Springer Monographs in Mathematics

Askold Khovanskii

Topological Galois

Theory

Solvability and Unsolvability of Equations in Finite Terms

Springer Monographs in Mathematics

More information about this series at
http://www.springer.com/series/3733

Askold Khovanskii

Topological Galois Theory Solvability and Unsolvability of Equations in Finite Terms

Askold Khovanskii
Department of Mathematics
University of Toronto
Toronto, Ontario
Canada
\section*{Translators:}
V. Timorin and V. Kirichenko: Chapters 1-7.
Lucy Kadets: Appendices A and B.

Appendices C and D were written jointly with Yura Burda.
Based on Russian edition entitled "Topologicheskaya Teoriya Galua, Razreshimost i nerazreshimost uravnenii v konechnom vide", published by MCCME, Moscow, Russia, 2008.

ISSN 1439-7382
ISSN 2196-9922 (electronic)
Springer Monographs in Mathematics
ISBN 978-3-642-38870-5
ISBN 978-3-642-38871-2 (eBook)
DOI 10.1007/978-3-642-38871-2
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2014952224
Mathematics Subject Classification (2010): 55-02, 34M15, 32Q55, 12F10, 30F10

[^0]To the memory of Vladimir Igorevich Arnold

Preface

Numerous unsuccessful attempts to solve certain algebraic and differential equations "in finite terms" (i.e., "explicitly") led mathematicians to the belief that explicit solutions of such equations simply do not exist. This book is devoted to the question of the unsolvability of equations in finite terms, and in particular to the topological obstructions to solvability. This question has a rich history.

The first proofs of the unsolvability of algebraic equations by radicals were given by Abel and Galois. While thinking about the problem of explicit indefinite integration of an algebraic differential form, Abel laid the foundations for the theory of algebraic curves. Liouville continued Abel's work and proved that indefinite integrals of many algebraic and elementary differential forms are not elementary functions. Liouville was also the first to prove the unsolvability by quadratures of many linear differential equations.

It was Galois who first saw that the question of solvability by radicals is related to the properties of a certain finite group (now called the Galois group of an algebraic equation). Indeed, the notion of a finite group as introduced by Galois was motivated exactly by this question. Sophus Lie introduced the notion of a continuous transformation group while trying to solve differential equations explicitly by reducing them to a simpler form. To each linear differential equation, Picard associated its Galois group, which is a Lie group (and moreover, a linear algebraic group). Picard and Vessiot then showed that this particular group is responsible for the solvability of equations by quadratures. Next, Kolchin elaborated the theory of algebraic groups, completed the development of Picard-Vessiot theory, and generalized it to the case of holonomic systems of linear partial differential equations.

Vladimir Igorevich Arnold discovered that many classical questions in mathematics are unsolvable for topological reasons. In particular, he showed that a generic algebraic equation of degree 5 or higher is unsolvable by radicals precisely for topological reasons. Developing Arnold's approach, I constructed in the early 1970s a one-dimensional version of topological Galois theory. According to this theory, the way the Riemann surface of an analytic function covers the plane of complex
numbers can obstruct the representability of this function by explicit formulas. The strongest known results on the unexpressibility of functions by explicit formulas have been obtained in this way. I had always been under the impression that a fullfledged multidimensional version of this theory was impossible. Then in spring 1999, I suddenly realized that, in fact, one can generalize the one-dimensional version of topological Galois theory to the multivariable case.

This book covers topological Galois theory. First, a complete and detailed exposition of the one-dimensional version is given, followed by a more schematic exposition of the multidimensional version. The topological theory is closely related to usual (algebraic) Galois theory as well as to differential Galois theory.

Algebraic Galois theory is simple, and its main ideas are connected with topological Galois theory. In the "permissive" part of topological Galois theory, not only is linear algebra used, but also results from Galois theory. In this book, Galois theory and its applications to the solvability of algebraic equations by radicals are presented with complete proofs. Apart from the problem of solvability by radicals, other closely related problems are also considered, including the problem of solvability of an equation with the help of radicals and auxiliary equations of degree at most k.

