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Preface

The increasing requirements for automotive drives with internal combustion engines
on reduced fuel consumption, low emissions and good driveability need continuous
improvement of combustion and exhaust treatment processes and their control. This
can be reached by a higher variability with an increase of actuators and sensors in
addition to thermodynamic, mechanical and structural improvements. Modern en-
gines have therefore an increasing number of manipulation variables and sensors
and a complex electronic management. The design of the many control function re-
quires good physical understanding and model-based methods taking into account
mechatronic engineering principles.

The book treats as well physical-based as experimental gained engine models for
gasoline (spark ignition) and diesel (compression ignition) engines and uses them for
the design of the different control systems. The procedure and the workflow from the-
oretical and experimental modeling over simulations to calibration with test benches
is systematically described and demonstrated by many examples. Not only the sta-
tionary but also the dynamic nonlinear behavior of engines is taken into account. The
combustion engine models include the intake system, fuel supply and injection, com-
bustion cycles, mechanical system, turbochargers, exhaust and cooling system and
are mainly generated for real-time computation. Engine control structures and engine
control development with different digital feedforward and feedback control meth-
ods, calibration, optimization and simulation tools are considered in detail. Various
control systems are developed for gasoline and diesel engines with both, conven-
tional and alternative combustion processes, based on nonlinear static and dynamic
multivariable engine models and demonstrated by experiments on test benches.

The book is an introduction into the electronic engine management with many
examples for engine control and it is oriented to advanced students working in con-
trol, electrical, mechanical and mechatronic engineering and will also be useful for
practicing engineers in the field of engine and automotive engineering.

The author is grateful to his research associates, who have performed many
theoretical and experimental research projects on the subject of this book since
1986, among them K.U. Voigt, Chr. Schmidt, St. Leonhardt, K. Pfeiffer, O. Nelles,
Chr. Ludwig, St. Sinsel, M. Schiiler, M. Willimowski, M. Hafner, O. Jost, J. Schaffnit,
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M. Schmidt, N. Miiller, S. Topfer, J.A. Kessel, F. Kimmich, A. Schwarte, M. Vogt,
A. Engber, E. Hartmanshenn, M. Weber, R. Zimmerschied, M. Kohlhase, K. v. Pfeil,
M. Leykauf, S. Clever, S. Zahn, A. Schreiber, M. Mrosek, D. Bohme, H. Sequenz,
Chr. Eck, A. Sidorow, M. Kowalczyk, F. Kunkel and S. Zydek.

Without their continuous work on new methods and building up and maintaining
the combustion-engine test bench, measurement and computer equipment the results
of this book would not have been possible. Great appreciation goes also to our pre-
cision mechanics workshop guided by A. Stark.

We also would like to thank the research organizations Forschungsgemeinschaft
Verbrennungskraftmaschinen (FVV), Arbeitsgemeinschaft industrieller Forschungs-
vereinigungen (AiF), Deutsche Forschungsgemeinschaft (DFG), Faudi-Stiftung who
supported many projects. Several results were obtained in cooperation projects with
industrial companies. Among them are AVL List GmbH, Robert Bosch GmbH,
Daimler AG, Adam Opel AG, Dr.-Ing. h.c. F. Porsche AG, GM Europe, and Volk-
swagen AG. We appreciate these cooperations strongly as they contributed positively
to our own research.

I am also grateful for proofreading of some chapters by S. Clever, H. Konrad, M.
Kowalczyk, F. Kunkel, H. Sequenz, H. Stuhler, S. Zahn and S. Zydek.

Finally, I would like to thank Kerstin Keller, Moritz Neeb, Lisa Hesse and es-
pecially Brigitte Hoppe for the laborious and precise text setting, Sandra Schiitz for
drawing many figures and Springer Verlag for the excellent cooperation.

