Springer Theses Recognizing Outstanding Ph.D. Research

Guofeng Shen

Emission Factors of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Residential Solid Fuel Combustions

Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes: http://www.springer.com/series/8790

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

Guofeng Shen

Emission Factors of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Residential Solid Fuel Combustions

Doctoral Thesis accepted by College of Urban and Environmental Sciences, Peking University, Beijing, China

Author Dr. Guofeng Shen Institute of Atmospheric Sciences Jiangsu Academy of Environmental Science Nanjing People's Republic of China Supervisor Prof. Shu Tao College of Urban and Environmental Sciences Peking University Beijing China

 ISSN 2190-5053
 ISSN 2190-5061 (electronic)

 ISBN 978-3-642-39761-5
 ISBN 978-3-642-39762-2 (eBook)

 DOI 10.1007/978-3-642-39762-2
 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931497

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Parts of the thesis have been published in the following publications and reused with permission:

- (1) SHEN, G.F.; Yang, Y.; Wang, W.; Tao, S.;* Zhu, C.; Min, Y.; Xue, N.; Ding, J.; Wang, B.; Wang, R.; Shen, H.; Li, W.; Wang, X.; Russell, A. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environmental Science & Technology 2010, 44, 7157–7162. (*REUSE WITH PERMISSION*)
- (2) SHEN, G.F.; Wang, W.; Yang, Y.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Li, W.; Wang, B.; Shen, H.; Wang, R.; Wang, X.; Tao, S.*. Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China. Atmospheric Environment 2010, 44, 5237–5243. (*REUSE WITH PERMISSION*)
- (3) SHEN, G.F.; Wang, W.; Yang, Y.; Ding, J.; Xue, M.; Min, Y.; Zhu, C.; Shen, H.; Li, W.; Wang, B.; Wang, R.; Wang, X.; Tao, S.;* Russell, A. Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions and gas-particle partitioning. Environmental Science & Technology 2011, 45, 1206–1212. (*REUSE WITH PERMISSION*)
- (4) SHEN, G.F.; Tao, S.;* Wang, W.; Yang, Y.; Ding, H.; Xue, M.; Mi, Y.; Zhu, C.; Shen, H.; Li, W.; Wang, B.; Wang, R.; Wang, W.; Wang, X.; Russell, A. Emissions of Oxygenated Polycyclic Aromatic Hydrocarbons from indoor solid fuel combustion. Environmental Science & Technology 2011, 45, 3459–3465. (*REUSE WITH PERMISSION*)
- (5) SHEN, G.F.; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.; Huang, Y.; Chen, Y.; Chen, H.; Wei, W.; Tao, S.* Emissions of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China. Atmospheric Environment 2012. 60, 234–237. (*REUSE WITH PERMISSION*)
- (6) SHEN, G.F.; Tao, S.*; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.Z.; Huang, Y.; Yang, Y.; Wang, W.; Wei, W.; Wang, X.; Liu, W.; Wang, X.; Simonich, S. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning. Environmental Science & Technology 2012, 46, 6409–6416. (*REUSE WITH PERMISSION*)
- (7) SHEN, G.F.; Tao, S.*; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.Z.; Huang, Y.; Yang, Y.; Wang, W.; Wang, X.; Simonich, S. Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion. Environmental Science & Technology 2012, 46, 4666–4672. (*REUSE WITH PERMISSION*)

