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Preface

The Neural Field: A Framework for Brain Data Integration?

This book presents a perspective on the advancing subject of neural fields—that
is, theories of brain organization and function in which the interaction of billions
of neurons is treated as a continuum. The intention is to reduce the enormous
complexity of neuronal interactions to simpler, population properties that are
tractable by analytical mathematical tools. By so doing, it is hoped that the theory
of brain function can be reduced to its essence, without becoming lost in a wealth
of inessential detail. Naturally, this begs the questions of what the “essence”
is, and what detail is inessential [1]. The questions themselves are timely for
more than neural field theory. Putting aside the most profound of philosophical
issues—the existential relation between objective brain function and subjective
consciousness—at the cellular level, research has achieved detailed knowledge of
individual neuron physiology, and at the gross level, considerable knowledge of
sensory processing, the generation of movement and the functional locations in the
brain of memory, learning, emotion and decision-making. Yet our knowledge of
the functional details of all these processes remains vague, and little surpasses the
views held by Sherrington [4]. The ever-accumulating body of experimental data,
gathered with ever-improving observational techniques, continues to promise that
fundamental understanding of the modes of operation of the brain may be possible—
yet the goal seems also to move away, like a mirage, because, despite the mass
of data, there is no agreed means to achieve the needed integration. A crisis of
confidence looms. It is to be hoped that such a crisis is a healthy state—the darkness
before the dawn—analogous to the problems of systematic biology before Darwin,
or of astronomy before Kepler, or, more recently, of atomic physics before Bohr, but
hope alone will not suffice.

Aware of the risk of becoming trapped in an overwhelming mass of undigested
detail, large groups of scientists are joining forces to address the problems of
integration. While organizing collaborative efforts of scale unprecedented in neu-
roscience, all concerned agree on the importance both of technological advances
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and of theoretical development, but there are many differences of opinion on
the best and shortest route to success. In Europe the Human Brain Project [6]
is aimed at large scale simulation of the brain, employing very detailed cellular
properties. In the United States, the Brain Activity Map [5] seeks to establish a
functional connectome of the entire brain, and the MindScope Project [3] intends to
obtain a complete model of the mouse visual cortex. The BRAIN (Brain Research
through Advancing Innovative Neurotechnologies) Initiative [7] aims to accelerate
techniques for study of the brain.

Unresolved questions and fears, around which controversy centres, are:
Do we yet have enough detailed data on structure? How much knowledge of

exact connectivity in the brain is enough? Established anatomical techniques are not
depleted of possibility to resolve more detail, and very sophisticated new technology
is being deployed to add further to this. Yet the capacity of individuals to undergo
profound brain damage or deformity of brain development without loss of essential
function makes the need for such precise detail seem questionable.

Might some crucial type of data still be missing? Controversy over the role
of electrical coupling of neurons, and that of glial cells, over and above signal
transmission via axon-synaptic couplings, continues to simmer. Might there be
rules of synaptic connection that are not apparent, because the pattern cannot be
ascertained within the billions of neurons involved?

To reveal essential patterns of activity, do different types of data have to be
obtained using concurrent recording methods? All existing techniques offer a
window on brain function limited in scale or in resolution in space or time. That
is, only a comparatively few cells can be observed at once, the brain’s electric
and magnetic fields are relatively blurred in space, and the brain’s blood flow, as
observed by functional magnetic resonance imaging, is limited to relatively slow
variations. None match the scale, speed, and detail relevant to cognition, and the task
of making sufficient conjoint observations, in realistic waking contexts, is daunting
to say the least.

What then is a reasonably observable explainable unit of the brain? Professor
Eric Kandel advocates the complete analysis of a fly or worm brain, as an initial
step in the mega-collaborations [2], but in what way, exactly, is a worm’s brain more
fundamental than, say, a sympathetic ganglion, or a fly’s brain than a sensory-motor
reflex?

If all the most important observable data is already available, or will become so,
will sufficient computer power enable a working brain to be simulated? If this were
achieved, would we be any the wiser, or simply unable to understand the functioning
of the simulation, just as we cannot understand that upon which the simulation
would be based? And would the simulation not, itself, be a person? Thus making
our justification for subjecting it to manipulation and interference in the interests of
science a little ethically questionable?

Obviously there is no way of knowing the answers to such questions without
already having a sufficient unified theoretical understanding of brain function,
within which old and new observations can be seen in context. Neural Field Theory
hopes to discover such a unification, using as its guiding light explanation of the
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large scale observable fields of brain activity, and expecting as this account proceeds
an emergent insight into neural information processing. In contrast to its close
relative, neural network theory, it seeks explanations beyond the interaction of
smaller numbers of neurons, depending instead on the properties of small neural
groups to define the properties of the continuum. The layout of this book reflects
these intents.

After a brief tutorial, in the first half of the book and beginning from an historical
perspective, differing approaches to formulating and analysing equations for neural
fields are presented, and in their variety also revealing an underlying unity of
conception. Stochastic dynamics are discussed, as well as means of introducing
more anatomically and physiologically realistic properties to neural field equations.

The second half of the book begins by addressing the question of embodiment
of universal computation within neural fields, and moves on to cognitive processes.
Detailed models with cortical connectivity approaching that of the mammalian brain
and the relationship to the large-scale electrical fields of the brain follow, and the
book concludes with an attempt to show how fundamental field dynamics may play
a part in the brain’s embryonic development.

Thus a preliminary framework is discernible—methods now exist with the
potential to unify material drawn from many branches of neuroscience, guiding their
synthesis towards working models that can be tested against observable physical
and cognitive properties of the working brain. The framework remains frail, and
although the concepts involved seem largely internally consistent, in detail—for
instance in the choice of parameters applied in different work—the work reported
here is not entirely so. It is not yet possible to say the elusive “essence” referred
to in the first paragraph has been captured. But the hopes held at the dawn of this
subject appear to have been justified, and future prospects encouraging.

