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Preface

The “Turbulence and Interactions 2012” (TI2012) conference was held in La Saline-
les-Bains on the island of La Réunion, France, on June 11th–14th, 2012. The scien-
tific sponsors of the conference were

• Ecole Polytechnique Fédérale de Lausanne (EPFL),
• ERCOFTAC : European Research Community on Flow, Turbulence and Com-

bustion,
• Institut de Mécanique et d’Ingénierie (I2M), Bordeaux,
• ONERA - The French Aerospace Lab,
• Université de La Réunion.

This third TI conference was very successful as it attracted 35 researchers from 6
countries. The magnificent venue and the beautiful weather helped the participants
to discuss freely and casually, share ideas and projects, and spend very good times
all together.

The organisers were fortunate in obtaining the presence of the following in-
vited speakers: J.H. Chen (Sandia National Laboratories), B. Geurts (University of
Twente), C. Wagner (The German Aerospace Center -DLR). The topics covered by
the 23 contributed papers ranged from experimental results through theory to com-
putations. They represent a snapshot of the state-of-the-art in turbulence research.
The papers of the conference went through the usual reviewing process and the re-
sult is given in this book of Proceedings.

In the present volume, the reader will find the keynote lectures followed by the
contributed talks given in alphabetical order of the first author.

The organisers of the conference would like to acknowledge the support of EPFL,
I2M and ONERA.

Bordeaux, Lausanne, Paris, Toulouse Michel O. Deville
January 23rd, 2014. Jean-Luc Estivalezes

Vincent Gleize
Thien-Hiep Lê
Marc Terracol

Stéphane Vincent
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Theory and Application of Regularization
Modeling of Turbulence

Bernard J. Geurts

Abstract. Turbulence readily arises in numerous flows in nature and technology.
The large number of degrees of freedom of turbulence poses serious challenges to
numerical approaches aimed at simulating and controlling such flows. While the
Navier-Stokes equations are commonly accepted to precisely describe fluid tur-
bulence, alternative coarsened descriptions need to be developed to cope with the
wide range of length and time scales. These coarsened descriptions are known as
large-eddy simulations in which one aims to capture only the primary features of
a flow, at considerably reduced computational effort. Such coarsening introduces
a closure problem that requires additional phenomenological modeling. A system-
atic approach to the closure problem, known as regularization modeling, will be
reviewed. Its application to turbulent mixing will be illustrated. Leray and LANS-
alpha regularization are discussed in some detail.

1 Introduction

A new modeling approach for large-eddy simulation (LES) is obtained by combin-
ing a ‘regularization principle’ with an explicit filter and its inversion. This reg-
ularization approach allows a systematic derivation of the implied subgrid-model,
which resolves the closure problem. The central role of the filter in LES is fully
restored, i.e., both the interpretation of LES predictions in terms of direct sim-
ulation results as well as the corresponding subgrid closure are specified by the
filter (Geurts & Holm, 2003). The regularization approach is illustrated with ‘Leray-
smoothing’ of the nonlinear convective terms. In turbulent mixing the new, implied
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2 B.J. Geurts

subgrid model performs favorably compared to the dynamic eddy-viscosity proce-
dure (Geurts & Holm, 2006; Kuczaj & Geurts , 2007). The model is robust at ar-
bitrarily high Reynolds numbers and correctly predicts self-similar turbulent flow
development.

Accurate modeling and simulation of turbulent flow is a topic of intense ongoing
research (Meneveau & Katz, 2000). Modern strategies for turbulent flow are aimed
at reducing the dynamical complexity of the underlying system of partial differen-
tial equations while reliably predicting the primary flow phenomena. In large-eddy
simulation (LES) these conflicting requirements are expressed by coarsening the
description on the one hand and subgrid modeling on the other hand. The coarsen-
ing is achieved by spatial filtering (Germano, 1992) which externally specifies the
physical detail that will ideally be retained in the LES solution. Maintaining the dy-
namical properties of the resolved large scales is approached by introducing subgrid
modeling to deal with the closure problem that arises from filtering the nonlinear
terms.

In the filtering approach to incompressible flow the specification of the basic
convolution filter L is all that is required to uniquely define the relation between
the unfiltered and filtered flow field as well as the closure problem for the so-called
turbulent stress-tensor τi j . This situation is in sharp contrast with actual present-
day large-eddy modeling in which the specification of the subgrid model for τi j as
well as the comparison with reference direct numerical simulation (DNS) results is
performed largely independent of the specific choice of the filter L.