- (8) SHEN, G.F.; Wei, S.; Wei, W.; Zhang, Y.; Min, Y.; Wang, B.; Wang, R.; Li, W.; Shen, H.; Huang, Y.; Yang, Y.; Wang, W.; Wang, X.; Wang, X.; Tao, S.* Emission factors, size distributions and emission Inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environmental Science & Technology 2012, 46, 4207–4214. (*REUSE WITH PERMISSION*)
- (9) SHEN, G.F.; Tao, S.*; Wei, S.; Zhang, Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.; Huang, Y.; Chen, Y.C.; Chen, H.; Yang, Y.; Wang, W.; Wang, X.; Liu, W.; Simonich, S. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environmental Science & Technology 2012. 46, 8123–8130. (*REUSE WITH PERMISSION*)
- (10) SHEN, G.F.; Wei, S.; Zhang, Y.; Wang, B.; Wang, R.; Shen, H.; Li, W.; Huang, Y.; Chen, Y.C.; Chen, H.; Tao, S.*Emission and size distribution of particle-bound polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Biomass and Bioenergy 2013, 55. 141–147. (*REUSE WITH PERMISSION*)
- (11) SHEN, G.F.; Tao, S.;* Wei, S.; Chen, Y.; Zhang, Y.; Shen, H.; Huang, Y.; Zhu, D.; Yuan, C.; Wang, H.; Wang, Y.; Pei, L.; Lioa, Y.; Duan, Y.; Wang, B.; Wang, R.; Lv, Y.; Li, W.; Wang, X.; Zheng, X. Field measurement of emission factors of PM, EC, OC, parent, nitro- and oxy-polycyclic aromatic hydrocarbons for residential briquette, coal cake and wood in rural Shanxi, China. Environmental Science & Technology 2013, 47, 2998–3005. (*REUSE WITH PERMISSION*)
- (12) Wei, S.; SHEN, G.F.; Zhang, Y.; Xue, M.; Xie, H.; Lin, P.; Chen, Y.; Wang, X.; Tao, S.* Field measurement on the emissions of PM, OC, EC, and PAHs from indoor crop straw burning in rural China. Environmental Pollution 2014, 184, 18–24. (*REUSE WITH PERMISSION*)

Supervisor's Foreword

Residential solid fuel combustion is a major source of incomplete combustion pollutants including particulate matter (PM), black carbon (BC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), and many more. This is particularly true for developing countries like China. Until recently, a majority of data on emission factors (EFs) of these pollutants from the residential sector had been measured in developed countries. However, residential stoves are very different between developed and developing countries. Because of the shortage of data on EFs for developing countries, emission inventories of pollutants generated by solid fuel combustion used for residential heating and cooking are associated with relatively large uncertainties, leading to biases in air quality modeling, exposure assessment and health analyses.

To fill the data gap, Guofeng's doctorial thesis focused on the measurement of EFs for solid fuel combustion from the residential sector in China. A simulated kitchen with real stoves commonly used in China was built particularly for this purpose. He tested a variety of residential solid fuels including coal, crop residues, and firewood in the measurements during a year-long experimental study. In addition, field measurements were conducted at selected rural sites to confirm the laboratory measurements.

As a result, a large volume of EF data of PM, BC, OC, and PAHs have been generated, which help fill a major data gap in the field. Soon after the publication, much of the data have been adopted for use in updating global emission inventories of BC, PAHs, and PM. Moreover, EFs of derivative PAHs including nitro-PAHs and oxy-PAHs for residential solid fuels and EFs of various pollutions for biomass pellet fuels, which are really scarce, were reported.

In addition to helping to fill the data gap, factors affecting EFs have been carefully investigated. It was found that modified combustion efficiency and fuel moisture are the most influential factors influencing EFs, and the knowledge gained in this work can be used to help quantify EFs for individual fuels. The models developed in this study can provide us with a better understanding of the generation mechanism of air pollutants during combustion.

Although the majority of the data collected in his study have been published in a series of papers internationally, we hope that an English version of this thesis with a collection of all measurements and key findings can help readers to use these results more efficiently.

Beijing, January 2014

Prof. Shu Tao

Foreword

Both emission inventories and ambient measurements indicate that residential solid fuel combustion is a major contributor to emissions of incomplete combustion products, particularly in developing countries. In the recent World Health Organization's (WHO) Global Burden of Disease study, of the over 60 factors quantified, indoor exposures to such pollutants is the second leading cause of premature death in developing countries, and the International Agency for Research on Cancer has determined such combustion products to be a Group 1 carcinogen. Further, the soot derived from incomplete solid fuel combustion absorbs radiation and can potentially exacerbate global change. Given the importance of this source to human and the environment health, it is important to improve our understanding of the emission characteristics of residential solid fuel combustion and to use that knowledge to develop more accurate estimate emissions from that source. This involves characterizing the physical and chemical properties of the emissions, emission factors, and the associated activity levels. However, unlike more concentrated point sources, conducting the appropriated analyses is difficult due to the variable nature of the sources, the need to conduct detailed laboratory analyses, and collect and analyze information from a large and diverse literature. This is a particular issue in developing countries, which is also where such information is so valuable.