Stephen Coombes
Peter beim Graben

Roland Potthast
James Wright
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Chapter 1
Tutorial on Neural Field Theory

Stephen Coombes, Peter beim Graben, and Roland Potthast

Abstract The tools of dynamical systems theory are having an increasing impact
on our understanding of patterns of neural activity. In this tutorial chapter we
describe how to build tractable tissue level models that maintain a strong link
with biophysical reality. These models typically take the form of nonlinear integro-
differential equations. Their non-local nature has led to the development of a set of
analytical and numerical tools for the study of spatiotemporal patterns, based around
natural extensions of those used for local differential equation models. We present
an overview of these techniques, covering Turing instability analysis, amplitude
equations, and travelling waves. Finally we address inverse problems for neural
fields to train synaptic weight kernels from prescribed field dynamics.

1.1 Background

Ever since Hans Berger made the first recording of the human electroencephalo-
gram (EEG) in 1924 [8] there has been a tremendous interest in understanding
the physiological basis of brain rhythms. This has included the development of
mathematical models of cortical tissue – which are often referred to as neural field
models. One of the earliest of such models is due to Beurle [9] in the 1950s,
who developed a continuum description of the proportion of active neurons in
a randomly connected network. This was followed by work of Griffith [40, 41]
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2 S. Coombes et al.

in the 1960s, who also published two books that still make interesting reading
for modern practitioners of mathematical neuroscience [42, 43]. However, it were
Wilson and Cowan [88,89], Nunez [67] and Amari [3] in the 1970s who provided the
formulations for neural field models that is in common use today (see Chaps. 2 and 3
in this book). Usually, neural field models are conceived as neural mass models
describing population activity at spatiotemporally coarse-grained scales [67, 89].
They can be classified as either activity-based [89] or voltage-based [3, 67] models
(see [14, 64] for discussion).

For their activity-based model Wilson and Cowan [88,89] distinguished between
excitatory and inhibitory sub-populations, as well as accounted for refractoriness.
This seminal model can be written succinctly in terms of the pair of partial integro-
differential equations:

@E

@t
D �E C .1 � rEE/SEŒwEE ˝E � wEI ˝ I �;

@I

@t
D �I C .1 � rI I /SI ŒwIE ˝E � wII ˝ I �: (1.1)

Here E D E.r; t / is a temporal coarse-grained variable describing the proportion
of excitatory cells firing per unit time at position r at the instant t . Similarly the
variable I represents the activity of an inhibitory population of cells. The symbol
˝ represents spatial convolution, the functions wab.r/ describe the weight of all
synapses to the ath population from cells of the bth population a distance jrj away,
and ra is proportional to the refractory period of the ath population (in units of
the population relaxation rate). The nonlinear function Sa describes the expected
proportion of neurons in population a receiving at least threshold excitation per
unit time, and is often taken to have a sigmoidal form. In many modern uses of the
Wilson-Cowan equations the refractory terms are often dropped. For exponential or
Gaussian choices of the connectivity function the Wilson-Cowan model is known
to support a wide variety of solutions, including spatially and temporally periodic
patterns (beyond a Turing instability), localised regions of activity (bumps and
multi-bumps) and travelling waves (fronts, pulses, target waves and spirals), as
reviewed in [19, 20, 32] and in Chaps. 4, 5, 7 or 8.

Further work on continuum models of neural activity was pursued by Nunez
[67] and Amari [2, 3] under natural assumptions on the connectivity and firing
rate function. Amari focused on local excitation and distal inhibition which is an
effective model for a mixed population of interacting inhibitory and excitatory
neurons with typical cortical connections (commonly referred to as Mexican hat
connectivity), and formulated a single population (scalar) voltage-based model
(without refractoriness) for activity u D u.r; t / of the form

@u

@t
D �uC w˝ f .u/; (1.2)
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for some sigmoidal firing rate function f and connectivity function w. For the case
that f is a Heaviside step function he showed how exact results for localised states
(bumps and travelling pulses) could be obtained.

Since the original contributions of Wilson, Cowan, Nunez and Amari similar
models have been used to investigate a variety of neural phenomena, including
electroencephalogram (EEG) and magnetoencephalogram (MEG) rhythms [51, 52,
64, 68] (cf. Chaps. 10, 14, and 17), geometric visual hallucinations [16, 33, 84],
mechanisms for short term memory [62, 63], feature selectivity in the visual
cortex [7], motion perception [39], binocular rivalry [54], and anaesthesia [65]
(cf. Chaps. 14 and 15). Neural field models have also found applications in
autonomous robotic behaviour [30] (Chap. 13), embodied cognition [81] (Chap. 12),
and Dynamic Causal Modelling [28] (Chap. 17), as well as being studied from an
inverse problems perspective [5, 75]. As well as an increase in the applications
of models like (1.1) and (1.2) in neuroscience, there has been a push to develop
a deeper mathematical understanding of their behaviour. This has led to results
in one spatial dimension about the existence and uniqueness of bumps [58] and
waves [34] with smooth sigmoidal firing rates, as well as some constructive
arguments that generalise the original ideas of Amari for a certain class of smoothed
Heaviside firing rate functions [23, 69]. Other mathematical work has focused on
geometric singular perturbation analysis as well as numerical bifurcation techniques
to analyse solutions in one spatial dimension [62, 72, 73]. More explicit progress
has been possible for the case of Heaviside firing rate functions, especially as
regards the stability of solutions using Evans functions [22]. The extension of
results from one to two spatial dimensions has increased greatly in recent years
[24,37,56,60,61,70,85] (see Chap. 7). This style of work has also been able to tackle
physiological extensions of minimal neural field models to account for axonal delays
[21, 48, 50, 67] (included in the original Wilson-Cowan model and then dropped for
simplicity), dendritic processing [15], and synaptic depression [55]. In contrast to
the analysis of spontaneously generated patterns of activity, relatively little work has
been done on neural fields with forcing. The exceptions perhaps being the work in
[38] (for localised drive) and global period forcing in [78]. However, much of the
above work exploits idealisations of the original models (1.1) and (1.2), especially
as regards heterogeneity and noise, to make mathematical progress. More recent
work that tackles heterogeneity (primarily using simulations) can be found in [11]
(also in Chap. 8), whilst perturbation theory and homogenisation techniques are
developed in [13, 24, 80], and functional analytic results in [36]. The treatment of
stochastic neural field models is a very new area, and we refer the reader to the
recent review by Bressloff [14] and to Chaps. 2 and 9, which also covers methods
from non-equilibrium statistical physics that attempt to move beyond the mean-field
rate equations of the type exemplified by (1.1) and (1.2). However, it is fair to say
that the majority of neural field models in use today can trace their roots back to the
seminal work of Wilson and Cowan, Nunez and Amari.

