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Preface

If people do not believe that mathematics is simple,
it is only because they do not realize
how complicated life is

John von Neumann

About 30 years ago Jean Morlet introduced for the first time the notion of a wavelet
as a soliton-like function. At the beginning he applied this function to the analysis of
backscattered seismic signals, but soon he realized that wavelets have a significantly
broader field of possible applications. In 1981, Alexander Grossmann interpreted
wavelets as coherent states and gave an elegant proof of Morlet’s reconstruction
algorithm. Since then this technique has witnessed explosive growth and it now
represents a universal mathematical tool with useful applications in many scientific
and engineering studies.

Originally wavelets emerged as an alternative to the classical spectral analysis
based on the Fourier transform, such as windowed Fourier analysis or the Gabor
transform. In order to improve processing of transient components in complex
signals, Morlet decided to replace Gabor functions, which have a fixed duration,
by new building blocks or time–frequency atoms, which can have an arbitrarily
small duration. Later this concept led to new insights and a mathematically rigorous
foundation.

Nowadays, there is no doubt that the introduction of wavelets theory was one
of the most important events in mathematics over the past few decades. This
is probably the only concept that has been applied in practically all fields of
basic science. Moreover, wavelets are widely used for image recognition and
compression, for analysis and synthesis of complex signals, in studies of turbulent
flows and biological data, etc.

This book is devoted to application of wavelet-based methods in neuroscience.
We have attempted to illustrate how wavelets may provide new insight into the
complex behavior of neural systems at different levels: from the microscopic
dynamics of individual cells (e.g., analysis of intracellular recordings) to the
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macroscopic level of widespread neuronal networks (e.g., analysis of EEG and MEG
recordings). Our main aim has been to show how and where wavelet-based tools can
gain an advantage over classical approaches traditionally used in neuroscience. We
hope that the logical structure of the book as regards content (from micro to macro
scale) represents a new approach to experiential data analysis and could be helpful
in everyday use. The book describes several examples obtained by the authors in
experimental neuroscience.

The book results from a long-term cooperation between research groups at
Saratov State University, Saratov State Technical University, Universidad Com-
plutense de Madrid, and the Moscow Institute of Higher Nervous Activity and
Neurophysiology of the Russian Academy of Science. We want to express our
sincere gratitude to Prof. V. S. Anishchenko and Prof. D. I. Trubetskov for their
constant support, scientific exchange, and interest in our work. We thank our
collaborators A. Brazhe, N. Brazhe, D. Dumsky, V. Grubov, G. van Luijtelaar,
A. Luttjohann, A. Moreno, E. Mosekilde, A. Nazimov, A. Ovchinnikov, F. Panetsos,
C. M. van Rijn, O. Sosnovtseva, A. Tupitsyn, and J. A. Villacorta-Atienza with
whom we have worked on different aspects of neural dynamics over the last decade.
Our special thanks go to Prof. J. Kurths who has encouraged us to write this book.
We acknowledge fruitful discussions with our colleagues A. Balanov, I. Belykh,
V. Kazantsev, I. Khovanov, A. Neiman, G. Osipov, V. Ponomarenko, M. Prokhorov,
and V. Raevskiy. We also extend our warmest thanks to the Rector of Saratov State
Technical University Prof. I. Pleve for support and help with preparation of this
book. Finally, we would like to express our sincere gratitude to our families for
their constant support and inspiration.

Over the years, our studies in the field of wavelets have been supported by the
Russian Foundation of Basic Research (Russia), the Russian Scientific Foundation
(Russia), the Ministry of Education and Science of Russian Federation (Russia), the
U.S. Civilian Research and Development Education (USA), the BrainGain Smart
Mix Program of the Netherlands Ministry of Economic Affairs (the Netherlands),
and the Dynasty Foundation (Russia).

Saratov, Russia Alexander E. Hramov
Saratov, Russia Alexey A. Koronovskii
Madrid, Spain Valeri A. Makarov
Saratov, Russia Alexey N. Pavlov
Moscow, Russia Evgenia Sitnikova
July 2014
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Chapter 1
Mathematical Methods of Signal Processing
in Neuroscience

Abstract This chapter offers a brief introduction to the novel advanced math-
ematical methods of analysis and processing of neurophysiological data. First,
we give the rationale for the development of specific mathematical approaches
for decoding information from non-stationary neurophysiological processes with
time-varying features. Second, we focus on the development of mathematical
methods for automatic processing and analysis of neurophysiological signals, more
specifically, in the development of brain–computer interfaces (BCIs). Finally, we
give an overview of the main applications of wavelet analysis in neuroscience, from
the microlevel (the dynamics of individual cells or intracellular processes) to the
macrolevel (dynamics of large-scale neuronal networks in the brain as a whole,
ascertained by analyzing electro- and magnetoencephalograms).