Dr. Guofeng Shen, as described in this thesis, took on a great challenge to help provide such information. He conducted a series of measurements on emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustion in rural China. This work provides a firsthand data of emission factors from a large number of tests that can be used in the development of more reliable inventories. In addition, the work identified key factors affecting pollutant emissions from the combustion process which can provide information for pollution control strategy development. Not only did he look at more traditional solid fuel use, he considered pollutant emissions from biomass pellets which are considered as a cleaner, alternative fuel to replace traditional solid fuels.

The results of his work have appeared in international journals, including Environmental Science and Technology and Atmospheric Environment. Given my interest in air pollution and health, and the important issues addressed by Dr. Shen, the publication of this thesis provides valuable information on pollutant emissions from residential solid fuel combustion. The outcome can be useful for emission inventory, health and climate impact analysis, and also the development of effective pollution control strategies. Further, this thesis can provide a foundation for future research in this area.

Georgia, Atlanta, November 18, 2013

Armistead G. Russell

Special Thanks and Acknowledgments

The work was supported by many people in field sampling, laboratory measurement, and data analysis. I appreciate their inspiration, support and kind suggestions in the whole process.

THANKS to Prof. Shu Tao who gave the detailed instruction in experimental design, data analysis, and the writing of manuscript and final report throughout my 5-year study in PKU. All my good progress is under his tirelessly tutelage. Prof. Tao inspired me to do things right, good, and challenging but also meaningful. He is absolutely an honorable scientist.

THANKS to Yu Liu, Bingjun Meng, and Xiaofang Fu from the research group. They helped me in the laboratory measurements of massive samples and quality control. It is their delicate work to achieve a large number of high quality and useful results.

THANKS to the colleagues in Peking University. I spent very happy time during my 5-year study in the research group. Even in the onerous, sometimes irksome work, we enjoyed the life though hard up. There are many colleagues to thank. It is a little pity that I cannot list all their names here. I appreciated their kind help and wish them forever.

THANKS to my family. My grandparents and parents in my hometown and my beloved wife Vicky Xue in Beijing support and encourage me all the time. Without their help, it was impossible to get into the university, and more important, graduate with satisfied harvest.

2012.07 @ PKU

In the publication of this English version, special thanks to the editors from the Springer office. They provide the opportunity to publish the thesis so that many friends all over the world can access it. It is my pleasure if the result can be helpful in their work. Wishes!

Guofeng Shen @ Nanjing

Contents

1	Intr	oduction
	1.1	Background
		1.1.1 Carbonaceous Particulate Matter
		1.1.2 Polycyclic Aromatic Hydrocarbons
		1.1.3 Residential Solid Fuel Combustion
	1.2	Main Objectives
	1.3	Thesis Structure
	Refe	erences
2	Rese	earch Background
	2.1	Environmental Impact
		2.1.1 Carbonaceous Particulate Matter 11
		2.1.2 Polycyclic Aromatic Hydrocarbons and Derivatives 15
	2.2	Emission Inventory 18
	2.2	2.2.1 Inventory of CPM 18
		2.2.2 Inventory of PAHs
		2.2.2 Intentory of Third Theorem 2.2.2.2 Uncertainty in Inventory 21
	23	Residential Solid Fuel Combustion 23
	2.5	2 3 1 Solid Fuels
		2.3.1 Solid Fuels
	Refe	2.5.2 El Wedsurements
	Reit	<i>A</i> checs
3	Met	hod
•	3.1	Fuel and Combustion Experiment 45
	0.11	3.1.1 Simulated Kitchen 45
		3.1.2 Fuel Property 45
		3 1 3 Biomass Pellet 48
	32	Sampling 51
	5.2	3.2.1 A Mixing and Sampling Chamber 51
		3.2.2. Total and Size Segregated PM
		3.2.3 PAHs and the Derivatives
	33	Field Measurement 52
	5.5	3 3 1 Site 57
		3.3.1 Site
		<i>J.J.Z.</i> Samping <i>JJ</i>