In this chapter we will develop the discussion of a particular neural field model
that incorporates much of the spirit of (1.1) and (1.2), though with refinements that
make a stronger connection to models of both synaptic and dendritic processing.
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We will then show how to analyse these models with techniques from dynamical
systems before going on to discuss inverse problems in neural field theory.

1.1.1 Synaptic Processing

At a synapse, presynaptic firing results in the release of neurotransmitters that
causes a change in the membrane conductance of the postsynaptic neuron. This
postsynaptic current may be written

Is D g.V � Vs/; (1.3)

where V is the voltage of the postsynaptic membrane, Vs is its reversal potential and
g is a conductance. This is proportional to the probability that a synaptic receptor
channel is in an open conducting state. This probability depends on the presence
and concentration of neurotransmitter released by the presynaptic neuron. The sign
of Vs relative to the resting potential (assumed to be zero) determines whether the
synapse is excitatory (Vs > 0) or inhibitory (Vs < 0).

The effect of some synapses can be described with a function that fits the shape
of the postsynaptic response due to the arrival of action potential at the presynaptic
release site. A postsynaptic conductance change g.t/ would then be given by

g.t/ D g�.t � T /; t � T; (1.4)

where T is the arrival time of a presynaptic action potential and �.t/ fits the shape
of a realistic postsynaptic conductance. A common (normalised) choice for �.t/ is
a difference of exponentials:

�.t/ D
�
1

˛
� 1
ˇ

��1
Œe�˛t � e�ˇt �H.t/; (1.5)

or the ˛-function:

�.t/ D ˛2te�˛tH.t/; (1.6)

where H is a Heaviside step function. The conductance change arising from a train
of action potentials, with firing times Tm, is given by

g.t/ D g
X
m

�.t � Tm/: (1.7)

We note that both the forms for �.t/ above can be written as the Green’s function
of a linear differential operator, so that Q� D ı, where



1 Tutorial on Neural Field Theory 5

Q D
�
1C 1

˛

d

dt

��
1C 1

ˇ

d

dt

�
; (1.8)

for (1.5) and one simply sets ˇ D ˛ to obtain the response describing an ˛-function.

1.1.2 Dendritic Processing

Dendrites form the major components of neurons. They are complex branching
structures that receive and process thousands of synaptic inputs from other neurons.
It is well known that dendritic morphology plays an important role in the function
of dendrites. A nerve fibre consists of a long thin, electrically conducting core
surrounded by a thin membrane whose resistance to transmembrane current flow
is much greater than that of either the internal core or the surrounding medium.
Injected current can travel long distances along the dendritic core before a signif-
icant fraction leaks out across the highly resistive cell membrane. Conservation
of electric current in an infinitesimal cylindrical element of nerve fibre yields a
second-order linear partial differential equation (PDE) known as the cable equation.
Let V.x; t/ denote the membrane potential at position x along a uniform cable at
time t measured relative to the resting potential of the membrane. Let � be the cell
membrane time constant, � the space constant and r the membrane resistance, then
the basic uniform (infinite) cable equation is

�
@V.x; t/

@t
D �V.x; t/C �2 @

2V .x; t/

@x2
C rI.x; t/; x 2 .�1;1/; (1.9)

where we include the source term I.x; t/ corresponding to external input injected
into the cable. diffusion along the dendritic tree generates an effective spatiotem-
poral distribution of delays as expressed by the associated Green’s function of the
cable equation in terms of the diffusion constant D D �2=� . In response to a unit
impulse at x0 at t D 0 and taking V.x; 0/ D 0 the dendritic potential behaves as
V.x; t/ D G1.x � x0; t /, where

G1.x; t/ D 1p
4�Dt

e�t=�e�x2=.4Dt/H.t/: (1.10)

The Green’s function G1.x; t/ (derived in Appendix 1) determines the linear
response to an instantaneous injection of unit current at a given point on the tree.
Using the linearity of the cable equation one may write the general solution as

V.x; t/ D
Z t

�1
dt 0
Z 1

�1
dx0G1.x � x0; t � t 0/I.x0; t 0/

C
Z 1

�1
dx0G1.x � x0; t /V .x0; 0/: (1.11)
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Note that for notational simplicity we have absorbed a factor of r=� within the
definition of the source term I.x; t/. For example, assuming the soma is at x D 0,
V.x; 0/ D 0 and the synaptic input is a train of spikes at x D x0, I.x; t/ D ı.x �
x0/

P
m ı.t � Tm/ we have that

V.0; t/ D
X
m

G1.x0; t � Tm/: (1.12)

1.2 Tissue Level Firing Rate Models with Axo-Dendritic
Connections

At heart modern biophysical theories assert that EEG signals from a single scalp
electrode arise from the coordinated activity of�106 pyramidal cells in cortex [27].
These are arranged with their dendrites in parallel and perpendicular to the cortical
surface. When synchronously activated by synapses at the proximal dendrites
extracellular current flows (parallel to the dendrites), with a net membrane current
at the synapse. For excitatory (inhibitory) synapses this creates a sink (source) with
a negative (positive) extracellular potential. Because there is no accumulation of
charge in the tissue the proximal synaptic current is compensated by other currents
flowing in the medium causing a distributed source in the case of a sink and vice-
versa for a synapse that acts as a source. Hence, at the population level the potential
field generated by a synchronously activated population of cortical pyramidal cells
behaves like that of a dipole layer. Although the important contribution that single
dendritic trees make to generating extracellular electric field potentials has been
realised for some time, and can be calculated using Maxwell equations [71], they
are typically not accounted for in neural field models. The exception to this being
the work of Bressloff, reviewed in [15] and in Chap. 10.