1.1 General Remarks

Neurodynamics is a contemporary branch of interdisciplinary neuroscience that
examines mechanisms of the central nervous system based on the mutual experience
of chemists, biologists, physicists, mathematicians, and specialists in the nonlinear
theory of oscillations, waves, and dynamical chaos [1–6]. Practical applications of
modern methods in neuroscience facilitate an interdisciplinary approach to brain
functions and attract experts in experimental and theoretical neurobiology, psy-
chophysiology, cognitive neuroscience, biophysics, physics, nonlinear dynamics,
etc. This interdisciplinary collaboration provides unique methods for analyzing the
functional activity of the central nervous system (CNS) that focus on the basic
principles of the neuronal dynamics of individual cells and neural networks.

Recent progress in understanding molecular and ionic mechanisms of neuronal
activity [7] encourages further investigation of certain key problems in mod-
ern physics, such as exploration of the functional properties and principles of
information coding, as well as its representation and the processing of sensory
data in the central nervous system. Perception and information processing are
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important functions of the CNS. Visual, acoustic, tactile, and gustatory stimuli are
transformed by the sensory receptors of the first order neurons into a sequence of
electrical pulses. These first-order sensory neurons are therefore involved in primary
processing of sensory information [8–12]. Sensory information is then passed
through relay stations (brain stem and thalamic nuclei) that transform and convolve
the information code, until finally it reaches the cerebral cortex which shapes the
“fingerprint” of the external world [13,14]. At each subsequent stage, the processes
of information transfer become increasingly difficult to study. The question of how
the totality of nervous impulses (action potentials or spikes) generated by single
neurons can reflect the full complexity and diversity of the external world remains
one of the biggest challenges in fundamental science [13, 15–17].

Experimental methods have recently been developed for registering the neuronal
activity underlying processes of information encoding–decoding at different levels
of the nervous system—from molecular changes in membrane properties of receptor
cells to changes in the local (electrical) field potentials in the cerebral cortex.
Traditional and noninvasive methods for registering electrical brain activity, such
as electroencephalography (EEG) with electrodes arranged on the skin of the head,
offer several advantages, and this method is still commonly used in neurophysiology
and medicine. EEG is often used in various studies of brain functions in humans
and animals [18, 19]. There are also invasive methods using implanted electrodes
which provide better spatial resolution, and these are advantageous when examining
neuronal activity in small groups of neurons in superficial (cortex) and deep
(subcortical) structures. Another advantage of invasive recording techniques is
that implanted electrodes can also be used for electrical stimulation with different
research purposes, e.g., suppression of epileptic discharges [20–22]. The relatively
new noninvasive recording technique known as magnetic encephalography (MEG)
has become more popular over the last few years, because it provides better spatial
resolution than EEG and better quality of signals reflecting brain activity [23–25].

1.2 Nonstationarity of Neurophysiological Data

Despite technical progress in developing new methods of data acquisition in
experimental neurophysiology, mathematical methods of experimental data analysis
could not be readily applied, and this may impede further progress. In the vast
majority of experimental studies in neuroscience, only a few statistical methods of
data analysis are used, e.g., calculation of the mean spike frequency, construction
of various correlation characteristics and distribution functions, etc. Traditional
methods of statistical analysis are undoubtedly useful, but most of them unable to
evaluate the relevant information regarding complex processes in the CNS. In order
to illustrate this fact, we give an example that demonstrates the response of a sensory
neuron to periodic stimulation. From a mechanical point of view, the response of
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Fig. 1.1 Illustration of adaptation reaction of neuronal firing activity to a repeated stimulation.
This neuron was recorded in a rat in the trigeminal sensory nuclear complex which receives tactile
information from vibrissae. Stimulation was performed by periodic mechanical deflection of one
whisker by a series of short directed air puffs (duration of each air pulse 5 ms). From top to bottom:
start and end of stimulation by the sequence of periodic impulses, firing activity of a single neuron
(train of spikes), and dynamics of the mean spike frequency (averaging over a sliding time window
of 500 ms duration)