	3.4	Chem	ical Analysis	54
		3.4.1	CO and CO ₂	54
		3.4.2	PM and EC/OC Mass	54
		3.4.3	PAHs and Derivatives	55
		3.4.4	Quality Control.	56
	3.5	Carbo	n Mass Balance Method.	56
	Refe	erences		57
4	Car	bonace	ous Particulate Matter	61
	4.1	Coal (Combustion	61
		4.1.1	EFs and Influencing Factor	61
		4.1.2	EC/OC Ratio	63
		4.1.3	Size Distribution	63
		4.1.4	Correlation Among Co-emitted Pollutants	65
	4.2	Indoor	r Crop Straw Burning.	66
		4.2.1	EFs and Influencing Factor	66
		4.2.2	EC/OC Ratio	68
		4.2.3	Size Distribution	70
		4.2.4	Correlation Among Co-emitted Pollutants	71
	4.3	Reside	ential Wood Combustion	73
		4.3.1	EFs and Influencing Factor	73
		4.3.2	EC/OC Ratio	76
		4.3.3	Size Distribution	76
		4.3.4	Correlation Among Co-emitted Pollutants	77
	4.4	Fuel C	Comparison	79
		4.4.1	EFs and EC/OC Ratio	79
		4.4.2	Size Distribution	79
	4.5	Summ	nary	79
	Refe	erences	· · · · · · · · · · · · · · · · · · ·	81
5	Dar	ant Poly	vevelie Aromatic Hydrocarbons	85
5	5 1	Coal (Combustion	85
	5.1	511	EEs and Influencing Factor	85
		5.1.1	Composition Profile and Isomer Ratio	89
		513	Size Distribution of Particulate Phase PAHs	92
		514	Gas-Particle Partitioning	94
	52	Indoor	r Cron Residue Burning	95
	5.2	5 2 1	EEs and Influencing Eactor	95
		522	Composition Profile and Isomer Ratio	96
		523	Size Distribution of Particulate Phase PAHs	104
		52.5	Gas-Particle Partitioning	104
	53	Reside	ential Wood Combustion	107
	5.5	531	FFs and Influencing Factor	107
		532	Composition Profile and Isomer Ratio	107
		5.5.4		107

		5.3.3 Size Distribution of Particulate Phase PAHs	120
		5.3.4 Gas-Particle Partitioning	123
	5.4	Fuel Comparison	124
		5.4.1 Emission Factor	124
		5.4.2 Composition Profile	125
		5.4.3 Evaluation of Retene as a Marker	126
	5.5	Summary	132
	Refe	prences	133
6	Nitr	o- and Oxygenated PAHs	139
	6.1	Residential Coal Combustion	139
		6.1.1 EFs and Influencing Factor	139
		6.1.2 Relationship Between oPAHs and Parent PAHs	140
		6.1.3 Gas-Particle Partitioning and Size Distribution	141
	6.2	Indoor Crop Straw Burning.	143
		6.2.1 EFs and Influencing Factor	143
		6.2.2 Relationship Between oPAHs and Parent PAHs	146
		6.2.3 Gas-Particle Partitioning and Size Distribution	148
	6.3	Residential Wood Combustion	149
		6.3.1 EFs and Influencing Factor	149
		6.3.2 Relationship Between oPAHs and Parent PAHs	151
	6.4	Fuel Comparison	159
		6.4.1 Emission Factor	159
		6.4.2 Correlation Between Parent PAHs and Derivatives	159
	6.5	Summary	160
	Refe	erences	160
7	Fiel	d Measurement	163
	7.1	Indoor Crop Residue Burning in Rural Jiangsu	163
		7.1.1 Emission Factor	163
		7.1.2 Composition Profile and Isomer Ratios	167
		7.1.3 Influence of Fuel Type and Stove Age	168
	7.2	Residential Coal and Wood Combustion in Rural Shanxi	169
		7.2.1 Emission Factor	169
		7.2.2 Coal Combustion	169
		7.2.3 Wood Combustion	171
		7.2.4 Fuel Comparison	173
	73	Summary	175
	Refe	erences	175
8	Bior	nass Pellet	177
-	8.1	Combustion Temperature and MCE	177
	8.2	Carbonaceous Particulate Matter	178
	0.2	8.2.1 Emission Factor	178
			- 10