In many neural population models it is assumed that the interactions are mediated
by firing rates rather than action potentials (spikes) per se. To see how this might
arise we rewrite (1.7) in the equivalent form

Qg D g
X
m

ı.t � Tm/: (1.13)

If we perform a short-time average of (1.13) over some time-scale � and assume
that � is sufficiently slow so that hQgit is approximately constant, where

hxit D 1

�

Z t

t��
x.s/ds; (1.14)

then we have that Qg D f , where f is the instantaneous firing rate (number of
spikes per time �). For a single neuron (real or synthetic) experiencing a constant
drive it is natural to assume that this firing rate is a function of the drive alone. If for
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the moment we assume that a neuron spends most of its time close to rest such that
Vs�V � Vs , and absorb a factor Vs into g, then for synaptically interacting neurons
this drive is directly proportional to the conductance state of the presynaptic neuron.
Thus for a single population with self-feedback we are led naturally to equations
like:

Qg D w0f .g/; (1.15)

for some strength of coupling w0. A common choice for the population firing rate
function is the sigmoid

f .g/ D 1

1C exp.�ˇ.g � h// ; (1.16)

which saturates to one for large g. This functional form, with threshold h and
steepness parameter ˇ, is approximately obtained for a unimodal distribution of
firing thresholds among the population [88]. Note that the notion of a slow response
would also be expected in a large globally coupled network which was firing
asynchronously (so that mean field signals would be nearly constant).

To obtain a tissue level model in one spatial dimension we simply consider g D
g.x; t/, with x 2 R, and introduce a coupling function and integrate over the domain
to obtain

Qg D
Z 1

�1
w.x; y/f .g.y; t �D.x; y/=v//dy; (1.17)

or equivalently

g.x; t/ D
Z t

�1
ds�.t � s/

Z 1

�1
w.x; y/f .g.y; s �D.x; y/=v//dy: (1.18)

Here we have allowed for a communication delay, that arises because of the
finite speed, v, of the action potential, where D.x; y/ measures the length of the
axonal fibre between points at x and y. The coupling function w.x; y/ represents
anatomical connectivity, and is often assumed to be homogeneous so that w.x; y/ D
w.jx � yj/. It is also common to assume that D.x; y/ D jx � yj.

Following the original work of Bressloff (reviewed in [15]) we now develop the
cable modelling approach of Rall [82] to describe a firing rate cortical tissue model
with axo-dendritic patterns of synaptic connectivity. For simplicity we shall consider
only an effective single population model in one (somatic) spatial dimension to
include a further dimension representing position along a (semi-infinite) dendritic
cable. The firing rate in the somatic (cell body) layer is taken to be a smooth function
of the cable voltage at the soma, which is in turn determined by the spatiotemporal
pattern of synaptic currents on the cable. For an illustration see Fig. 1.1.
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Fig. 1.1 Diagram of a one dimensional neural field model. In this illustration the dendritic tree is
drawn with a branched structure. For the sake of simplicity the neural field model is only developed
here for unbranched dendrites. However, this can be naturally generalised using the “sum-over-
trips” approach of Abbott et al. for passive dendrites [1] and Coombes et al. [25] for resonant
dendrites

The voltage V.�; x; t/ at position � � 0 along a semi-infinite passive cable with
somatic coordinate x 2 R can then be written:

@V

@t
D �V

�
CD@

2V

@�2
C I.�; x; t/: (1.19)

Here, I.�; x; t/ is the synaptic input (and remember that we absorb within this
a factor r=� ), and we shall drop shunting effects and take this to be directly
proportional to a conductance change, which evolves according to the usual neural
field prescription (cf. Eq. (1.18)) as

g.�; x; t/ D
Z t

�1
ds�.t � s/

Z 1

�1
dyW.�; x; y/f .h.y; s �D.x; y/=v//: (1.20)

The function W.�; x; y/ describes the axo-dendritic connectivity pattern and the
field h is taken as a measure of the drive at the soma. As a simple model of h we
shall take it to be the somatic potential and write h.x; t/ D V.0; x; t/. For no flux
boundary conditions @V.�; x; t/=@�j�D0 D 0, and assuming vanishing initial data,
the solution to (1.19) at � D 0 becomes

V.� D 0; x; t/ D 	.G ˝ g/.� D 0; x; t/; G D 2G1 (1.21)

for some constant of proportionality 	 > 0, where G1.x; t/ is given by (1.10) and
here the operator ˝ denotes spatiotemporal convolution over the .�; t/ coordinates.
Note that in obtaining (1.21) we have used the result that the Green’s function
(between two points � and � 0) for the semi-infinite cable with no flux boundary
conditions can be written as G1.� � � 0; t /CG1.� C � 0; t / [1, 86].
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Further assuming that the axo-dendritic weights can be decomposed in the
product form W.�; x; y/ D P.�/w.jx � yj/ then the equation for h takes the form

h.x; t/ D 	
Z t

�1
dsF.t � s/

Z s

�1
ds0�.s � s0/

Z 1

�1
dyw.jx � yj/f .h.y; s0 �D.x; y/=v//;

(1.22)

where

F.t/ D
Z 1

0

d�P.�/G.�; t/: (1.23)

We regard Eq. (1.22) as a natural extension of the Amari model (1.2) to include
synaptic and dendritic processing as well as axonal delays. Note that the Amari
model is recovered from (1.22) in the limit v ! 1, �.t/ D e�tH.t/, and F.t/ D
ı.t/=	.