Darmstadt, May 2014 Rolf Isermann
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Only frequently used symbols and abbreviations are given:

1. General letter symbols

W I I S TR0 A e

@R g eSS *+n 3Q

parameters of differential or difference equations

parameters of differential or difference equations

spring constant, constant, concentration, stiffness

damping coefficient

equation error, control deviation e = w — gy, number e = 2.71828 . ..
fault, frequency (f = 1/T,,, T}, period), function f(...)

gravitational acceleration, function g(. . . ), impulse response

integer, gear ratio, index, /—1 (imaginary unit)

integer, index

discrete number, discrete time k = t/Ty = 0,1,2,... (Tp: sampling
time)

index, length

mass, order number

rotational speed, order number, disturbance signal

pressure, index, controller parameter, probability density function, pro-
cess parameter

controller parameter

index, radius, reference variable, residual

Laplace variable s = § + 4w, symptom, actuator position

continuous time

input signal change AU

specific volume, disturbance signal

speed, reference value, setpoint

space coordinate, state variable, concentration

output signal change AY, space coordinate, control variable change
AY, signal
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List of Symbols

space coordinate, disturbance variable change AZ, z-transform
variable z = expTps

estimated or observed variable

estimation error

average, steady-state value

amplitude

value in steady state (identification methods)

desired value

area
magnetic flux density

capacitance

damping ratio, diameter

module of elasticity, energy, potential, bulk modulus

filter transfer function, force

weight, transfer function

magnetic field strength, height

electrical current, mechanical momentum, torsion, second moment
of area

moment of inertia, loss function

constant, gain

inductance

torque

discrete number, windings number

power, probability

generalized force, heat

electrical resistance, covariance or correlation function
spectral density, sum, performance criterion

absolute temperature, time constant

sampling time

input variable, manipulated variable (control input), voltage
volume

space coordinate

output variable, space coordinate, control variable

space coordinate, disturbance variable

vector

matrix
transposed matrix
identity matrix
parameter vector
covariance matrix
data vector

coefficient, angle
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MENSLEBIADATE > 22

coefficient, angle

specific weight, correcting factor

decay factor, impulse function

correlation function, validity function

efficiency

temperature

thermal conductivity, forgetting factor, failure rate
friction coefficient, permeability, membership function
kinematic viscosity, index

number ™ = 3.14159.. ..

density

standard deviation, o
time

angle

angular frequency, w = 27 /T,: T}, period
change, deviation

parameter

product

sum

2 variance

2. General mathematical abbreviations

exp()
dim
adj
det
Re
Im
Y
vary| ]
cov[]
]:

L

rms (...)

B

expectation of a statistical variable
dimension

adjoint

determinant

real part

imaginary part

dY/dt (first derivative)
variance

covariance

Fourier transform
Laplace transform

root of mean squared of...

3. Letter symbols for internal combustion engines

3.1 Geometry and time (DIN 1304, ISO 31)

U O &2

area

acceleration
breadth, width
absolute velocity
diameter
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D characteristic diameter m

f frequency Hz

g acceleration of free fall, gravitational acceleration m/s?
h height m

l length m

n rotational speed 1/s, rpm
r radius m

s actuator position m

U peripheral velocity m/s
1% volume m?

v specific volume m>/kg
w relative velocity m/s

w angular velocity rad/s

3.2 Mechanics (DIN 1304, ISO 31)

a specific work J/kg
m mass kg

m mass flow rate kg/s
P pressure Pa

Cq orifice discharge coefficient 1

E energy J

F force N

J moment of inertia kg m?
L angular momentum kg m?%/s
M torque Nm
P power W

W work J
v,v=mn/p kinematic viscosity m?/s
n dynamic viscosity Pas

n efficiency 1

p mass density kg/m3
17 pressure ratio 1

3.3 Thermodynamics and heat transfer (DIN 1304, ISO 31)

Cp specific heat capacity at constant pressure J/(kg K)
Cy specific heat capacity at constant volume J/(kg K)
Gr Grashof number 1