The main theorems of Picard-Vessiot theory are stated without proof, and the similarity with Galois theory is emphasized. We shall explain why, at least in principle, Picard-Vessiot theory answers the questions of solvability of linear differential equations in explicit form. The "permissive" part of topological Galois theory (which proves, in particular, that linear Fuchsian equations with solvable monodromy group are solvable by quadratures) uses only the simple, linearalgebraic, part of Picard-Vessiot theory. This linear algebra is covered in the book. The "prohibitive" part of topological Galois theory (which says, in particular, that linear differential equations with unsolvable monodromy group are not solvable by quadratures) will be explained in full detail. It is stronger than the "prohibitive" part of Picard-Vessiot theory.

This book also discusses beautiful constructions, due to Liouville, of the class of elementary functions, the class of functions expressible by quadratures, and so on, and his theory of elementary functions, which had a strong impact on all subsequent work in this area.

We will discuss three versions of Galois theory-algebraic, differential, and topological. These versions are unified by the same group-theoretic approach to the problems of solvability and unsolvability of equations. However, it is not true that all results on solvability and unsolvability are related to group theory. A number of brilliant results based on a different approach are contained in the theory of Liouville. To give a flavor of Liouville's theory, we provide a complete proof of his theorem stating that certain indefinite integrals are not elementary functions (this includes indefinite integrals of nonzero holomorphic differential forms on algebraic curves of higher genus).

We do not always follow the historical sequence of events. For example, the Picard-Vessiot theorem on the solvability of linear differential equations by quadratures was proved before the main theorem of differential Galois theory.

However, the Picard-Vessiot theorem is a direct corollary of this fundamental theorem, and it is presented here in this way.

A few words about the bibliography: The first modern book on integration in finite terms was written by Ritt [86]. Bronstein's book [16] contains a modern treatment of the subject together with many algorithms and includes much of what is in Sects. 1.6-1.9. Algebraic Galois theory is explained well in many textbooks; see, for example, [24,25]. A clear and concise exposition of differential Galois theory is contained in Kaplansky's book [43]. For a more detailed and modern treatment, see the book [96] by van den Put and Singer. Kolchin's theory is covered in [64-67]. An interesting survey of work on the solvability and unsolvability of equations together with an extensive bibliography can be found in [93, 94].

My first results in topological Galois theory appeared in the early 1970s, when I was Arnold's student, to whom I am greatly indebted. Unfortunately, I did not publish my results in a timely manner: At first, I was unable to reconstruct the complicated history of the subject, and then I became interested in a totally different kind of mathematics. Much later, Andrei Bolibrukh convinced me to revisit the subject. My wife, Tatiana Belokrintskaya, prepared the Russian edition of this book for publication.

In this English-language edition, extra material has been added (Appendices AD), the last two of which were written jointly with Yuri Burda. Vladlen Timorin and Valentina Kirichenko translated the Russian text into English. Michael Singer read the book and made many useful remarks and suggestions. David Kramer performed a careful editing of the book. I am grateful to all of them.