In this paper we will formulate an alternative approach to large-eddy simulations
which completely restores the two central roles of the basic filter L, i.e., providing
an interpretation of LES predictions in terms of filtered DNS results as well as fully
specifying all details of the subgrid model. The key elements in this new formulation
are a ‘regularization principle’, a filter L and its (formal) inverse operator denoted
by L−1 (Geurts, 1997).

The organization of this paper is as follows. In Section 2 we introduce the concept
of regularization. Section 3 is devoted to the derivation of sub-filter models for large-
eddy simulation from regularization principles. The assessment of the Leray model
is presented in Section 4 and concluding remarks are collected in Section 5.

2 Turbulence Regularization

A regularization principle expresses the smoothing of the dynamics of the Navier-
Stokes equations through a specific proposal for direct alteration of the nonlinear
convective terms. This modeling differs significantly from traditional, less direct
approaches, e.g., involving the introduction of additional eddy-viscosity contribu-
tions (Smagorinsky, 1963). The latter are clearly of a different physical nature and
do not fully do justice to the intricate nonlinear transport structure of the filtered
Navier-Stokes equations. The regularization principle gives rise to a basic mixed
formulation involving both the filtered and unfiltered solution. Application of L and
L−1 then allows to derive an equivalent representation solely in terms of the filtered
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solution. This provides a unique identification of the implied subgrid model with-
out any further external (ad hoc) input or mathematical-physical considerations of
the closure problem. The regularization modeling approach is not only theoretically
transparent and elegant, but it also gives rise to accurate LES predictions. In partic-
ular, we consider the implied subgrid model that arises from Leray’s regularization
principle (Leray, 1934). A comparison between the Leray model and dynamic sub-
grid modeling (e.g., (Vreman, Geurts & Kuerten, 1997)) will be made for turbulent
mixing flow, both at moderate and at high Reynolds numbers.

In the filtering approach one assumes any normalized convolution filter L : ui → ui

where ui (ui) denotes the filtered (unfiltered) component of the velocity field in the
xi direction. Filtering the Navier-Stokes equations yields

∂tui + ∂ j(ujui)+ ∂i p− 1
Re

∂ j juk =−∂ jτi j (1)

where the turbulent stress tensor τi j = uiu j − uiu j represents the closure problem
and Re denotes the Reynolds number. Both the relation between ui and ui as well
as the properties of τi j are fully specified by L. In actual subgrid modeling for LES,
the next step is to introduce a subgrid model mi j(u) to approximate τi j. A variety
of subgrid models has been proposed to capture dissipative, dispersive or similarity
properties of τi j.

Many subgrid models are arrived at through a physical or mathematical reasoning
which is only loosely connected to a specific filter L. As an example, the well-known
Smagorinsky model (Smagorinsky, 1963) is given by mS

i j = −(CSΔ)2|Si j(u)|Si j(u)
where the rate of strain tensor Si j = ∂iu j + ∂ jui and |Si j|2 = Si jSi j/2. The only ex-
plicit reference to the filter, made in this model, is through the filter-width Δ . In
actual simulations Δ is specified in terms of the grid-spacing h rather than in terms
of L. Furthermore, the Smagorinsky constant CS is determined independent of L,
which further reduces any principal role for the filter. The situation is compara-
ble for the ‘tensor-diffusivity’ model mT D

i j = CT DΔ 2
k ∂kui∂ku j, with Δk the filter-

width in the xk-direction (Clark, Ferziger & Ferziger, 1979). The coefficient CT D

is usually related to the normalized second moment (L(x2)− x2)/Δ 2 of the fil-
ter L. For various popular filters such as the top-hat or the Gaussian filter one
finds CT D = 1/12, i.e., independent of the actual filter used. The role of the fil-
ter is in principle fully explicit in Bardina’s similarity model mB