H enthalpy J/kg

h specific enthalpy J/kg

L characteristic length m

n polytropic exponent 1

Nu Nusselt number 1

Pr Prandt]l number 1
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Q'ﬂ"’%gdbdQ&)«Q

SN
=

heat

heat flow rate

specific heat

specific gas constant
Reynolds number

entropy

specific entropy
thermodynamic temperature
internal energy

specific internal energy
mass fraction

coefficient of heat transfer
isentropic exponent
thermal conductivity
temperature

3.4 Engine specific symbols

Qped
be
bsfc
CNOx
Cop
Cpa
Aty
A@pi

accelerator pedal position

fuel consumption

effective specific fuel consumption
nitrogen oxide concentration
opacity

soot concentration

timing of pilot injection

crank angle of pilot injection (difference angle to main
injection)

compression ratio

valve lift

lower fuel heating value

crank angle

crank angle of main injection
ignition angle

air-fuel ratio (excess air factor)
air expenditure

connecting rod ratio

relative filling

stoichiometric air requirement
injection mass

injection mass flow

main injection mass

pilot injection mass

gas flow into the engine

gas flow out of the engine

air mass per cycle

XVvil

J

Y

J/kg
J/(kg K)
1

J/K
J/(kg K)
K

J

J/kg

1
W/(m? K)

W/(m K)

%
kg/h
g/kWh
g/m3
%o
g/m
ms
°CS
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Mux auxiliaries torque Nm
My torque of one cylinder Nm
Meng crankshaft mean torque at flywheel Nm

M; friction torque Nm

M, gas force torque Nm

M; indicated torque Nm

M, load torque Nm

My dynamic masses torque Nm
Mayg drag torque, motoring torque Nm

M, valve train torque Nm

Mair air mass flow kg/h

qs injection quantity mm?3/cyc
Qi main injection quantity mm?3/cyc
pi pilot injection quantity mm?3/cyc
Tegr exhaust gas recirculation ratio 1

Ve clearance volume per cylinder m?

Va displaced volume per cylinder m?

%5 total displacement (all cylinders) m?

z number of cylinders 1

3.5 Combustion pressure analysis

dpeyi/dy  pressure gradient Pa/°CS
dQ¢/dy heat release rate J/°CS
©Qs location of mass fraction burned 5% °CS
©Qs0 location of mass fraction burned 50% °CS
©Qus location of mass fraction burned 95% °CS
Prmi mean indicated pressure Pa

DPm motored cylinder pressure (no injection) Pa
Pmep brake mean effective pressure Pa

Qs heat release J

3.6 Subscripts for internal combustion engines

1 state variables in front of the compressor

3 state variables in front of the turbine (in the exhaust manifold)
4 state variables after the turbine

5 state variables after the DPF

2c state variables after the compressor

2i state variables in the intake manifold

2ic state variables after the intercooler

a ambient

afi air filter

afl air flaps

air air
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b

c
cam
cas
cd
cg
cl
cool
cr
cyl
dpf
ds
ec, EC
eff
eg
egr
egrc
egrv
eng
eo, EO
es
eth
ev