		8.2.2	Size Distribution	181
	8.3	Polycy	yclic Aromatic Hydrocarbons	182
		8.3.1	Emission Factors.	182
		8.3.2	Composition Profile	182
	8.4	Fuel C	Comparison	185
		8.4.1	Emission Factor	185
		8.4.2	PM Size Distribution	187
		8.4.3	PAH Composition Profile	187
		8.4.4	Emission Reduction.	187
	8.5	Summ	1ary	189
	Refe	rences		190
9	Con	clusion	and Limitation	193
	9.1	Emiss	ion Factor	193
	9.2	Emiss	ion Characterization	194
	9.3	Influe	ncing Factor	195
	9.4	Bioma	ass Pellet	195
	9.5	Field	Measurement	196
	9.6	Limita	ation and Future Study	196

Figures

Fig. 3.1	The layout of built kitchen and pictures of a brick stove	
	and a coal stove in this study. Reprinted from Shen et al.	
	(2010) with permission of American Chemical Society	46
Fig. 3.2	Pictures of the pellet burner and two types of biomass	
	pellet fuels in this study. Reprinted from Shen et al.	
	(2012) with permission of American Chemical Society	50
Fig. 3.3	Pictures of three fuel/stove combinations investigated	
	in this study. For <i>left</i> to the <i>right</i> wood, honeycomb	
	briquette, and coal cake burned in a simple metal stove,	
	an improved metallic stove with a chimney and a brick	
	stove with a outdoor flue pipe, respectively. Reprinted	
	from Shen et al. (2013) with permission	
	of American Chemical Society	53
Fig. 3.4	Pictures of two brick stoves tested in this study.	
	The structures of these two stoves were similar with	
	two pots in the middle and an outdoor chimney.	
	These two stoves had different usages. The stove	
	in the <i>left</i> was a new built one (about 1 year ago),	
	and the <i>right</i> one was an old stove used for about 15 years.	
	Reprinted from Environmental Pollution 184,	
	Wei et al., Field measurement on the emissions of PM,	
	OC, EC and PAHs from indoor crop straw burning	
	in rural China, 18–24, with permission from Elsevier	54
Fig. 4.1	Comparison between the measured and calculated EF_{PM}	
	and EF_{EC} for coals. The calculation was based	
	on a stepwise regression model for predicting EF_{PM} based	
	on MCE and VM, and for EF_{EC} based on MCE, VM, ash	
	content and heating value. Reprinted from Shen et al.	
	(2010) with permission of American Chemical Society	63

	•		•
xv	1	1	1
	•	•	•

Fig. 4.2	Size distribution of PM from residential coal combustion.	
	divided into two astagories according to the coal calling	
	aronarty. Deprinted from Shan et al. (2010) with	
	property. Reprinted from Shen et al. (2010) with	64
F: 4.2	permission of American Chemical Society	64
F1g. 4.3	Relationship between the cumulative mass percent	
	and the upper diameter for size segregated PM from	
	coal combustion	65
Fig. 4.4	Correlation between EF_{CO} and EFs of PM, OC	
	and EC for coal	66
Fig. 4.5	Correlation between EF_{PM} , EF_{OC} and EF_{EC} for coal	66
Fig. 4.6	Dependence of EFs of PM, OC and EC on fuel moisture	
	or crop residue. Adapted from Shen et al. (2010) with	
	permission of American Chemical Society	68
Fig. 4.7	Comparison of measured EF_{PM} and predicted EF_{PM}	
	from crop residue burning. Modified from Shen et al.	
	(2010) with permission of American Chemical Society	69
Fig. 4.8	Comparison of measured EF_{EC} and predicted EF_{EC}	
	from crop residue burning. The prediction was based	
	on two independent variables of moisture and N	69
Fig. 4.9	Dependence of EF_{PM} , EF_{OC} , and EF_{EC} on fuel N content	
C	for crop residue.	69
Fig. 4.10	Size distribution of PM from indoor crop straw burning	71
Fig. 4.11	Comparison of PM size distribution in emissions from	
e	the flaming and smoldering phases of indoor crop residue	
	burning. Modified from Shen et al. (2010) with	
	permission of American Chemical Society	71
Fig. 4.12	Dependence of $PM_{1,1}/PM_{1,1-10}$ on fuel moisture	
e	in emissions from indoor crop residue burning. Adapted	
	from Shen et al. (2010) with permission of American	
	Chemical Society.	72
Fig. 4.13	Relationship among PM. OC and EC emitted from the crop	
118. 1110	residue burning	72
Fig. 4.14	Relationship between EE _{co} and EEs of PM. OC and EC	
1.8	for crop residue	72
Fig 415	Comparison of $EE_{\rm EM}$ $EE_{\rm EG}$ and $EE_{\rm EG}$ for various wood	• =
119. 1110	materials Fuel woods were classified into groups	
	with moisture of $5-10$ 10-20 25-35 and >35 %	
	The <i>lines</i> shown are overall averages for fuel wood	
	log and brushwood respectively	75
Fig. 4.16	Dependence of measured EEs of PM OC and EC on MCE	15
11g. 4.10	for wood combustion	76
Fig 117	Dependence of measured EEs of DM OC and EC on fuel	70
1 1g. 4.1/	moisture in residential wood combustion	76
		/0