Contents

1 Construction of Liouvillian Classes of Functions and Liouville's Theory 1
1.1 Defining Classes of Functions by Lists of Basic Functions and Admissible Operations 2
1.2 Liouvillian Classes of Functions of a Single Variable 3
1.2.1 Functions of One Variable Representable by Radicals 3
1.2.2 Elementary Functions of One Variable 5
1.2.3 Functions of One Variable Representable by Quadrature 5
1.3 A Bit of History 6
1.4 New Definitions of Liouvillian Classes of Functions 7
1.4.1 Elementary Functions of One Variable 7
1.4.2 Functions of One Variable Representable by Quadratures 8
1.4.3 Generalized Elementary Functions of One Variable and Functions of One Variable Representable by Generalized Quadratures and k-Quadratures 8
1.5 Liouville Extensions of Abstract and Functional Differential Fields 10
1.6 Integration of Elementary Functions 13
1.6.1 Liouville's Theorem: Outline of a Proof 15
1.6.2 Refinement of Liouville's Theorem 16
1.6.3 Algebraic Extensions of Differential Fields 17
1.6.4 Extensions of Transcendence Degree One 18
1.6.5 Adjunction of an Integral and an Exponential of Integral 21
1.6.6 Proof of Liouville's Theorem 22
1.7 Integration of Functions Containing the Logarithm 25
1.7.1 The Polar Part of an Integral. 25
1.7.2 The Logarithmic Derivative Part 26
1.7.3 Integration of a Polynomial of a Logarithm 27
1.7.4 Integration of Functions Lying in a Logarithmic Extension of the Field $\mathbb{C}\langle z\rangle$ 28
1.8 Integration of Functions Containing an Exponential 29
1.8.1 Principal Polar Part of the Integral 29
1.8.2 Principal Logarithmic Derivative Part 30
1.8.3 Integration of Laurent Polynomials of the Exponential 32
1.8.4 Solvability of First-Order Linear Differential Equations 32
1.8.5 Integration of Functions Lying in an Exponential Extension of the Field $\mathbb{C}\langle z\rangle$ 35
1.9 Integration of Algebraic Functions 35
1.9.1 The Rational Part of an Abelian Integral. 36
1.9.2 Logarithmic Part of an Abelian Integral 38
1.9.3 Elementarity and Nonelementarity of Abelian Integrals 41
1.10 The Liouville-Mordukhai-Boltovski Criterion 44
2 Solvability of Algebraic Equations by Radicals and Galois Theory 47
2.1 Action of a Solvable Group and Representability by Radicals 49
2.1.1 A Sufficient Condition for Solvability by Radicals 49
2.1.2 The Permutation Group of the Variables and Equations of Degree 2, 3, and 4 51
2.1.3 Lagrange Polynomials and Abelian Linear-Algebraic Groups 52
2.1.4 Solving Equations of Degrees 2, 3, and 4 by Radicals 55
2.2 Fixed Points of Finite Group Actions 58
2.3 Field Automorphisms and Relations Between Elements in a Field 61
2.3.1 Equations Without Multiple Roots 61
2.3.2 Algebraicity over an Invariant Subfield 61
2.3.3 Subalgebras Containing the Coefficients of a Lagrange Polynomial 62
2.3.4 Representability of One Element Through Another Element over an Invariant Subfield 63
2.4 Action of a k-Solvable Group and Representability by k-Radicals 64
2.5 Galois Equations 65
2.6 Automorphisms Related to a Galois Equation 67
2.7 The Fundamental Theorem of Galois Theory 68
2.7.1 Galois Extensions 68
2.7.2 Galois Groups 69
2.7.3 The Fundamental Theorem 70
2.7.4 Properties of the Galois Correspondence 70
2.7.5 Changing the Field of Coefficients 72
2.8 A Criterion for Solvability of Equations by Radicals 73
2.8.1 Roots of Unity 73
2.8.2 The Equation $x^{n}=a$ 74
2.8.3 Solvability by Radicals 75
2.9 A Criterion for Solvability by k-Radicals 76
2.9.1 Properties of k-Solvable Groups 76
2.9.2 Solvability by k-Radicals 78
2.9.3 Unsolvability of the General Equation of Degree $k+1>4$ by k-Radicals 79
2.10 Unsolvability of Complicated Equations by Solving Simpler Equations 81
2.10.1 A Necessary Condition for Solvability 81
2.10.2 Classes of Finite Groups 82
3 Solvability and Picard-Vessiot Theory 85
3.1 Similarity Between Linear Differential Equations and Algebraic Equations 85
3.1.1 Division with Remainder and the Greatest Common Divisor of Differential Operators 85
3.1.2 Reduction of Order for a Linear Differential Equation as an Analogue of Bézout's Theorem 86
3.1.3 A Generic Linear Differential Equation with Constant Coefficients and Lagrange Resolvents 87
3.1.4 Analogue of Viete's Formulas for Differential Operators 88
3.1.5 An Analogue of the Theorem on Symmetric Functions for Differential Operators 90