the neuron to a sequence of equal external stimuli could be identical, so periodic
stimulation of a neuron with a series of impulses could elicit a periodic sequence
of spikes (action potentials, for example, 2 or 3 spikes per stimulus). However, in
the experimental situation, we often obtain time- and activity-dependent variations
in the neuron’s response (the neuron does not demonstrate an equal response
to repeated identical stimuli) which reflect neuronal plasticity. The phenomenon
of synaptic neuronal plasticity (the basic mechanism underlying memory and
learning) reflects adaptation to external afferent activity modified by the internal
characteristics of individual cells and the global dynamics of the wider neuronal
network interactions [26, 27]. It is known that a neuron can even stop responding to
the next stimulus from a certain moment.

Figure 1.1 illustrates the adaptive response of a neuron of the trigeminal complex
to periodic stimulation. Maximum neuron activity (27 spikes/s) is observed at the
onset of stimulation; it falls to an average of 10 spikes/s within a few seconds and
varies thereafter, exhibiting a slow negative drift. On the one hand, such behavior
of a living cell makes it extremely difficult to define characteristic forms/patterns
of neural activity associated with the peculiar properties of a given stimulus.
On the other hand, such complexity in neuronal activity encourages the development
of more relevant (complex) methods of data analysis, in addition to the simple
description of statistical characteristics of neuronal responses that is one of the tasks
of neurodynamics. We conclude that more specific mathematical methods must be
applied, such as wavelets [28–30], the Hilbert–Huang transform [31–33], and the
Wigner–Ville transform [34–36], which are more suitable for decoding information
about non-stationary processes with time-varying features.
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1.3 Wavelets in Basic Sciences and Neuroscience

Wavelet analysis [28, 37–40] is unique in the sense that even the first practical
application to neurophysiological data analysis produced prominent results [29,41–
45]. For this reason, it is considered a very powerful analytical tool for studying the
dynamics of neural systems.

Wavelet terminology was introduced in the 1980s [37,46,47]. This mathematical
approach was initially proposed as an alternative to classical spectral analysis
based on the Fourier transform. Wavelet theory is considered to be one of the
most important events in mathematics of the past decades. Indeed, it appears to
be the sole new mathematical concept that was immediately recognized as a tool
in practically all branches of basic science (first and foremost, in physics and
related disciplines) and many technical fields [30,48–55]. In fact, introduction of the
wavelet theory itself was not entirely unexpected. It was developed to meet the very
real needs of experimental investigations, particularly in geophysics and seismology.
Contemporary wavelet analysis combines various pre-existing ideas and methods.
For example, fast wavelet transform algorithms are based on the subband coding ide-
ology known from radio and electric engineering [56]. Some ideas were borrowed
from physics (coherent states [57], etc.) and mathematics (studies on Caldéron–
Zygmund integral operators [58]). Wavelet analysis is logically related to the theory
of diffusion differential equations [59].

Today, wavelets are widely used for the analysis and synthesis of various signals,
image processing and recognition, compression of large volumes of information,
digital filtration, the study of fully developed turbulence, and the solution of certain
differential equations. This list can certainly be extended [54, 59–67]. The new
theory aroused great interest from the very beginning. According to well-known
estimates [48], since the 1990s, the number of publications using wavelets in physics
has been growing continuously. The number of references to Internet sources
containing the term “wavelet” has reached several million. In fundamental science,
this mathematical approach is mostly applied to study complex temporally non-
stationary or spatially nonhomogeneous nonlinear processes. Wavelet analysis is
well adapted for studying the complex structure of signals from living systems, since
other traditional computation techniques can be applied only to processes with time
(or space)-constant parameters (i.e., stationary in time or spatially homogeneous).
Despite the fact that wavelet analysis has long been regarded as a standard tool for
studying complex processes and practical application of this method in neuroscience
and medicine is just beginning, prognoses for its successful application are rather
optimistic. In this monograph we highlight recent advances made by practical
application of wavelet in neurodynamics and neurophysiology.
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Fig. 1.2 Wavelet-based methods of automatic EEG diagnostics, processing, and analysis