1.2.1 Turing Instability Analysis

To assess the pattern forming properties of the model given by (1.22) it is useful to
perform a Turing instability analysis. This describes how a spatially homogeneous
state can become unstable to spatially heterogeneous perturbations, resulting in
the formation of periodic patterns. To illustrate the technique consider the one-
dimensional model without dendrites or axonal delays, obtained in the limit v !1
and F.t/! ı.t/:

h.x; t/ D 	
Z 1

0

ds�.s/
Z 1

�1
dyw.jyj/f .h.x � y; t � s//: (1.24)

One solution of the neural field equation is the spatially uniform resting state
h.x; t/ D h0 for all x; t , defined by

h0 D 	f .h0/
Z 1

�1
w.jyj/dy: (1.25)

Here we have used the fact that � is normalised, namely that
R1
0

ds�.s/ D 1. We
linearise about this state by letting h.x; t/! h0C h.x; t/ so that f .h/! f .h0/C
f 0.h0/u to obtain

h.x; t/ D 	ˇ
Z 1

0

ds�.s/
Z 1

�1
dyw.y/h.x � y; t � s/; ˇ D f 0.h0/: (1.26)
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Fig. 1.2 A plot of the
Fourier transform of the
weight kernel Ow.p/
illustrating how its shape
(with a maximum away from
the origin) can determine a
Turing instability defined by
the condition 	ˇ Ow.pc/ D 1

This has solutions of the form e�teipx, with a dispersion curve:

1 D 	ˇ Q�.�/ Ow.p/; Ow.p/ D
Z 1

�1
dyw.jyj/e�ipy; Q�.�/ D

Z 1

0

ds�.s/e��s:

(1.27)

We recognise Ow as the Fourier transform of w and Q� as the Laplace transform of �.
The uniform steady state is linearly stable if Re�.p/ < 0 for all p 2 R, p ¤ 0.
For the choice �.t/ D ˛e�˛tH.t/ (so that Q D .1 C ˛�1d=dt /) then Q�.�/ D
.1C�=˛/�1. In this case, since w.x/ D w.�x/ then Ow.p/ is a real even function of
p and the stability condition is simply

Ow.p/ < 1

ˇ	
; for all p 2 R; p ¤ 0: (1.28)

Now consider the case that Ow.p/ has a positive maximum Owmax at p D ˙pc , that
is Ow.pc/ D Owmax and Ow.p/ < Owmax for all p ¤ pc . For ˇ < ˇc , where ˇc D
1=.	 Owmax/, we have 	 Ow.p/ � 	 Owmax < 1=ˇ for all p and the resting state is linearly
stable. At the critical point ˇ D ˇc (see Fig. 1.2) we have ˇc	 Ow.pc/ D 1 and
ˇc	 Ow.p/ < 1 for all p ¤ pc . Hence, �.p/ < 0 for all p ¤ pc , but �.pc/ D 0. This
signals the point of a static instability due to excitation of the pattern e˙ipcx. Beyond
the bifurcation point, ˇ > ˇc , �.pc/ > 0 and this pattern grows with time. In fact
there will typically exist a range of values of p 2 .p1; p2/ for which �.p/ > 0,
signalling a set of growing patterns. As the patterns grow, the linear approximation
breaks down and nonlinear terms dominate the behaviour. The saturating property
of f tends to create patterns with finite amplitude, that scale as

p
ˇ � ˇc close

to bifurcation and have wavelength 2�=pc . If pc D 0 then we would have a bulk
instability resulting in the formation of another homogeneous state.

A common choice for w.x/ is a Mexican hat function which represents short-
range excitation and long-range inhibition. An example of such a function is a
difference of two exponentials:

w.x/ D 

h
e��1jxj � � e��2jxji ; (1.29)
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with � < 1, �1 > �2 > 0 and 
 D C1. (The case 
 D �1, which represents
short-range inhibition and long-range excitation will be considered below in the full
model.) The Fourier transform Ow.p/ is calculated as:

Ow.p/ D 2

�

�1

�21 C p2
� � �2

�22 C p2
�
; (1.30)

from which we may determine pc as

p2c D
�21
p
� �2=�1 � �22

1 �p� �2=�1 : (1.31)

Hence, pc ¤ 0 when � > .�2=�1/
3. Note that for 
 D �1 then pc D 0 and a static

Turing instability does not occur.
For the full model (1.22) with D.x; y/ D jx � yj the homogeneous steady state,

h.x; t/ D h0 for all x; t , satisfies

h0 D 	f .h0/
Z 1

0

F.s/ds
Z 1

�1
dyw.jyj/; (1.32)

and the spectral equation takes the form

1 D 	ˇ Ow.p; �/ Q�.�/ QF .�/; Ow.p; �/ D
Z 1

�1
dyw.jyj/e�ipye��jyj=v; ˇ D f 0.h0/:

(1.33)

Compared to (1.27) it is now possible for complex solutions for � to be supported –
allowing for the possibility of dynamic (as opposed to static) Turing instabilities to
occur. These occur when Im� ¤ 0 at the bifurcation point.

For example, in the limit v ! 1 then Ow.p; �/ ! Ow.p/ and for �.t/ D
˛e�˛tH.t/ we have that

1C �=˛ D 	ˇ Ow.p/ QF .�/: (1.34)

A necessary condition for a dynamic instability (Re� D 0 and Im� ¤ 0) is that
there exists a pair !, p ¤ 0 such that

1C i!=˛ D 	ˇ Ow.p/ QF .i!/: (1.35)

Equating real and imaginary parts (and using the fact that Ow.p/ 2 R) gives us the
pair of simultaneous equations

1 D 	ˇ Ow.p/C.!/; !=˛ D 	ˇ Ow.p/S.!/; (1.36)
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where C.!/ D Re QF .i!/ and S.!/ D Im QF .i!/. Note that C.!/ DR1
0

dsF.s/ cos.!s/ � jC.0/j. Hence (dividing the above equations) if there is
a non-zero solution to

!c

˛
DH .!c/; H .!c/ � S.!c/

C.!c/
; (1.37)

then the bifurcation condition, ˇ D ˇd , for a dynamic instability is defined by

ˇd	 Ow.pmin/ D 1

C.!c/
; (1.38)

which should be contrasted with the bifurcation condition, ˇ D ˇs , for a static
instability, namely

ˇs	 Ow.pmax/ D 1

C.0/
; (1.39)

where

Ow.pmin/ D min
p
Ow.p/; Ow.pmax/ D max

p
Ow.p/: (1.40)

Assuming that Ow.pmin/ < 0 < Ow.pmax/, a dynamic Turing instability will occur if
ˇ < ˇs and pmin ¤ 0, whereas a static Turing instability will occur if ˇs < ˇ and
pmax ¤ 0.