3.2 A Picard-Vessiot Extension and Its Galois Group 91
3.3 The Fundamental Theorem of Picard-Vessiot Theory 93
3.4 The Simplest Picard-Vessiot Extensions 94
3.4.1 Algebraic Extensions 94
3.4.2 Adjoining an Integral 95
3.4.3 Adjoining an Exponential of Integral 96
3.5 Solvability of Differential Equations 98
3.6 Linear Algebraic Groups and Necessary Conditions of Solvability 99
3.7 A Sufficient Condition for the Solvability of Differential Equations 101
3.8 Other Kinds of Solvability 104
4 Coverings and Galois Theory 107
4.1 Coverings over Topological Spaces 109
4.1.1 Classification of Coverings with Marked Points 109
4.1.2 Coverings with Marked Points and Subgroups of the Fundamental Group 111
4.1.3 Other Classifications of Coverings 114
4.1.4 A Similarity Between Galois Theory and the Classification of Coverings 117
4.2 Completion of Ramified Coverings and Riemann Surfaces of Algebraic Functions 118
4.2.1 Filling Holes and Puiseux Expansions 119
4.2.2 Analytic-Type Maps and the Real Operation of Filling Holes 121
4.2.3 Finite Ramified Coverings with a Fixed Ramification Set 123
4.2.4 The Riemann Surface of an Algebraic Equation over the Field of Meromorphic Functions 128
4.3 Finite Ramified Coverings and Algebraic Extensions of Fields of Meromorphic Functions 130
4.3.1 The Field $P_{a}(O)$ of Germs at the Point $a \in X$ of Algebraic Functions with Ramification over O 130
4.3.2 Galois Theory for the Action of the Fundamental Group on the Field $P_{a}(O)$ 132
4.3.3 Field of Functions on a Ramified Covering 134
4.4 Geometry of Galois Theory for Extensions of the Field of Meromorphic Functions 136
4.4.1 Galois Extensions of the Field $K(X)$ 136
4.4.2 Algebraic Extensions of the Field of Germs of Meromorphic Functions 137
4.4.3 Algebraic Extensions of the Field of Rational Functions 138
5 One-Dimensional Topological Galois Theory 143
5.1 On Topological Unsolvability 144
5.2 Topological Nonrepresentability of Functions by Radicals 147
5.2.1 Monodromy Groups of Basic Functions 148
5.2.2 Solvable Groups 149
5.2.3 The Class of Algebraic Functions with Solvable Monodromy Groups Is Stable 149
5.2.4 An Algebraic Function with a Solvable Monodromy Group Is Representable by Radicals 151
5.3 On the One-Dimensional Version of Topological Galois Theory 152
5.4 Functions with at Most Countable Singular Sets 153
5.4.1 Forbidden Sets 154
5.4.2 The Class of \mathscr{S}-Functions Is Stable 155
5.5 Monodromy Groups 157
5.5.1 Monodromy Group with a Forbidden Set 157
5.5.2 Closed Monodromy Groups 158
5.5.3 Transitive Action of a Group on a Set and the Monodromy Pair of an \mathscr{S}-Function 158
5.5.4 Almost Normal Functions 159
5.5.5 Classes of Group Pairs 160
5.6 The Main Theorem 161
5.7 Group-Theoretic Obstructions to Representability by Quadratures 164
5.7.1 Computation of Some Classes of Group Pairs 164
5.7.2 Necessary Conditions for Representability by Quadratures, k-Quadratures, and Generalized Quadratures 167
5.8 Classes of Singular Sets and a Generalization of the Main Theorem 170
5.8.1 Functions Representable by Single-Valued X_{1}-Functions and Quadratures 171
6 Solvability of Fuchsian Equations 173
6.1 Picard-Vessiot Theory for Fuchsian Equations 173
6.1.1 The Monodromy Group of a Linear Differential Equation and Its Connection with the Galois Group 173
6.1.2 Proof of Frobenius's Theorem 176
6.1.3 The Monodromy Group of Systems of Linear Differential Equations and Its Connection with the Galois Group 178
6.2 Galois Theory for Fuchsian Systems of Linear Differential Equations with Small Coefficients 180
6.2.1 Fuchsian Systems of Equations 180
6.2.2 Groups Generated by Matrices Close to the Identity 182
6.2.3 Explicit Criteria for Solvability 185
6.2.4 Strong Unsolvability of Equations 187
6.3 Maps of the Half-Plane onto Polygons Bounded by Circular Arcs 188
6.3.1 Using the Reflection Principle 188
6.3.2 Groups of Fractional Linear and Conformal Transformations of the Class $\mathscr{M}\langle\mathbb{C}, \mathscr{K}\rangle$ 189
6.3.3 Integrable Cases 191
7 Multidimensional Topological Galois Theory 195
7.1 Introduction 195
7.1.1 Operations on Multivariate Functions 196
7.1.2 Liouvillian Classes of Multivariate Functions 197
7.1.3 New Definitions of Liouvillian Classes of Multivariate Functions 200