i j = uiu j − uiu j

(Bardina, Ferziger, & Reynolds, 1984). In actual simulations, however, one fre-
quently adopts a wider explicit filter or a filter of a different type, to enhance
smoothing properties of this model (Meneveau & Katz, 2000). Moreover, the model
is sometimes multiplied by a constant CB which is specified independently of any
presumed filter (Salvetti & Banerjee, 1995). Finally, the successful dynamic sub-
grid modeling requires only the explicit specification of the so-called test-filter
(Germano, Piomelli, Moin & Cabot, 1991). To retain the central Germano identity
the test-filter can in principle be chosen independent of L, mainly requiring the spec-
ification of the filterwidth of the test-filter relative to Δ . Additional averaging over
homogeneous directions, ‘clipping’ steps to stabilize actual simulations, and the fact
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that the assumed base-models are themselves only loosely connected to L, also make
the dynamic procedure rather insensitive to the specific assumed filter.

In contrast to these popular LES models, the regularization approach involves
the introduction of a pair (L, L−1) to fully specify the implied subgrid model as
well as the interpretation of LES predictions in terms of reference DNS results. The
selection of any other pair (L , L −1) directly leads to its corresponding DNS inter-
pretation and the associated subgrid model consistent with the regularization princi-
ple. This modeling strategy has a number of important benefits, addressing directly
the nonlinear convective contributions and requiring no additional ‘external’ infor-
mation such as model coefficients or the width of the test-filter. The regularization
principle allows a transparent modeling in which the modeled system of equations
can be made to share a number of fundamental properties with the Navier-Stokes
equations, such as transformation symmetries, Kelvin’s circulation theorem, etc..
The implied subgrid model is quite simple to implement, with some technical com-
plications arising from the construction of an accurate inverse operator L−1.

3 Regularization to Derive Sub-filter Models

In this section we present two regularization principles and their translation to the
corresponding sub-filter model for Large-Eddy Simulation. We begin with the Leray
model and subsequently extend this to the LANS−α model.

Leray Modeling

To illustrate the regularization approach we consider the intuitively appealing and
particularly simple Leray regularization in which the convective fluxes are replaced
by u j∂ jui, i.e., the solution u is convected with a smoothed velocity u. Consequently,
the nonlinear effects are reduced by an amount governed by the smoothing proper-
ties of L. The governing equations in the Leray formulation can be written as (Leray,
1934)

∂ ju j = 0 ; ∂t ui + uj∂ jui + ∂i p− 1
Re

∂ j jui = 0 (2)

Uniqueness and regularity of the solution to these equations have been established
rigorously (Leray, 1934). The Leray formulation contains the unfiltered Navier-
Stokes equations in the limiting case L→ Id, e.g., as Δ → 0 (Id denotes the identity).
The unfiltered solution can readily be eliminated from (2) by using the inversion op-
erator u j = L−1(u j). After some calculation (2) can be written in the same way as the
LES ‘template’ (1) in which τi j on the right hand side is replaced by the asymmetric,
filtered similarity-type Leray model mL

i j given by:

mL
i j = L

(
ujL

−1(ui)
)
− ujui = u jui − ujui (3)

This model requires the explicit application of both L and L−1. The tensor mL
i j

is not symmetric. However, the flow is governed by the divergence ∂ jmL
i j which
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can be shown to transform covariantly under Galilean transformations and under a
change to a uniformly rotating reference frame, as does ∂ jτi j . For properly chosen
filter, Leray solutions of the regularized Navier-Stokes equations behave better with
respect to smoothness and boundedness. Correspondingly, the subgrid model (3) can
be expected to yield similar benefits in a large-eddy context. The straightforward
model mi j = L(L−1(ui)L−1(uj))− uiu j does not provide sufficient smoothing and
leads to unstable LES on coarse grids, at high Re.

LANS−α Regularisation by Kelvin Filtering

A regularisation principle which additionally possesses correct circulation proper-
ties may be obtained by starting from the following Kelvin theorem:

d
dt

∮
Γ (u)

u j dx j − 1
Re

∮
Γ (u)

Δu j dx j = 0 (4)

where Γ (u) is a closed fluid loop moving with the Eulerian velocity u. The unfiltered
Navier-Stokes equations may be derived from (4) (Foias, Holm & Titi, 2001). This
provides some of the inspiration to arrive at an alternative regularisation principle
for Navier-Stokes turbulence (Foias, Holm & Titi, 2001). In fact, the basic regulari-
sation principle was originally derived by applying Taylor’s hypothesis of frozen-in
turbulence in a Lagrangian averaging framework. In this framework, the fluid loop
is considered to move with the smoothed transport velocity u, although the circula-
tion velocity is still the unsmoothed velocity, u. That is, in (4) we replace Γ (u) by
Γ (u); so the material loop Γ moves with the filtered transport velocity. From this
filtered Kelvin principle, we may obtain the Euler-Poincaré equations governing
the smoothed solenoidal fluid dynamics, with ∂ ju j = 0