For the Mexican hat function (1.29) with 
 D C1 (short-range excitation, long-
range inhibition), a dynamic Turing instability is not possible since pmin D 0.
However, it is possible for bulk oscillations to occur instead of static patterns when

Ow.pc/ < �C.!c/
C.0/

j Ow.0/j; (1.41)

with pc given by (1.31). On the other hand, when 
 D �1 (short-range inhibition,
long-range excitation) a dynamic instability can occur since pmin D pc and pmax D
0, provided that

Ow.0/ < �C.!c/
C.0/

j Ow.pc/j: (1.42)

As an explicit example consider the choice P.�/ D ı.� � �0/ (so that the synaptic
contact occurs at a fixed distance �0 > 0 from the soma). In this case F.t/ D
G.�0; t/ with Laplace transform (calculated in Appendix 2):

QF .�/ D e��.�/�0
D�.�/

; �2.�/ D .1=� C �/=D: (1.43)
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Fig. 1.3 A plot of the
function H.!/ for
D D � D 1 with �0 D 2,
showing a non-zero solution
of (1.37) for ˛ D 1. This
highlights the possibility of a
dynamic Turing instability
(!c ¤ 0) in a dendritic neural
field model with short-range
inhibition and long-range
excitation

In this case we may calculate the real and imaginary parts of QF .i!/ as

C.!/ D 1p
1=�2 C !2 e�AC.!/�0 ŒAC.!/ cos.A�.!/�0/ � A�.!/ sin.A�.!/�0/�

(1.44)

S.!/ D � 1p
1=�2 C !2 e�AC.!/�0 ŒAC.!/ sin.A�.!/�0/C AC.!/ cos.A�.!/�0/�;

(1.45)

where
p
.1=� C i!/=D D AC.!/C iA�.!/ and

A˙.!/ D
q
Œ
p
1=.�D/2 C !2=D2 ˙ 1=.�D/�=2: (1.46)

A plot of H.!/ is shown in Fig. 1.3, highlighting the possibility of a non-zero
solution of (1.37) for a certain parameter set (and hence the possibility of a dynamic
instability).

For a discussion of dynamic Turing instabilities with finite v we refer the reader
to [87]. For the treatment of more general forms of axo-dendritic connectivity (that
do not assume a product form) we refer the reader to [12, 17].

The extension of the above argument to two dimensions shows that the linearised
equations of motion have solutions of the form e�teip�r, r;p 2 R

2, with � D �.p/,
p D jpj as determined by (1.33) with

Ow.p; �/ D
Z
R2

drw.jrj/e�ip�re��jrj=v: (1.47)

Near bifurcation we expect spatially periodic solutions of the form exp i Œp1xCp2y�,
p2c D p21 C p22 . For a given pc there are an infinite number of choices for p1 and
p2. It is therefore convenient to restrict attention to doubly periodic solutions that
tessellate the plane. These can be expressed in terms of the basic symmetry groups of
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hexagon, square and rhombus. Solutions can then be constructed from combinations
of the basic functions eipcR�r, for appropriate choices of the basis vectors R. If 
is the angle between two basis vectors R1 and R2, we can distinguish three types
of lattice according to the value of : square lattice ( D �=2), rhombic lattice
(0 <  < �=2) and hexagonal ( D �=3). Hence, all doubly periodic functions
may be written as a linear combination of plane waves

h.r/ D
X
j

Aj eipcRj �r C cc; jRj j D 1; (1.48)

where cc stands for complex-conjugate. For hexagonal lattices we use R1 D .1; 0/,
R2 D .�1;p3/=2, and R3 D .1;

p
3/=2. For square lattices we use R1 D .1; 0/,

R2 D .0; 1/, while the rhombus tessellation uses R1 D .1; 0/, R2 D .cos �; sin �/.

1.2.2 Weakly Nonlinear Analysis: Amplitude Equations

A characteristic feature of the dynamics of systems beyond an instability is the
slow growth of the dominant eigenmode, giving rise to the notion of a separation
of scales. This observation is key in deriving the so-called amplitude equations.
In this approach information about the short-term behaviour of the system is
discarded in favour of a description on some appropriately identified slow time-
scale. By Taylor-expansion of the dispersion curve near its maximum one expects
the scalings Re� � ˇ � ˇc; p � pc �

p
ˇ � ˇc , close to bifurcation, where ˇ

is the bifurcation parameter. Since the eigenvectors at the point of instability are
of the type A1ei.!c tCpcx/ C A2ei.!c t�pcx/ C cc, for ˇ > ˇc emergent patterns are
described by an infinite sum of unstable modes (in a continuous band) of the form
e�0.ˇ�ˇc/tei.!c tCpcx/eip0

p
ˇ�ˇcx . Let us denote ˇ D ˇcC �2ı where � is arbitrary and

ı is a measure of the distance from the bifurcation point. Then, for small � we can
separate the dynamics into fast eigen-oscillations ei.!c tCpcx/, and slow modulations
of the form e�0�

2teip0�x . If we set as further independent variables � D �2t for the
modulation time-scale and � D �x for the long-wavelength spatial scale (at which
the interactions between excited nearby modes become important) we may write
the weakly nonlinear solution as A1.�; �/ei.!c tCpcx/CA2.�; �/ei.!c t�pcx/Ccc. It is
known from the standard theory [47] that weakly nonlinear solutions will exist in the
form of either travelling waves (A1 D 0 or A2 D 0) or standing waves (A1 D A2).