geo
H>O
hpegr
hpp
ic

id

in

int
inj

burned

compressor

camshaft

crankshaft
combustion duration
combustion gas
cooling medium, coolant
cooling

common rail

cylinder

diesel particulate filter
delivery start

exhaust closes
effective

exhaust gas

exhaust gas recirculation
EGR cooler

EGR valve

engine

exhaust opens

exhaust system
exhaust throttle valve
exhaust valve

fuel, friction
geometrical

coolant water

high pressure exhaust gas recirculation
high pressure pump
intake closes

injection duration
ignition delay
streaming in

intake

injectors

intake opens

intake valve

low pressure exhaust gas recirculation
main combustion
measured

main injection
metering valve

oil

oscillating

streaming out

piston

XiX
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pc pilot combustion

pcv pressure control valve
pi pilot injection

r rod

rail rail system

red reduced

rot rotating

sim simulated

soc start of combustion

soi start of injection

SW swirl flap

t turbine

tc turbocharger

th throttle

u unburned

vac vacuum system

vgt variable geometry turbocharger
w wall

wg waste gate turbocharger

3.7 Abbreviations for internal combustion engines

AFR air-to-fuel ratio

ASAM Association for Standardization of Automation and Measuring Systems

BDC bottom dead center

CI compression ignition engine

CR common rail

DOC diesel oxidation catalyst

DPF diesel particulate filter

EGR exhaust gas recirculation

HFM hot film measurement

NSC NOy storage catalyst

OSEK Offene Systeme und deren Schnittstellen fiir die Elektronik im
Kraftfahrzeug
(open systems and their interfaces for the electronics in vehicles)

PF particulate filter

PM particulate matter

SCR selective catalytic reduction

SI spark ignition engine

TDC top dead center

VGT variable geometry turbocharger

VVT variable valve train
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4. Abbreviations for identification and signal-analysis methods

ACF Auto Correlation Function
APRBS Amplitude-modulated PRBS
ARMA Auto Regressive Moving Average process

CCF Cross Correlation Function

DFT Discrete Fourier Transform

DSFC Square root filtering in covariance form
DSFI Square root filtering in information form
ELS Extended least squares

ETA Event Tree Analysis

FDD Fault Detection and Diagnosis

FDI Fault Detection and Isolation

FMEA Failure Mode and Effects Analysis

FFT Fast Fourier Transform

FTA Fault Tree Analysis

HA Hazard Analysis

HCCI Homogeneous Charge Compression Ignition
LS Least Squares

MIMO Multiple Input Single Output

MISO Multiple Input Multiple Output

MLP Multilayer Perceptron

MTBF Mean Time Between Failures
MTTF Mean Time To Failure = 1/
MTTR Mean Time To Repair

NN Neural Net

PCA Principal Component Analysis
PRBS Pseudo Random Binary Signal
RBF Radial Basis Function

RLS Recursive Least Squares

SISO Single Input Single Output
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Introduction

The increasing electronification and electrification is a dominant feature of mod-
ern automotive developments. This is demonstrated by an increasing part of elec-
trics/electronics (E/E) of the manufacturing costs from about 20 % in 1995 to 35 %
in 2012. The electrics comprise primarily the electrical energy flows to the con-
sumers through the energy board net. Frequently, former mechanical, pneumatic or
hydraulic actuated components of chassis and powertrain are replaced by electrical
ones. The chassis-oriented electronics serve mainly the driving behavior, safety and
comfort. Powertrain electronics are used for control functions to reach good drive-
ability, low-fuel consumption and emissions.

These developments are possible through the increasing number of mechatronic
components in the powertrain and the chassis. Figure 1.0.1 gives some examples for
engines, drive trains, suspensions, brakes and steering systems. Mechatronic systems
are characterized by an integration of mechanics and electronics, where the inte-
gration is between the components (hardware) and the information-driven functions
(software). This development has a considerable influence on the design and opera-
tion of the powertrain consisting of the combustion engine and the drive train. In the
case of hybrid drives this includes also the electrical motor and the battery.

1.1 Historical developments

The development of sensors, actuators and electronic control for automobiles is de-
picted in Fig. 1.1.1. The first mechatronic products in vehicles have been anti-lock
braking (ABS, 1979), electric throttle (1986), automatic traction control (TCS, 1986)
and semi-active shockabsorbers (1988), followed by the electronic stability control
(ESC, 1995), electric power steering (EPS, 1996), active body control (ABC, 1999)
and active front steering (AFS, 2003). These large improvements served mainly for
increasing safety and comfort and required many new sensors with electrical outputs,
actuators with electrical inputs and micro-controller-based electronic control units.
Some further steps were driver-assistance systems to support the driver in perform-
ing driving maneuvers. They require sensors for the surroundings and are passive
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and fans and distance parking brake
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Fig. 1.0.1. Mechatronic components and systems for automobiles and engines.

by giving warnings or are active by intervening in the vehicle dynamics. Examples
are parking-assistance systems which measure within the parking space and adap-
tive cruise control (ACC, 1999) which measures the distance and relative velocity to
vehicles in front and such improve mainly the comfort and convenience of driving.
Driver-assistance systems for lane-departure warning and anti-collision avoidance
operate with LIDAR or RADAR and video cameras and improve primarily the safety
of driving.