7.1.4 Liouville Extensions of Differential Fields Consisting of Multivariate Functions 202
7.2 Continuation of Multivalued Analytic Functions to an Analytic Subset 204
7.2.1 Continuation of a Single-Valued Analytic Function to an Analytic Subset 206
7.2.2 Admissible Stratifications 207
7.2.3 How the Topology of an Analytic Subset Changes at an Irreducible Component 208
7.2.4 Covers Over the Complement of a Subset of Hausdorff Codimension Greater Than 1 in a Manifold 210
7.2.5 Covers Over the Complement of an Analytic Set 213
7.2.6 The Main Theorem 215
7.3 On the Monodromy of a Multivalued Function on Its Ramification Set 216
7.3.1 \mathscr{S}-Functions 217
7.3.2 Almost Homomorphisms and Induced Closures 219
7.3.3 Induced Closure of a Group Acting on a Set in the Transformation Group of a Subset 221
7.3.4 The Monodromy Groups of Induced Functions 222
7.3.5 Classes of Group Pairs 224
7.4 Multidimensional Results on Nonrepresentability of Functions by Quadratures 226
7.4.1 Formulas, Their Multigerms, Analytic Continuations, and Riemann Surfaces 227
7.4.2 The Class of $\mathscr{S} \mathscr{C}$-Germs, Its Stability Under the Natural Operations 229
7.4.3 The Class of Formula Multigerms with the $\mathscr{S} \mathscr{C}$-Property 233
7.4.4 Topological Obstructions to Representability of Functions by Quadratures 234
7.4.5 Monodromy Groups of Holonomic Systems of Linear Differential Equations 236
7.4.6 Holonomic Systems of Linear Differential Equations with Small Coefficients 237
A Straightedge and Compass Constructions 239
A. 1 Solvability of Equations by Square Roots 240
A.1.1 Background Material 241
A.1.2 Extensions by 2-Radicals 241
A.1.3 2-Radical Extensions of a Field of Characteristic 2 243
A.1.4 Roots of Unity 243
A.1.5 Solvability of the Equation $x^{n}-1=0$ by 2-Radicals 245
A. 2 What Can Be Constructed Using Straightedge and Compass? 246
A.2.1 The Unsolvability of Some Straightedge and Compass Construction Problems 247
A.2.2 Some Explicit Constructions 248
A.2.3 Classical Straightedge and Compass Constructibility Problems 250
A.2.4 Two Specific Constructions 251
A.2.5 Stratification of the Plane 252
A.2.6 Classes of Constructions That Allow Arbitrary Choice 253
A.2.7 Trisection of an Angle 254
A.2.8 A Theorem from Affine Geometry 256
B Chebyshev Polynomials and Their Inverses 257
B. 1 Chebyshev Functions over the Complex Numbers 258
B.1.1 Multivalued Chebyshev Functions 258
B.1.2 Germs of a Chebyshev Function at the Point $x=1$ 260
B.1.3 Analytic Continuation of Germs 261
B. 2 Chebyshev Functions over Fields 262
B.2.1 Algebraic Definition 262
B.2.2 Equations of Degree Three 263
B.2.3 Equations of Degree Four 264
B. 3 Three Classical Problems 265
B.3.1 Inversion of Mappings in Radicals 265
B.3.2 Inversion of Mappings of Finite Fields 267
B.3.3 Integrable Mappings 268
C Signatures of Branched Coverings and Solvability in Quadratures 271
C. 1 Coverings with a Given Signature 272
C.1.1 Definitions and Examples 272
C.1.2 Classification 273
C.1.3 Coverings and Classical Geometries 274
C. 2 The Spherical Case 276
C.2.1 Application of the Riemann-Hurwitz Formula 276
C.2.2 Finite Groups of Rotations of the Sphere 277
C.2.3 Coverings with Elliptic Signatures 278
C.2.4 Equations with an Elliptic Signature 278
C. 3 The Case of the Plane 278
C.3.1 Discrete Groups of Affine Transformations 278
C.3.2 Affine Groups Generated by Reflections 280
C.3.3 Coverings with Parabolic Signatures 280
C.3.4 Equations with Parabolic Signatures 281
C. 4 Functions with Nonhyperbolic Signatures in Other Contexts 283
C. 5 The Hyperbolic Case 284
D On an Algebraic Version of Hilbert's 13th Problem 287
D. 1 Versions of Hilbert's 13th Problem 287
D.1.1 Simplification of Equations of High Degree 287
D.1.2 Versions of the Problem for Different Classes of Functions 288
D. 2 Arnold's Theorem 289
D.2.1 Formulation of the Theorem 289
D.2.2 Results Related to Arnold's Theorem 290
D.2.3 The Proof of the Theorem 291
D.2.4 Polynomial Versions of Klein's and Hilbert's Problems 293
D. 3 Klein's Problem 293
D.3.1 Birational Automorphisms and Klein's Problem 293
D.3.2 Essential Dimension of Groups 295
D.3.3 A Topological Approach to Klein's Problem 296
D. 4 Arnold's Proof and Further Developments in Klein's Problem 297
References 299
Index 305