Figures

Fig. 4.18	Size distribution of PM emitted from fuel wood log	
	and brushwood combustions. Modified from Shen et al.	
	(2012) with permission of American Chemical Society	77
Fig. 4.19	Dependence of $PM_{1,1}/PM_{1,1-10}$ ratio on fuel moisture	
	and MCE in residential wood combustion	78
Fig. 4.20	Correlations among EFs of PM, EC, and OC for wood	
	combusted in the residential brick stove	78
Fig. 4.21	Correlations between EF_{CO} and EFs of PM, EC,	
	and OC for wood	78
Fig. 4.22	Comparison of PM size distribution in emissions from	
	residential crop residue, wood and coal combustions	80
Fig. 5.1	Relationship between particulate phase PAHs	
	and co-emitted PM, and EC and OC fraction in PM	
	from residential coal combustion	88
Fig. 5.2	Comparison of predicted EF _{PAHs} and measured results	
	for coal. The prediction was calculated from fuel moisture	
	and volatile matter content. Reprinted from Atmospheric	
	Environment 44, Shen et al., Emission factors	
	and particulate matter size distribution of polycyclic	
	aromatic hydrocarbons from residential coal	
	combustion in rural Northern China, 5237-5243.	
	Copyright 2010, with permission from Elsevier.	89
Fig. 5.3	Composition profile of PAHs from residential coal	
-	combustion (\mathbf{a}) and relative distribution of 4 groups	
	with different PAHs rings for each coal (b). Reprinted	
	from Atmospheric Environment 44, Shen et al., Emission	
	factors and particulate matter size distribution of polycyclic	
	aromatic hydrocarbons from residential coal	
	combustion in rural Northern China, 5237-5243,	
	with permission from Elsevier.	91
Fig. 5.4	Size distribution of particulate phase PAHs from residential	
C	coal combustion. The distributions were classified into two	
	categories of low and high caking coals. Reprinted	
	from Atmospheric Environment 44, Shen et al., Emission	
	factors and particulate matter size distribution of polycyclic	
	aromatic hydrocarbons from residential coal combustion	
	in rural Northern China, 5237–5243. Copyright 2010,	
	with permission from Elsevier.	92
	-	

Fig. 5.5	Distribution of particulate phase PAH individuals	
	between fine PM2.1 and coarse PM2.1-10 from coal	
	combustion. Reprinted from Atmospheric Environment 44,	
	Shen et al., Emission factors and particulate matter size	
	distribution of polycyclic aromatic hydrocarbons from	
	residential coal combustion in rural Northern	
	China, 5237–5243, with permission from Elsevier	93
Fig. 5.6	Mass percent of fine PM0.4 bound PAHs to the total	
0	particulate phase mass for each individual. Reprinted	
	from Atmospheric Environment 44. Shen et al., Emission	
	factors and particulate matter size distribution of polycyclic	
	aromatic hydrocarbons from residential coal combustion	
	in rural Northern China 5237–5243 with permission	
	from Flsevier	93
Fig 57	Dependence of $\log(K)$ on $\log(P_{0}^{0})$ (a) and $\log(K_{0})$ (b) for))
1 15. 5.7	PAHs from coal combustion P_{i}^{0} and $K_{a,i}$ were calculated	
	based on the measured temperatures and equations	
	established by Odabasi et al. (2006). Reprinted from	
	Atmospheric Environment 44 Shen et al. Emission factors	
	and particulate matter size distribution of polyayalia	
	and particulate matter size distribution of polycyclic	
	in must Northern Chine 5227 5242 Commister 2010	
	in rural Northern China, 5257–5245. Copyright 2010,	05
E. 5 0	Man permission from Elsevier	95
F1g. 5.8	Mass ratios of total PAHs in particulate matter over	06
E. 50	different size fractions	96
F1g. 5.9	Comparison between the measured and calculated EFs	
	of gaseous (a), particulate-bound (b), and total (c) PAHs	
	for crop residue burning. The calculation was based	
	on a regression model with moisture and MCE	
	as independent variables. The results are presented	
	in log-scale. Adapted from Shen et al. (2011) with	102
F ' 7 10	permission of American Chemical Society	103
F1g. 5.10	Relationship between PAHs and PM from crop residue	
	burning in the whole burning cycle (a), flaming (b) and	
	smoldering phases (c). Adapted from Shen et al. (2011)	100
	with permission of American Chemical Society	103
F1g. 5.11	Composition profile of PAH emission from crop residues	
	burning in the cooking stove during a whole burning cycle.	
	Adapted from Shen et al. (2011) with permission	
	of American Chemical Society	103