∂t u j + uk∂ku j + uk∂ juk + ∂ j p− ∂ j(
1
2

ukuk)− 1
Re

Δu j = 0 (5)

Comparison with the Leray regularisation principle reveals two additional terms
in (5). These terms guarantee the regularised flow to be consistent with the mod-
ified Kelvin circulation theorem in which Γ (u) → Γ (u). For LANS−α the ana-
lytical properties of the regularised solution are based on the energy balance for∫

u · L(u)d 3x.
The Euler-Poincaré equations (5) can also be rewritten in the form of the LES

template. The extra terms that arise in (5) give rise to additional terms in the implied
subgrid model:

∂t ui + ∂ j(u jui)+ ∂i p− 1
Re

Δui =−∂ j

(
u jui − ujui

)
− 1

2

(
u j∂iu j − uj∂iu j

)
(6)

We observe that the Leray model reappears as part of the implied LANS−α subgrid
model on the right-hand side of (6). Compared to the Leray model, the additional
second term in the LANS−α model takes care of recovering the Kelvin circulation
theorem for the smoothed solution. This formulation is given in terms of a general
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filter L and its inverse. After some further rewriting it may be shown that this model
can be formulated in conservative form, i.e., a tensor mα

i j can be found such that the
right hand side of (6) can be written as −∂ jmα

i j. We illustrate this next for a particular
filter.

The subgrid model presented in (6) can be specified further in case the filter L has
the Helmholtz operator as its inverse, i.e., ui = L−1(ui) = (1−α2∂ j j)ui = Heα(ui).
Then we recover the original LANS−α equations (Foias, Holm & Titi, 2001). The
LANS−α model derives its name from the length-scale parameter α ≈ Δ/5. Af-
ter some rewriting, the following parameterisation for the turbulent stress tensor is
obtained:

mα
i j = α2He−1

α

(
∂kui ∂ku j + ∂kui ∂ juk − ∂iuk ∂ juk

)
(7)

The first term on the right-hand side is the Helmholtz-filtered tensor-diffusivity
model. The second term combined with the first term, corresponds to Leray regular-
isation using Helmholtz inversion as filter. The third term completes the LANS−α
model and maintains Kelvin’s circulation theorem. In (7) an inversion of the
Helmholtz operator Heα is required which implies application of the exponential
filter. However, since the Taylor expansion of the exponential filter is identical at
quadratic order to that of the top-hat or the Gaussian filters, one may approximate
He−1

α , e.g., by an application of the explicit top-hat filter, for reasons of computa-
tional efficiency.

Spectral Consequences of Regularization Modeling

The different regularisation models are known to have different effects on the tail of
the resolved kinetic energy spectrum E(k). In the Kolmogorov picture of homoge-
neous, isotropic turbulence an inertial range in which E(k) ∼ k−5/3 develops over
an extended range of wavenumbers k up to a Kolmogorov wavenumber kη ∼ 1/η
where η is the viscous dissipation length-scale. This entire dynamic range needs to
be properly captured in order to arrive at a reliable DNS. The Leray and LANS−α
models give rise to a spectrum in which there is a smooth transition from a −5/3
power law to a much steeper algebraic decay, beyond wavenumbers ∼ 1/Δ . The
sharper decrease of kinetic energy with wavenumber implies a corresponding strong
reduction in required computational effort needed for the simulation of the relevant
dynamic range. The LANS−α model displays a tail of the spectrum∼ k−3 while the
Leray model decays even more steeply, as ∼ k−13/3 (Foias, Holm & Titi, 2001). The
steeper decay using the Leray model is directly reflected in the smoother impres-
sion of instantaneous solutions. Hence, through the selection of Δ a direct external
control is achieved over the computational costs associated with the regularisation
models. This is illustrated in figure 1. In case an energy range of, say, m decades is
desired then all wavenumbers up to kL(m), kα(m) and kDNS(m) need to be resolved
for the Leray, LANS−α and DNS approaches respectively. This corresponds to a
significant difference in the associated computational expense, while all three simu-
lations would provide excellent accuracy at least for all wavenumbers up to ∼ 1/Δ .
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ln
(E

