrency, using upsampling to ensure each PE would operate on a fixed number
of cells. Interval volumes—the volume that lies between two isosurfaces, one with
the “minimum” isovalue and one with the “maximum” isovalue—were extracted
from the upsampled structured grid to create an unstructured mesh as input to the
connected components algorithm.

The following factors were varied:

• Concurrency (12 options): Levels varied from 8 cores (23) to 2,197 cores (133).
• Data sets (2 options): Data sizes with one million cells per PE and 10 million

cells per PE were run. Table 1 outlines the data sizes for the latter case.
• Phase 1 Variant (three options): Both the ghost cell and exterior cells variants of

the algorithm were tested, as well as a variant with no identification of cells at PE
boundaries (i.e., no Phase 1), since this variant was presented in previous work.

The cross product of tests were run, meaning 12 � 2 � 3 D 72 tests.
Figure 1 shows rendered views of the largest interval volume data set used in the

scaling study and its corresponding labeling result.

Table 1 Scaling study data set sizes for the runs with 10 million cells per PE. The study targeted
PE counts equal to powers of three to maintain an even spatial distribution after upsampling. The
highest power of three PE count available on the test system was 133 D 2197 PEs, so PE counts
from 8 to 2,197 and initial mesh sizes from 80 million to 21 billion cells were studied. The interval
volume operation creates a new unstructured mesh consisting of portions of approximately 1/8th
of the cells from the initial mesh, meaning that each core has, on average, 1.2 million cells

Num Input mesh Interval vol. Num Input mesh Interval vol.

cores size mesh size cores size mesh size

23 D 8 80 million 10.8 million 83 D 512 5.12 billion 621.5 million

33 D 27 270 million 34.9 million 93 D 729 7.29 billion 881.0 million

43 D 64 640 million 80.7 million 103 D 1;000 10 billion 1.20 billion

53 D 125 1.25 billion 155.3 million 113 D 1;331 13.3 billion 1.59 billion

63 D 216 2.16 billion 265.7 million 123 D 1;728 17.2 billion 2.06 billion

73 D 343 3.43 billion 418.7 million 133 D 2;197 21.9 billion 2.62 billion
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5.2 Results

Figures 3 and 4 present the timing results from the cross product of tests. As
expected, the timings for Phases 2, 3, and 5 are consistent between all variants of
the algorithm. At 125 PEs and beyond, the largest subset of the interval volume
on a single PE approaches the maximum size, either 1 million or 10 million cells
depending on the study. For this reason, weak scaling for Phase 2 is expected. This
is confirmed by flat timings for Phase 2 beyond 125 PEs. The ghost cell variant
and exterior cell variant perform comparably in Phase 4, and both significantly
outperform the variant with no boundary selection. These timings demonstrate the
benefit of identifying per-PE spatial boundaries. The small amount of additional

a b c

Fig. 3 Scaling study using one million cells per PE. Each figure corresponds to a variant for
running Phase 1 and plots the timings for the five phases for each of the 12 concurrency levels
for that variant. (a) shows the ghost cells variant. (b) shows the exterior cells variant. (c) shows
the variant with no reduction of cells exchanged, which was presented in previous work and is
included for comparative purposes. Figures a and b are very similar in performance and are on
similarly scaled axes. Figure c performs significantly slower and is on a different scale. The time
spent in Phase 1 for the ghost cell and exterior cell variants—which is not present in the third
variant—leads to substantial savings in Phase 4. Phases 3 and 5 are negligible across all versions
of the algorithm

a b c

Fig. 4 Scaling study similar to that described in Fig. 3, except using 10 million cells per PE.
As expected, the performance is proportional for the unoptimized variant of Phase 1, and nearly
proportional for the two optimized variants
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Table 2 Cells exchanged in Phase 4 for each variant for the 10 million cell per PE test variant.
The total listed for each variant is the percentage of the total number of cells for that concurrency
level

Number of Ghost cell Exterior cell

cores Total cells variant (%) variant (%) No optimization (%)