Fig.	5.12	Size distribution of particulate phase PAHs emitted	
		from crop residue burning (left panel) and relative distribution	
		of 16 individual PAH compounds between fine (<2.1 μ m)	
		and coarse $(2.1-10 \ \mu\text{m})$ particles (<i>right panel</i>). The means	
		and standard derivations of EFs of PAHs associated	
		with PM with different sizes from 17 burning experiments	
		are shown. Adapted from Shen et al. (2011)	
		with permission of American Chemical Society	105
Fig.	5.13	Normalized composition profile of particulate phase	
U		PAHs in each size fraction	105
Fig.	5.14	Size distributions of particulate phase PAHs from	
C		flaming (blank column) and smoldering (filled column)	
		phases of crop residues burning. Adapted	
		from Shen et al. (2011) with permission	
		of American Chemical Society	105
Fig.	5.15	Dependence of $\log(K_p)$ on $\log(P_1^0)$ (a) and $\log(K_{OA})$	
U		(b). $P_{\rm I}^0$ and $K_{\rm OA}$ were calculated based on the measured	
		temperatures and equations established	
		by Odabasi et al. (2006). PAH compounds of concern	
		due to high abundance and/or toxicity, like PHE, FLA.	
		BaP, and IcdP, are labeled. The means and standard	
		derivations of measured <i>Kp</i> from 17 burning experiments	
		are shown. Adapted from Shen et al. (2011)	
		with permission of American Chemical Society	106
Fig.	5.16	Mass ratios of total PAHs in particulate matter of various	
0		size ranges (D_{a}) . Adapted from Shen et al. (2011)	
		with permission of American Chemical Society	106
Fig.	5.17	Relationship between EF_{PAHs} and EF_{PM} (<i>left</i>) and	
0		between EF_{PAHs} and EF_{CO} (<i>right</i>) for wood burned	
		in residential stove in the present study. Adapted from	
		Shen et al. (2012a) with permission of American	
		Chemical Society.	118
Fig.	5.18	Comparisons of gaseous and particulate phase total EFs	
0		between EF_{PAH16} and EF_{PAH28}	118
Fig.	5.19	Dependence of EF_{PAHs} on fuel moisture (<i>left</i>)	
0		and MCE (<i>right</i>) for wood. Modified from Shen et al. (2012a)	
		with permission of American Chemical Society	118
Fig.	5.20	Composition profile of PAH emitted from residential	
8.		wood combustion. Modified from Shen et al. (2012a)	
		with permission of American Chemical Society	119
Fig	5.21	Normalized mass percents of PAH individuals in gaseous	
8.		and particulate phases. Modified from Shen et al. (2012a)	
		with permission of American Chemical Society	119
		r r of r of official official boolety	/