We are now in a position to derive the amplitude equations for patterns emerging
beyond the point of an instability for a neural field model. These are also useful for
determining the sub- or super-critical nature of the bifurcation. For clarity we shall
first focus on the case of a static instability, and consider the example system given
by (1.18) with �.t/ D e�tH.t/ and v ! 1, equivalent to the Amari model (1.2).
In this case the model is conveniently written as an integro-differential equation:



1 Tutorial on Neural Field Theory 15

@g

@t
D �g C w˝ f .g/; (1.49)

where the symbol˝ denotes spatial convolution (assuming w.x; y/ D w.jx � yj/).
We first Taylor expand the nonlinear firing rate around the steady state g0:

f .g/ D f .g0/C ˇ1.g � g0/C ˇ2.g � g0/2 C ˇ3.g � g0/3 C : : : ; (1.50)

where ˇ1 D f 0.g0/, ˇ2 D f 00.g0/=2 and ˇ3 D f 000.g0/=6. We also adopt the
perturbation expansion

g D g0 C �g1 C �2g2 C �3g3 C : : : : (1.51)

After rescaling time according to � D �2t and setting ˇ1 D ˇc C �2ı, where ˇc is
defined by the bifurcation condition ˇc D 1= Ow.pc/, we then substitute into (1.49).
Equating powers of � leads to a hierarchy of equations:

g0 D f .g0/
Z 1

�1
w.jyj/dy; (1.52)

0 D L g1; (1.53)

0 D L g2 C ˇ2w˝ g21; (1.54)

dg1
d�
D L g3 C ıw˝ g1 C 2ˇ2w˝ g1g2 C ˇ3w˝ g31; (1.55)

where

L g D �g C ˇcw˝ g: (1.56)

The first equation fixes the steady state g0. The second equation is linear with
solutions g1 D A.�/eipcx C cc (where pc is the critical wavenumber at the static
bifurcation). Hence the null space of L is spanned by e˙ipcx . A dynamical equation
for the complex amplitudeA.�/ (and we do not treat here any slow spatial variation)
can be obtained by deriving solvability conditions for the higher-order equations, a
method known as the Fredholm alternative. These equations have the general form
L gn D vn.g0; g1; : : : ; gn�1/ (with L g1 D 0). We define the inner product of two
periodic functions (with periodicity 2�=pc) as

hU; V i D pc

2�

Z 2�=pc

0

U �.x/V .x/dx; (1.57)

where � denotes complex conjugation. It is simple to show that L is self-adjoint
with respect to this inner product (see Appendix 3), so that

hg1;L gni D hL g1; gni D 0: (1.58)
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Hence we obtain the set of solvability conditions

he˙ipcx; vni D 0; n � 2: (1.59)

The solvability condition with n D 2 is automatically satisfied, since w ˝ g21 D
Ow.2pc/ŒA2e2ipcxC cc�C 2jAj2 Ow.0/, and we make use of the result heimpcx; einpcxi D
ım;n. For n D 3 the solvability condition (projecting onto eCipcx) is

heipcx;
dg1
d�
� ıw˝ g1i D ˇ3heipcx;w˝ g31i C 2ˇ2heipcx;w˝ g1g2i: (1.60)

The left-hand side is easily calculated, using w˝ g1 D Ow.pc/ŒAeipcx C cc�, as

dA

d�
� ı Ow.pc/A D dA

d�
� ˇ�1

c ıA; (1.61)

where we have made use of the bifurcation condition ˇc D 1= Ow.pc/. To evaluate
the right-hand side we use the result that w ˝ g31 D Ow.pc/ŒA3ei3pcx C cc� C
3jAj2 Ow.pc/ŒAeipcx C cc�, to obtain

heipcx;w˝ g31i D 3ˇ�1
c AjAj2: (1.62)

The next step is to determine g2. From (1.54) we have that

� g2 C ˇcw˝ g2 D �ˇ2
˚ Ow.2pc/ŒA2e2ipcx C cc�C 2jAj2 Ow.0/� : (1.63)

We now set

g2 D ACe2ipcx C A�e�2ipcx C A0 C g1: (1.64)

The constant  remains undetermined at this order of perturbation but does not
appear in the amplitude equation for A.�/. Substitution into (1.63) and equating
powers of eipcx gives

A0 D 2ˇ2jAj2 Ow.0/
1 � ˇc Ow.0/ ; AC D ˇ2A

2 Ow.2pc/
1 � ˇc Ow.2pc/ ; A� D A�C; (1.65)

where we have used the result that w ˝ g2 D Ow.2pc/ŒACe2ipcx C A�e�2ipcx� C
Ow.0/A0 C ŒA Ow.pc/eipcx C cc�. We then find that

heipcx;w˝ g1g2i D Ow.pc/ŒACA� C A0A�: (1.66)

Combining (1.61), (1.62) and (1.66) we obtain the Stuart-Landau equation

ˇc
dA

d�
D A.ı � ˚ jAj2/; (1.67)
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where

˚ D �3ˇ3 � 2ˇ22
� Ow.2pc/
1 � ˇc Ow.2pc/ C

2 Ow.0/
1 � ˇc Ow.0/

�
: (1.68)

Introducing A D Rei� we may rewrite Eq. (1.67) as

ˇc
dR

d�
D ıR � ˚R3; d�

d�
D 0: (1.69)

Hence, the phase of A is arbitrary (� D const) and the amplitude has a pitchfork
bifurcation which is super-critical for ˚ > 0 and sub-critical for ˚ < 0.

Amplitude equations arising for systems with a dynamic instability are treated in
[87]. The appropriate amplitude equations are found to be the coupled mean-field
Ginzburg–Landau equations describing a Turing–Hopf bifurcation with modulation
group velocity of O.1/.