23 D 8 10.8M 1.2 11.1 100

33 D 27 34.9M 2.3 9.1 100

43 D 64 80.8M 2.4 7.7 100

53 D 125 155M 2.6 6.9 100

63 D 216 266M 2.6 6.2 100

73 D 343 419M 2.7 5.7 100

83 D 512 622M 2.7 5.4 100

93 D 729 881M 2.7 5.1 100

103 D 1;000 1.2B 2.7 4.9 100

113 D 1;331 1.6B 2.7 4.6 100

123 D 1;728 2.1B 2.7 4.5 100

133 D 2;197 2.6B 2.7 4.3 100

Table 3 Information about
the largest component and
about the number of global
union pairs transmitted in
Phase 5. There is a strong
correlation the two, and the
Pearson correlation
coefficient between them is
99.4 %. The percentage of
cores spanned by the largest
component converges to
slightly less than 25 %

Num cells in Num cores Num global

Num cores largest comp. spanned union pairs

23 D 8 10.1 million 4 16

33 D 27 132.7 million 17 96

43 D 64 176.7 million 29 185

53 D 125 146.6 million 58 390

63 D 216 251.2 million 73 666

73 D 343 396.4 million 109 1,031

83 D 512 588.9 million 157 1,455

93 D 729 835.5 million 198 2,086

103 D 1;000 11.14 billion 254 2,838

113 D 1;331 11.51 billion 315 3,948

123 D 1;728 11.96 billion 389 5,209

133 D 2;197 12.49 billion 476 6,428

preprocessing time required for Phase 1 creates significant reduction in the number
of cells transmitted and processed in Phase 4, as shown in Table 2.

Although the amount of data per PE is fixed, the number of connectivity
boundaries in the interval volume increases as the number of PEs increases. This
is reflected by the linear growth in both the number of union pairs transmitted in
Phase 5 and the number of cores spanned by the largest connected component (See
Table 3).
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6 BSP Generation

Phase 4 is the slowest part of our algorithm, and BSP generation is a significant
portion of that time. In this section, we consider the techniques and performance
considerations for BSP generation. Section 6.1 describes Recursive Coordinate
Bisection (RCB), a technique for generating BSPs. RCB requires a data structure
for doing spatial searches; Sect. 6.2 explores the relative advantages of octrees and
interval trees.

6.1 Recursive Coordinate Bisection (RCB)

RCB [14] is an algorithm that takes a list of points and a target number of regions
and generates a BSP that partitions space such that every region in the BSP contains
approximately the same number of points. The list of points is distributed across the
PEs, so the RCB algorithm must operate in parallel. Again, in this context, the target
number of partitions is the number of PEs, so that each PE can own one region. It
is important that each region contains approximately the same number of points,
otherwise a PE might receive so many points that it will run out of memory.

RCB starts by choosing a “pivot” to divide space. In the first iteration, the pivot
is a plane along the x-axis (e.g., “XD 2”). The pivot should divide space such that
half of the point list is on either side of the plane. The algorithm then recurses. It
embarks to find a plane in the y-axis for each of the two regions created by the initial
split. These planes may be at different y locations. The algorithm continues iterating
over the regions, splitting over X, then Y, then Z, then X again, and so on. At each
step, it tries to split the region so that half of the points are on each side of the plane
(with modifications for non-powers of two). This process is illustrated in Fig. 5.

A key issue for RCB is pivot selection. The pivot selection requires iteration,
with each proposed pivot requiring examination of how many points lie on either
side. Previous RCB constructions [14] have used randomized algorithms. These

Fig. 5 RCB construction of a BSP-tree in a distributed memory setting. On the left, the
decomposition of the original mesh. Assume the red portions are on PE 1, blue on 2, and so on.
The iterative strategy starts by dividing in X, then in Y, and continues until every region contains
approximately 1/NPEs of the data. Each PE is then assigned one region from the partition and the
data is communicated so that every PE contains all data for its region. The data for PE 3 is shown
on the far right