Fig. 5.22	Comparison of mass percent of PAH individual	
	to the total in emissions between brushwood	
	and fuel wood combustion	120
Fig. 5.23	Normalized mass percents of PAHs in different PM size	
	fractions to the total mass of particulate phase PAHs	
	in emissions from the fuel wood, brushwood and bamboo	
	burnings. Reprinted from Biomass and Bioenergy 55,	
	Shen et al., Emission and size distribution	
	of particle-bound polycyclic aromatic hydrocarbons	
	from residential wood combustion in rural China,	
	141–147, with permission from Elsevier	121
Fig. 5.24	Relationship between mass fractions of PM _{2.1} -bound PAHs	
	and fuel density (a), moisture (b), and combustion	
	efficiency (c) from residential wood combustion. Data	
	shown are results from fuel wood combustion. Reprinted	
	from Biomass and Bioenergy 55, Shen et al., Emission	
	and size distribution of particle-bound polycyclic aromatic	
	hydrocarbons from residential wood combustion	
	in rural China, 141–147, with permission from Elsevier	122
Fig. 5.25	Composition profiles of PAHs in different PM size	
	fractions in emission from residential wood combustion	123
Fig. 5.26	Comparison of mass percent of PAH individual between	
	fine PM and coarse PM in emissions from residential	
	wood combustion	123
Fig. 5.27	Size distributions of total concentration of 16 U.S. EPA	
	priority PAHs (P16) and calculated BaPeq from	
	residential fuel wood combustion. Reprinted from Biomass	
	and Bioenergy 55, Shen et al., Emission and size	
	distribution of particle-bound polycyclic aromatic	
	hydrocarbons from residential wood combustion	
	in rural China, 141–147, with permission from Elsevier	124
Fig. 5.28	Dependence of K_p on $\log P_L^0$ (a) and K _{OA} (b) for PAHs	
	in emissions from residential wood combustion. Modified	
	from Shen et al. (2012a, b) with permission	
	of American Chemical Society	124
Fig. 5.29	Comparison of normalized mass percents of PAH	
	individuals in emissions from wood, crop residue	
	and coal combustions	125
Fig. 5.30	Relationship between log-transformed EF _{RET}	
-	and EF _{PHE} (left panel) and between log EF _{RET}	
	and log EF _{PM} (right panel) for different fuel types.	
	Modified from Shen et al. (2012b) with permission	
	of American Chemical Society	131

Fig. 5	Comparison of EF_{RET} for crop residue, harwood, softwood and coal from residential combustions in our study.
	Adapted from Shen et al. (2012b) with permission
	of American Chemical Society
Fig. 6	1 Comparison of measured and predicted emission
0	factors of 9-fluorenone (<i>open circle</i>), 9.10-anthraquinone
	(open triangle), benzanthrone (filled circle) and
	Benz[a]anthrane-7,12-dione (<i>filled triangle</i>) from residential
	coal combustions. Reprinted from Shen et al. (2011) with
	permission of American Chemical Society
Fig. 6	2 Relationship between the log-transformed EF _{OPAH}
C	and EF_{PAH} from residential coal combustions. The 3 pairs
	of OPAH/PAH from <i>left</i> to <i>right</i> are 9FO/FLO, ATQ/ANT,
	and BaAQ/BaA. Reprinted from Shen et al. (2011)
	with permission of American Chemical Society 141
Fig. 6	3 Dependence of oxygenation rates (R_{o}) on EF_{PAH}
	for coal. The 3 pairs of OPAH/PAH from left to right
	are 9FO/FLO, ATQ/ANT, and BaAQ/BaA. Reprinted
	from Shen et al. (2011) with permission
	of American Chemical Society 142
Fig. 6	4 The measured gas-particle partition coefficients (K_P)
	of 4 OPAHs from coal combustion. The results are compared
	with those of parent PAHs (except the parent PAHs for BZO
	which was not measured) emitted at the same time. The means
	and standard deviations are shown in log-scale. Reprinted
	from Shen et al. (2011) with permission
	of American Chemical Society 143
Fig. 6	5 Size distributions of particulate phase OPAHs from
	combustions of low CRC coals (<i>middle panel</i>), and high
	CRC coals (<i>right panel</i>). Modified from Shen et al. (2011)
D	with permission of American Chemical Society 144
F1g. 6	5 Comparison of mass percents of fine $PM_{0,4}$ -bound oPAHs
F ' (and those of corresponding parent PAHs
F1g. 6	Comparison of measured and predicted emission factors
	of 9-fluorenone (<i>open circle</i>), 9,10-anthraquinone
	(<i>Open Triangle</i>), benzantinone (<i>Jilea circle</i>) and Papa[alanthrang 7.12 diana (<i>filled triangle</i>) from
	residential area strow hurning. Deprinted from
	Shon at al. (2011) with permission
	of American Chemical Society 144
	of American Chemical Society