Chapter 1
 Construction of Liouvillian Classes of Functions and Liouville's Theory

Some algebraic and differential equations are explicitly solvable. What does this mean? If an explicit solution is presented, the question answers itself. However, in most cases, every attempt to solve an equation explicitly is doomed to failure. We are then tempted to prove that certain equations have no explicit solutions. It is now necessary to define exactly what we mean by explicit solutions (otherwise, it is unclear what we are trying to prove).

From the modern viewpoint, the classical works on the subject lack rigorous definitions and statements of theorems. Nonetheless, it is clear that Liouville understood exactly what he was proving. He not only stated the problems on solvability of equations by elementary functions and by quadratures, but he also algebraized them. His work made it possible to define all such notions over an arbitrary differential field. But the standards of mathematical rigor were different in the time of Liouville. Indeed, according to Kolchin [64], even Picard failed to give accurate, unambiguous definitions. Kolchin's work satisfies modern standards, but his definitions are given for abstract differential fields from the very beginning.

However, the indefinite integral of an elementary function and the solution of a linear differential equation are functions rather than elements of an abstract differential field. In function spaces, for example, apart from differentiation and algebraic operations, an absolutely nonalgebraic operation is defined, namely composition. Anyhow, function spaces provide greater means for writing "explicit formulas" than abstract differential fields. Moreover, we should take into account that functions can be multivalued, can have singularities, and so on.

In function spaces, it is not hard to formalize the problem of unsolvability of equations in explicit form, and in this book, we are interested in this particular problem. One can proceed as follows: fix a class of functions and say that an equation is solvable explicitly if its solution belongs to this class. Different classes of functions correspond to different notions of solvability.

1.1 Defining Classes of Functions by Lists of Basic Functions and Admissible Operations

A class of functions can be introduced by specifying a list of basic functions and a list of admissible operations. Given these two lists, the class of functions is defined as the set of all functions that can be obtained from the basic functions by repeated application of admissible operations. In Sect. 1.2, we define Liouvillian classes of functions in exactly this way.

Liouvillian classes of functions, which appear in problems of solvability in finite terms, contain multivalued functions. Thus the basic terminology should be made clear. In this section, we work with multivalued functions "globally," which leads to a more general understanding of classes of functions defined by lists of basic functions and admissible operations. In this global version, a multivalued function is regarded as a single entity, and we can define operations on multivalued functions.

The result of such an operation is a set of multivalued functions; every element of this set is referred to as a function obtained from the given functions by the given operation. The class of functions is defined as the set of all (multivalued) functions that can be obtained from the basic functions by repeated application of admissible operations. ${ }^{1}$

Let us define, for example, the sum of two multivalued functions of one variable.
Definition 1.1 Take an arbitrary point a on the complex line, a germ f_{a} of an analytic function f at the point a, and a germ g_{a} of an analytic function g at the same point a. We say that the multivalued function φ generated by the germ $\varphi_{a}=f_{a}+g_{a}$ is representable as the sum of the functions f and g.