A common feature of these developments is the increase of electrical sensors, ac-
tuators and electronic control units, the coupling through cables and bus systems and
a beginning interconnection of the decentralized control units. Some of the vehicle
control systems give commands to the engine control system, as, for example, TCS,
ESC and ACC.

Parallel to the increase of electronic control functions for the chassis the engines
and drive trains have shown a similar development. This has to be seen together with
the improvements of the combustion, fuel consumption and emission reductions and
will be discussed in the following sections.

1.1.1 Gasoline engines (SI)

The historical development of gasoline engines during the last 50 years with view
on their control is depicted in Fig. 1.1.2. Until about 1965 the engines were me-
chanically controlled with transistor-triggered electromechanical coil ignition. Fuel
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Fig. 1.1.1. Development of sensors, actuators and electronic control systems for automobiles.

injection systems for the intake manifold with electronic analog control began to
replace the carburetors in 1967. Since about 1970 increasingly more functions are
controlled electronically, first with transistor technology. This development required
more sensors (knock sensors, air flow and air pressure sensors) with electrical out-
puts and actuators with electrical inputs (fuel injectors). A large influence on the
developments had the state regulations and emission laws, for the United States the
Clean Air Act (CARB) in California (1983) and since 1993 for US states in different
tiers the laws for low emission vehicles (LEV), ultra low emission vehicles (ULEV)
and super ultra low emission vehicles (SULEV). The corresponding European reg-
ulations are EURO 1 (1992), EURO 2 (1996), EURO 3 (2000), EURO 4 (2005),
EURO 5 (2009), and EURO 6 (2014). These regulations were supplemented by the
requirements for an on-board diagnosis in the United States OBD I (1988), OBD II
(1994) etc. and EOBD (2000) for Europe.

Gasoline engines received catalytic converters with A\-control (1976) and micro-
processor control in 1979. The electrical throttle was introduced in 1986, the direct
injection about 1999 and since 2000 gasoline engines are supplied with variable valve
trains for valve timing and lift control. Present gasoline engines are characterized by
electromagnetic or piezoelectric injectors, high-pressure injection pumps (120 bar),
homogeneous and stratified combustion, mechanical or turbo charging and increased
specific power (downsizing). Figure 1.1.3 depicts the development of sensors and
actuators for gasoline engines. Today’s SI engines have about 15-25 sensors and
6-8 main manipulated variables and are controlled with a powerful microcomputer
control unit (ECU) with 80—120 look-up tables and many control algorithms.

1.1.2 Diesel engines (CI)

The historical development of diesel engines with regard to their control is shown in
Fig. 1.1.4. Around 1960 diesel engines had a swirl chamber, mechanically controlled
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Fig. 1.1.2. Historical development of gasoline engines.
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piston injection pumps and fly-weight overspeed control. Microprocessor control
with direct injection and distributor pump (900 bar) and wastegate turbochargers
appeared about 1989. Further steps were exhaust gas recirculation (EGR), oxida-
tion catalyst and turbochargers with variable geometry (1992). First common-rail
injection systems with direct injection (1500 bar) with VGT turbochargers reduced
further fuel consumption and emissions and resulted in good dynamic torque gener-
ation. Today’s diesel engines are characterized by high pressure (2000 bar), multiple
common-rail injection, piezo-injectors, twin turbochargers or VGT chargers, high
EGR rates, DeNOy-catalyst, particulate filters with regeneration, and selective cat-

alytic reduction (SCR).
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Fig. 1.1.3. Sensors and actuators for gasoline engines (SI).