)

∼ 1/Δ

m

kkL DNS

k−3

k

k
−13/3

kα ln(k)

−5/3

Fig. 1 Sketch of resolved kinetic energy spectrum in a homogeneous, isotropic turbulence,
displaying a −5/3 tail in DNS (solid), a −3 tail in LES using the LANS−α model (dashed)
and a −13/3 tail in LES using the Leray model (dash-dotted)

In the sequel we consider invertible numerical quadrature approximating the top-
hat filter. In one dimension the numerical convolution filtering u=G∗u corresponds
to kernels

G(z) = ∑a jδ (z− z j) ; |z j| ≤ Δ/2 (8)

In particular, we consider three-point filters with a0 = 1−α , a1 = a−1 = α/2 and
z0 = 0, z1 = −z−1 = Δ/2. Here we use α = 1/3 which corresponds to Simpson
quadrature of the top-hat filter. In actual simulations the resolved fields are known
only on a set of grid points {xm}N

m=0. The application of L−1 to a general dis-
crete solution {u(xm)} can be specified using discrete Fourier transformation as
(Kuerten, Geurts, Vreman & Germano, 1999)

L−1(um) =
n

∑
j=−n

(α − 1+
√

1− 2α
α

)| j| um+r j/2

(1− 2α)1/2
(9)

where the subgrid resolution r = Δ/h is assumed to be even. An accurate and effi-
cient inversion can be obtained with only a few terms, recovering the original signal
to within machine accuracy with n ≈ 10. The invertibility of L only refers to in-
vertibility on the LES grid. Injection from a fine DNS grid to a coarse LES grid is
not invertible. At fixed Δ , variation of the subgrid resolution r allows an indepen-
dent control over flow-smoothing and numerical representation (Geurts & Fröhlich,
2002). Simulation results obtained in this way are properly smoothed for kΔ < 2π .
At constant Δ the inclusion of modes with higher wavenumber k in case r > 1 allows
to approach the grid-independent solution to the ‘fixed-Δ ’ problem. However, the
modes with k > 2π/Δ are not properly smoothed in the sense of Leray; the Fourier
transform of the kernel G does not reduce in amplitude for large kΔ but rather,
it oscillates between fixed limits. To achieve a genuine PDE result, Leray analysis
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requires correct smoothing by the filter also at high wavenumber. The present results
are limited to the modes with kΔ < 2π and in subsequent illustrations we restrict
ourselves to this range.

4 Assessment of Leray Model

To assess the Leray model the turbulent mixing layer is simulated in a volume �3 at
various Re adopting a fourth order accurate finite volume discretization and explicit
four-stage, second-order accurate Runge-Kutta time-stepping. We compare predic-
tions with those obtained using the dynamic subgrid model, which was shown to
be among the most accurate models in a comparative study of the same turbulent
mixing layer reported in (Vreman, Geurts & Kuerten, 1997).

(a) (b) (c)

Fig. 2 Normal velocity component u2 at time t = 80, (a): DNS, (b): filtered DNS, (c):
Leray on 643; using a filterwidth Δ = �/16. The light (dark) isosurfaces correspond to
u2 = 0.3 (−0.3).

A first introductory test of the Leray model is obtained by studying instantaneous
solutions. As a typical illustration of the mixing layer the DNS prediction of the
normal velocity u2, obtained at a spatial resolution of 2563, is shown in the turbulent
regime in Fig. 2(a). We used Re = 50 based on the initial momentum thickness and
free-stream flow properties. The filtered u2 can be seen in Fig. 2(b) establishing a
significant smoothing due to the ‘Simpson’ filter at Δ = �/16. The Leray prediction
(Fig. 2(c)) appears to capture the main ‘character’ as well as some of the details
of the filtered DNS solution. A slight underprediction of the influence of the small
scales is, however, apparent. Further visualization showed that the instantaneous
Leray predictions display much better overall agreement with filtered DNS than the
dynamic model, which relative to the Leray model significantly overpredicts the
smoothing (Vreman, Geurts & Kuerten, 1997). Of course, assessing the quality of
LES predictions in this way is difficult to quantify and we consider more specific
measures next.