1.2.2.1 Amplitude Equations for Planar Neural Fields

In two spatial dimensions the same ideas go across and can be used to determine
the selection of patterns, say stripes vs. spots [31]. In the hierarchy of Eqs. (1.52)–
(1.55) the symbol ˝ now represents a convolution in two spatial dimensions. The
two dimensional Fourier transform Ow takes the explicit form

Ow.p1; p2/ D
Z 1

�1
dx
Z 1

�1
dyw.x; y/ei.p1xCp2y/; (1.70)

and the inner product for periodic scalar functions defined on the plane is taken as

hU; V i D 1

j˝j
Z
˝

U �.r/V .r/dr; (1.71)

with˝ D .0; 2�=pc/� .0; 2�=pc/. We shall assume a radially symmetric kernel so

that Ow .p1; p2/ D Ow
�q

p21 C p22
�

. One composite pattern that solves the linearised

equations is

g1.x; y; �/ D A1.�/eipcx C A2.�/eipcy C cc: (1.72)

For A1 D 0 and A2 ¤ 0 we have a stripe, while if both A1 and A2 are non-
zero, and in particular equal, we have a spot. Here pc is defined by the condition
ˇc D 1= Ow.pc/. The null space of L is spanned by fe˙ipcx; e˙ipcyg, and we may
proceed as for the one dimensional case to generate a set of coupled equations for
the amplitudes A1 and A2. It is simple to show that

heipcx;w˝ g31i D 3ˇ�1
c A1.jA1j2 C 2jA2j2/: (1.73)
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Assuming a representation for g2 as

g2 D ˛0 C ˛1e2ipcx C ˛2e�2ipcx C ˛3e2ipcy C ˛4e�2ipcy C ˛5eipc .xCy/

C ˛6e�ipc .xCy/ C ˛7eipc .x�y/ C ˛8e�ipc .x�y/ C g1; (1.74)

allows us to calculate

heipcx;w˝ g1g2i D ˇ�1
c Œ˛0A1 C ˛1A�

1 C ˛5A�
2 C ˛7A2�: (1.75)

Balancing terms in (1.54) gives

˛0 D 2ˇ2.jA1j2 C jA2j2/ Ow.0/
1 � ˇc Ow.0/ ; ˛1 D ˇ2A

2
1 Ow.2pc/

1 � ˇc Ow.2pc/ ; (1.76)

˛5 D 2ˇ2A1A2 Ow.
p
2pc/

1 � ˇc Ow.
p
2pc/

; ˛7 D 2ˇ2A1A
�
2 Ow.
p
2pc/

1 � ˇc Ow.
p
2pc/

: (1.77)

Combining the above yields the coupled amplitude equations:

ˇc
dA1
d�
D A1.ı � ˚ jA1j2 � � jA2j2/; (1.78)

ˇc
dA2
d�
D A2.ı � ˚ jA2j2 � � jA1j2/; (1.79)

where

˚ D �3ˇ3 � 2ˇ22
�

2 Ow.0/
1 � ˇc Ow.0/ C

Ow.2pc/
1 � ˇc Ow.2pc/

�
; (1.80)

� D �6ˇ3 � 4ˇ22
"

Ow.0/
1 � ˇc Ow.0/ C

2 Ow.p2pc/
1 � ˇc Ow.

p
2pc/

#
: (1.81)

The stripe solution A2 D 0 and jA1j D
p
ı=˚ (or vice versa) is stable if and only

if � > ˚ > 0. The spot solution jA1j D jA2j D
p
ı=.˚ C �/ is stable if and only

if ˚ > � > 0. Hence, stripes and spots are mutually exclusive as stable patterns.
In the absence of quadratic terms in f , namely ˇ2 D 0, then � D �6ˇ3 and
˚ D �3ˇ3 so that for an odd firing rate function like f .x/ D tanh x ' x � x3=3
then ˇ3 < 0 and so � > ˚ and stripes are selected over spots. The key to the
appearance of spots is non-zero quadratic terms, ˇ2 ¤ 0, in the firing rate function;
without these terms spots can never stably exist. For a Mexican hat connectivity then
Ow.p2pc/ > Ow.2pc/ and the quadratic term of � is larger than that of ˚ so that as
jˇ2j increases then spots will arise instead of stripes.

The technique above can also be used to determine amplitude equations for more
general patterns of the form
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g1.r; �/ D
NX
jD1

Aj .�/e
ipcRj �r: (1.82)

For further discussion we refer the reader to [32, 84].

1.2.3 Brain Wave Equations

Given the relatively few analytical techniques for investigating neural field models
one natural step is to make use of numerical simulations to explore system
dynamics. For homogeneous models we may exploit the convolution structure
of interactions to develop fast Fourier methods to achieve this. Indeed we may
also exploit this structure further to obtain equivalent PDE models [61] (see also
Chap. 5), and recover the brain wave equation often used in EEG modelling [49,67].

For example consider a one-dimensional neural field model with axonal delays:

Qg D  ;  .x; t/ D
Z 1

�1
dyw.jx � yj/f .g.y; t � jx � yj/=v/: (1.83)

The function  .x; t/ may be expressed in the form

 .x; t/ D
Z 1

�1
ds
Z 1

�1
dyG.x � y; t � s/�.y; s/; (1.84)

where

G.x; t/ D ı.t � jxj=v/w.x/; (1.85)

can be interpreted as another type of Green’s function, and we use the notation

�.x; t/ D f .g.x; t//: (1.86)

Introducing Fourier transforms of the following form

 .x; t/ D 1

.2�/2

Z 1

�1

Z 1

�1
ei.kxC!t/ .k; !/dkd!; (1.87)

allows us to write

 .k; !/ D G.k; !/�.k; !/; (1.88)

assuming the Fourier transform of f .u/ exists. It is straightforward to show that the
Fourier transform of (1.85) is