The development of sensors and actuators for diesel engines is summarized in
Fig. 1.1.5. Present diesel engines need about 15-20 sensors, 5-9 main manipulated
variables and an ECU with more than 100 look-up tables and many control algo-
rithms.

1.2 Current engine developments

1.2.1 Gasoline engines

Current developments for the further improvement of gasoline engines are, for ex-
ample, variable valve trains, downsizing and modified combustion processes.
Variable valve trains (VVT: variable valve timing) permit the improvement of
the gas exchange. The conventional phase shifting of the inlet valves primarily in-
creases the torque through early or late opening in dependence on torque and speed.
In order to reduce the gas flow losses through the throttle the valves require variable
timing as well as variable lift. Then the fresh air mass can be controlled by the inlet
valves. In addition the residual gases can be influenced by changing the overlapping
of inlet and outlet valves to improve the emissions through internal exhaust gas recir-
culation. Manipulation of the valve lift in two steps or continuously gives more free-
dom for controlling the load without throttling, see, e.g. van Basshuysen and Schifer
(2004), Braess and Seiffert (2005), Kohler and Flierl (2012). A comparison of dif-
ferent designs of VVT, Schulz and Kulzer (2006) shows that the fuel consumption
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Fig. 1.1.4. Historical development of diesel engines.

can be improved with phase actuation by 3—4 %, lift switching by 8-10 %, contin-
uously variable lift by 8-10 %, and with full variable hydraulic or electrical VVT
by 14-16 %. However, the complexity is relatively high for the full variable VVT.
Therefore, the first mentioned three mechanical VVT*s are a good compromise.

The reduction of the displacement, i.e. downsizing for a given well powered ve-
hicle leads to a smaller specific fuel consumption (less throttling) in part load, as
the consumption in the torque-speed diagram shows. However, in order to increase
the torque for small speeds and to reach a certain power at higher loads and speeds
exhaust turbocharging or supercharging with a mechanical compressor is required.
This means, for example, to reduce the displacement from 2 1to 1.3 1 and an increase
of the mean effective pressure from 6 to 9 bar. A comparison of different gasoline en-
gines shows that the downsizing factor should be at least 1.3 and should be combined
with a change of the operation point to higher torques by increasing the transmission
ratio in the drive train (downspeeding) to result in a fuel reduction of about 11 %,
Konigstein et al (2008).
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Fig. 1.1.5. Sensors and actuators for diesel engines (CI).

The optimization of the combustion process has of course a large influence. Com-
pared to the conventional intake manifold injection and stoichiometric combustion
with A = 1 and three-way catalyst the direct injection into the cylinders allows con-
siderable saving of fuel consumption for SI engines. Together with a VVT a reduc-
tion of 10 % is possible. High-pressure injectors (120 bar) with piezoelectric actua-
tion gives a better spraying and makes a stratified, lean combustion with A > 1 in part
load possible, resulting in about 15 % fuel saving, Weingértner et al (2007), Berns
(2007). A homogeneous charge compression ignition (HCCI) with an increase of the
gas temperature by increased residual gases can be obtained, for example, through
early closing of the outlet valve and early injection. The combination of early closing
the outlet valve and late opening of the inlet valve enables a recompression and a first
injection, which can be applied for part load up to 40 %, Alt et al (2008), Backhaus
(2008). However, this requires a combustion pressure measurement and control and
full variable VVT. A reduction of fuel consumption of about 13—19 % is expected
and a NOy-catalyst becomes unnecessary.