The evolution of a crucial mean-flow property such as the momentum thickness
is shown in Fig. 3. The Leray results compare significantly better with filtered DNS
results than those obtained with the dynamic model on 323 grid-cells. We observe
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Fig. 3 Momentum thickness θ : filtered DNS (◦), Leray-model (323: dash-dotted, 643: solid,
963: 	), dynamic model (323: dashed, 643: dashed with 
). A fixed filterwidth of �/16 was
used.

that some of the discrepancies between Leray and filtered DNS results are due to nu-
merical contamination. By increasing the resolution at fixed Δ , a good impression
of the grid-independent solution to the modeled equations can be inferred using
643 – 963 grid-cells, i.e., Δ/h = 4 to 6 (Geurts & Fröhlich, 2002). Numerical con-
tamination also plays a role in the dynamic model. The grid-independent solution
corresponding to the dynamic model appears less accurate than the corresponding
Leray result.

A more detailed assessment is obtained from the streamwise kinetic energy spec-
trum shown in Fig. 4. The dynamic model yields a significant underprediction of the
intermediate and smaller retained scales, particularly for the approximately grid-
independent solution. The Leray predictions are much better. On coarse grids, an
overprediction of the smaller scales is apparent due to interaction with the spa-
tial discretization method (Vreman, Geurts & Kuerten , 1994). At proper numeri-
cal subgrid resolution the situation is considerably improved and the Leray model
is seen to capture all scales with high accuracy. A slight, systematic underpredic-
tion of the smaller scales remains, consistent with the impression obtained from
Figs. 2(b)-(c).

A particularly appealing property of Leray modeling is the robustness at very
high Reynolds numbers, cf. Fig. 5. This is quite unique for a subgrid model with-
out an explicit eddy-viscosity contribution. Although comparison with filtered DNS
data is impossible here, we observe that the smoothed Leray dynamics is essen-
tially captured as r = Δ/h ≥ 4 (Geurts & Fröhlich, 2002). The tail of the spec-
trum increases with Re, indicating a greater importance of small scale flow features.
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Fig. 4 Streamwise kinetic energy spectrum E at t = 75: filtered DNS (◦), Leray-model (323:
dash-dotted, 643: solid, 963: 	), dynamic model (323: dashed, 643: dashed with 
). A fixed
filterwidth of �/16 was used.
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Fig. 5 Streamwise kinetic energy spectrum E at t = 75 predicted by the Leray model:
Re = 50 (643: dash-dotted, 963: dash-dotted, 	), Re = 500 (643: dashed, 963: dashed, 	),
Re = 5000 (643: solid, 963: solid, 	). A fixed filterwidth of �/16 was used. The dotted line
represents k−5/3.
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Improved subgrid resolution shows a reduction of these smallest scales, consistent
with the reduced numerical error. At high Re the spectrum corresponding to the
Leray model tends to contain a region with approximately k−5/3 behavior, which is
absent at Re = 50. Further analysis showed that the solution develops self-similarly
at high Re.

5 Concluding Remarks

The Leray model displays excellent robustness with increasing Reynolds number.
This feature allows one to apply the Leray model accurately at reasonable compu-
tational costs and under flow-conditions that are well outside current DNS capabili-
ties. However, the LANS−α model yields solutions with more realistic variability,
corresponding better to the filtered DNS results than for the Leray model. Thus, a
trade-off emerges between these two models. The solutions of the LANS−α model
may more accurately represent the effects of intermittency in turbulence than the
less-variable solutions of the Leray model. However, the LANS−α model is less
robust and its application to flow at high Reynolds numbers is not as straightforward
as with the Leray model. Further investigation of this trade-off may lead to interest-
ing developments in the comparison of the time-dependent solutions of these two
models.

A convenient benefit of the regularisation approach to turbulence modelling is
that it enables one to derive the implied small-scale treatment from the underly-
ing regularisation principle. This yields a systematic closure of the equations whose
analysis allows an extension in which the filter width Δ is determined dynamically
by the evolving flow. The evolving filter-width may even be anisotropic. The ap-
plication of this self-adaptive modelling approach in a spatially developing mixing
layer and, more importantly, in near wall turbulence is a topic of current research.
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