1.4 Automatic Processing of Experimental Data
in Neuroscience

An important field of wavelet applications in neurophysiology and neuroscience
is the development of methods for automatic processing and analysis of brain
signals. Electrical signals that can be recorded from the brain (EEG) represent
a linear mixture of coexisting oscillatory components, i.e., nonlinear effects do
not complicate the process of recognition. The development of expert systems for
automatic EEG analysis is of particular interest for both fundamental neuroscience
and clinical practice due to a wide spectrum of possible applications (classified in
Fig. 1.2). One must distinguish between on-line and off-line analysis. Automatic
(i.e., without the attention and control of an operator) analysis of pre-recorded EEG
signals (off-line diagnostics) aims to reduce routine work, for example, to suppress
artifacts in the recorded EEG. EEG analysis in real time (on-line) aims at fast
detection of certain EEG events and the organization of closed-loop control systems.
Clinically-oriented applications are the most effective field of on-line analysis of
neurophysiological signals, including EEG monitoring with predictive diagnostic
purposes, e.g., for the suppression of epileptic activity, the so-called spike–wave
discharges [20].
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Fig. 1.3 General scheme of a simple brain–computer interface. Modern IBC is a system that
registers and analyzes signals of electrical brain activity (usually EEG) from the user and
“converts” them into a “machine” command for external device control. The central point of such a
system is the development of algorithms for real-time recognition of EEG patterns corresponding
to certain cogitative operations. Note the importance of the feedback loop in the BCI. This is
necessary to adapt the aforementioned algorithms to recognize the specific patterns of electrical
brain activity based on EEG features. Also the operator (user) must learn to evoke and control the
relevant mental state, which is impossible without the use of feedback

1.5 Brain–Computer Interfaces

One of the most exciting applications of wavelets is to use it for mental control
of brain functions, which, as a matter of fact, is a new form of human–computer
interaction [68, 69]. The specific dynamics of electrical brain activity characterizes
mental activity that includes compilation of imaginary commands (“mental action”).
This “mental action” is associated with specific changes in the time–frequency char-
acteristics and spatial structure of EEG [70–73]. In the brain–computer interface,
mental control systems must perform the following steps (see Fig. 1.3):

• Recognize and select characteristic changes in the EEG (event-related oscillatory
patterns).

• Decrypt their meaning (associated with a specific operation).
• Convert this meaning into commands for hardware control.

Mental control systems should be able to solve two main problems. First, the
technical problem of precise recognition of an EEG pattern, subsequent formulation
of a “command”, and transmission to control. Second, cognitive and psychological
tasks in which the operator (a person) should learn to keep specific mental states
that can be recognized from analysis of the spatial-temporal structure of his/her
EEG. An additional problem is that the system should work in real time. Earlier
control systems were suggested to use information about complex physical activity
expressed as body movements of the operator, e.g., the trajectory when moving
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a hand in the process of equipment handling. These interfaces encountered many
problems, including registration of complex information, isolation of relevant
information from the general data stream, and correct interpretation. Besides that,
such interfaces require a system of sensors for registration of motor activity and a
wireless device for data transmission from operator to computer. Therefore, simple
brain–computer interfaces (BCI) are of particular interest, such as interfaces that
are able to monitor electrical brain activity and detect the mental intentions of the
operator. For example, simple stimulus–symbol interfaces conceived by the operator
[74, 75] open up new prospects for resolving the problem of mental control.

Thus, algorithms of automatic EEG pattern recognition associated with specific
cogitative operations in real time help to effectively perform the first step (pattern
recognition) in brain–computer interfaces. Wavelet-based methods are perfectly
suited to pattern recognition tasks [76–79].

Note that brain–computer interfaces have already been used as an alternative
to traditional devices for inputting information into the computer. So for certain
categories of users, for example, people with motor function disabilities, this
way of interacting with the computer can improve their quality of life, at least
partly, opening the way to a full-fledged life in society [80–83]. One of the first
successfully worked BCIs was developed at Emory University by Roy Bakay and
Phillip Kennedy, who used implanted depth electrodes in the brain motor center of
a paralyzed 53-year-old patient, who was able to move the cursor on a computer
screen, and thus communicate with doctors (writing several simple sentences)
[84]. Rapid progress in neuroscience and technology suggests that brain–computer
interfaces could be widely used for control of artificial limbs, manipulators, and
robot technical devices (for example, wheelchairs), and also in the gaming industry
[85–88].