1.2.2 Diesel engines

Of current interest for the further development of diesel engines are a reduction
of fuel consumption, NO, and particulates. This can be reached by further im-
provements of the common-rail direct injection, combustion processes, charging and
exhaust-gas treatment.
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Some steps for the common-rail direct injection are higher pressures (2200 bar)
and multiple injections in order to improve the combustion, emissions and noise.
Solenoid and fast piezoelectric injectors allow different combinations of pre-, main-
and post-injection pulses. An increase of the exhaust-gas recirculation rate with
strong cooling results in low NO, emissions. However, a too strong increase of the
EGR reduces the turbocharger power. Therefore a low-pressure EGR after the par-
ticulate filter through a cooler to the compressor inlet can be added. Then high EGR
rates with a good mixture of fresh air and exhaust-gas and low temperature through
an intercooler may lead to a good cylinder filling, Berns et al (2004), Hadler et al
(2008). This requires several catalysts and regeneration phases and more sensors in
the exhaust path, Bauer et al (2007).

A modification of the combustion process is the homogeneous compression igni-
tion (HCCI), which can, e.g. be realized by an early injection with a high EGR rate
in the part-load area. This leads to a strong reduction of NOy and particulates. How-
ever, it needs a combustion feedback control with combustion pressure measurement
because of the narrow possible operation limits and concentration differences in the
individual cylinders, see e.g. Alt et al (2008), Backhaus (2008).

The use of two turbochargers with a small and large diameter enables an opera-
tion with better efficiencies, a high medium charging pressure over a larger speed
range and results in improved acceleration at low speeds. The turbochargers are
switched with pneumatic flaps, Steinparzer et al (2007). Also diesel engines allow a
certain downsizing by increasing the specific power.

Especially large efforts go into the exhaust treatment, for example, through ox-
idation catalyst converters and particulate filters for minimization of CO, HC, NOy
and particulates. An alternative is the selective catalytic reduction (SCR) with the
injection of dissolved urea, especially for heavy duty vehicles. The combination of
oxidation catalyst, particulate filter, NO,-storage catalyst and HyS-catalyst results in
areduction of NOy by 90 % without additives, however requires model based control
and several additional sensors, and three different regeneration cycles, Hadler et al
(2008).

Summarizing, gasoline and diesel engines show several development lines, to
improve the torque generation and to decrease fuel consumption, emissions and
noise. Their present development can be characterized by:

reduction of fuel consumption and CO5 emissions

reduction of specific emissions (HC, CO, NOy, particulates, dust)
powerful exhaust gas after-treatment systems

good driving behavior

increased specific power (downsizing, charging)

reduction of friction

auxiliaries: minimization of energy consumption

reduction of oscillations and noise.

With regard to the increasing variabilities and control functions the engines are sup-
plied with mechatronic components. Figure 1.2.1 depicts some of these components.



1.2 Current Engine Developments

"SUISUS UONSNQUIOD [BUIIUL JO SJUAUOdWOd JTUONRYIA “T°T°T "SI

WAISAS YOS o

uoneIoud3ar
10ss01dWw0o dwind 10 s E:w . :
uonIpuood Ire O[qEBLIEA « aenoned «  (SD) waIsAs s10300[ur
S[qBLIBA o dwnd OATRA YD o uontudr«  OIod[e0zoLd Jossaxduwoo
uey Su1j009 JUB[00D (108170 suren / PIOUQ[OS o wcwwéao .
[BOL103]9 o [BOLIO3[3 » -0qm) [OA oATeA dund  (P1quny ‘IIms)
19118)S . JATRA / 91e39)5EBM) 9[qBLIBA o uonoafur sdey oxejur «
10je10Ud3 onejsouLayl Quiqn Jeyswed [Tel uowto? « oIy
[BIL1)II]D [BOLIIJ[D » J[qeLIBA « J[qeLIBA « dwnd jony « [BOLII09]0
uoneonqny syuouoduwoo syuouodwoo syuouoduwoo syusuodwod
SoLel[Ixne 3ur1009 1SNEBYXo uonsnquiod uonoafur oyeyuT
syuauoduwod
uIdud
JMUO.I)BYIIA