1.6 Topics to Consider

A mathematically rigorous description of wavelet analysis can be found in numerous
textbooks and monographs (see, for example, [28, 53, 55, 60, 89–93]) as well as
in reviews in scientific journals [17, 51, 52, 94]. This book focuses on the new
possibilities provided by the wavelet approach for decoding information from
signals recorded on the level of individual neurons and groups of neurons, as
well as neural network activity. A large number of the aforementioned scientific
publications aimed to identify the most important problems in the field of wavelet
applications to neurodynamics and neurophysiology. On this topic, we distinguish
the following three areas of wavelet applications in neuroscience:

• Microlevel (cellular/intracellular)—wavelet analysis of the dynamics of individ-
ual cells or intracellular processes.

• Mesolevel (groups of cells)—analysis of information processes in small neuronal
ensembles.
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• Macrolevel (brain activity)—analysis of macrodynamics in widespread neural
networks (EEG/MEG, neuroimaging data).

This monograph discusses the progress made on each of these levels in a consistent
manner. The book contains seven chapters:

• Chapter 2 provides a mathematical introduction to wavelet analysis, including
the basic concepts and definitions of wavelet theory, and considers practically
significant questions related to effective numerical implementation of the wavelet
transform (both, discrete and continuous). Special attention is paid to the impor-
tance of the relationship between wavelet and Fourier analysis. This chapter
specifically addresses those readers who are not familiar with the mathematical
concepts of complex signal processing.

The next two chapters describe methods for wavelet investigation of neurophysio-
logical systems.

• Chapter 3 discusses the application of wavelets for analysis of cellular dynamics
at the microscopic level (individual cells or intracellular processes). This chapter
also presents the principles for analyzing the information from a single cell, using
electrical signals of individual neurons.

• Chapter 4 describes the main aspects of the wavelet analysis of a variety of
impulse shapes (action potentials) of individual neurons using extracellular
records of single-unit neuronal activity. We consider different approaches to
classifying neuronal impulses in terms of their configuration, some based solely
on wavelets, and others involving combined methods, such as wavelet neural
networks.

The last three chapters of the book consider the macrodynamics of neuronal
networks using wavelet analysis of electroencephalograms (EEGs).

• Chapter 5 considers the main definitions and principles of electroencephalogra-
phy that are required for a better understanding of Chaps. 6 and 7. We describe
general physical and mathematical approaches to time–frequency analysis of
rhythmic EEG activity using continuous wavelet transforms. We also review
some recent achievements of wavelet-based studies of electrical brain activity,
including (i) time–frequency analysis of EEG structure, (ii) automatic detection
of oscillatory patterns in pre-recorded EEG, (iii) classification of oscillatory
patterns, (iv) real-time detection of oscillatory patterns in EEG, (v) detection of
synchronous states of electrical brain activity, (vi) artifact suppression/rejection
in multichannel EEG, and (vii) the study of cognitive processes.

• Chapter 6 describes some results of time–frequency analysis of EEG structure
using the continuous wavelet transform. In this chapter we pay special attention
to technical and computational details of time–frequency analysis of neuro-
physiological signals (EEG of animals and humans). This chapter also presents
wavelet analysis of hypersynchronous rhythmic activity in multichannel EEG,
characterizing the onset of absence epilepsy in patients.
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• Chapter 7 considers basic problems of automatic diagnostics and processing
of EEG. We discuss the wavelet-based techniques in order to fully automatize
“routine” operations, such as visual inspection of EEG. In addition, we exhibit
examples of practical applications of wavelet methods for automatic analysis
of pre-recorded EEG and MEG signals (off-line diagnostics), and also some
examples of EEG analysis in real-time (on-line). We also discuss the principles
of fast and precise detection of transient events in EEG and the organization
of closed-loop control systems that can be used in BCI. Finally, we consider
methods of artifact suppression in multichannel EEG based on a combination of
wavelets and independent component analysis

This book is based primarily on the fundamental results in neurodynamics obtained
recently by the authors—physicists, mathematicians, and biologists in close col-
laboration with specialists in experimental neurophysiology. At the same time, the
book contains a relatively complete bibliography (over 400 sources) characterizing
the application of wavelets in neurophysiological research. In general, this book
overviews theoretical and practical knowledge and, in our opinion, demonstrates
the advantages of powerful analytical tools and novel mathematical methods of
signal processing and nonlinear dynamics in order to address neurophysiological
problems. Moreover, wavelet analysis helps to reveal important information and
facilitates a deeper understanding of the investigated phenomena. More intensive
studies in this area can contribute to interdisciplinary interactions between physics,
nonlinear dynamics, applied mathematics, and neurophysiology and promote further
mutual research in these areas.
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