For example, it is easy to see that exactly two functions are representable in the form $\sqrt{x}+\sqrt{x}$, namely, $f_{1}=2 \sqrt{x}$ and $f_{2} \equiv 0$. Other operations on multivalued functions are defined in exactly the same way. For a class of multivalued functions, being stable under addition means that together with any pair of its functions, this class contains all functions representable as their sum. The same applies to all other operations on multivalued functions understood in the same sense as above.

In the definition given above, it is not only the operation of addition that plays a key role but also the operation of analytic continuation hidden in the notion

[^1]of multivalued function. Indeed, consider the following example. Let f_{1} be an analytic function defined on an open subset U of the complex line \mathbb{C}^{1} and admitting no analytic continuation outside of U, and let f_{2} be an analytic function on U given by the formula $f_{2}=-f_{1}$. According to our definition, the zero function is representable in the form $f_{1}+f_{2}$ on the entire complex line. From the commonly accepted viewpoint, the equality $f_{1}+f_{2}=0$ holds inside the region U but not outside.

In working with multivalued functions globally, we do not insist on the existence of a common region where all necessary operations would be performed on singlevalued branches of multivalued functions. A first operation can be performed in a first region, then a second operation can be performed in a second, different, region on analytic continuations of functions obtained in the first step. In essence, this more general understanding of operations is equivalent to including analytic continuation in the list of admissible operations on analytic germs. For functions of a single variable, it is possible to obtain topological obstructions even with this more general understanding of operations on multivalued analytic functions.

In the sequel, in considering topological obstructions to the membership of an analytic function of a single variable in a certain class, we will always mean this global definition of the function class via lists of basic functions and admissible operations.

For functions of several variables, things do not work in this general setting, and we are forced to adopt a more restrictive formulation (see Sect.7.1.1) dealing with germs of functions. It is, however, no less natural, and perhaps even more so. The only place in the book where we use this more restrictive formulation is Chap. 7, in which we deal with multivariable functions.

1.2 Liouvillian Classes of Functions of a Single Variable

In this section, we define Liouvillian classes of functions of a single variable (for the multivariable case, the corresponding definitions are given in Chap. 7). We will describe these classes by lists of basic functions and admissible operations.

1.2.1 Functions of One Variable Representable by Radicals

List of basic functions:

- All complex constants
- An independent variable x

List of admissible operations:

- Arithmetic operations
- The operation of taking the nth root $\sqrt[n]{f}, n=2,3, \ldots$, of a given function f

The function $g(x)=\sqrt[3]{5 x+2 \sqrt[2]{x}}+\sqrt[7]{x^{3}+3}$ is an example of a function representable by radicals.

The famous problem of solvability of equations by radicals is related to this class. Consider the algebraic equation

$$
y^{n}+r_{1} y^{n-1}+\cdots+r_{n}=0
$$

in which the r_{i} are rational functions of one variable. A complete answer to the question of solvability of such equations by radicals is given by Galois theory (see Chap. 2).

To define other classes, we will need the list of basic elementary functions. In essence, this list contains functions that are studied in high-school and college precalculus courses. They are the functions frequently found on pocket calculators.

List of basic elementary functions:

1. All complex constants and an independent variable x.
2. The exponential, the logarithm, and the power x^{α}, where α is any complex constant.
3. The trigonometric functions sine, cosine, tangent, cotangent.
4. The inverse trigonometric functions arcsine, arccosine, arctangent, arccotangent.

Let us now proceed with the list of classical operations on functions. We begin the list here. It will be continued in the following section.

List of classical operations:

1. The operation composition takes functions f, g to the function $f \circ g$.
2. The arithmetic operations take functions f and g to the functions $f+g, f-g$, $f g$, and f / g.
3. The operation differentiation takes a function f to the function f^{\prime}.
4. The operation integration takes a function f to its indefinite integral y (i.e., to any function y such that $y^{\prime}=f$; the function y is determined by the function f up to an additive constant).
5. The operation solving an algebraic equation takes functions f_{1}, \ldots, f_{n} to the function y such that $y^{n}+f_{1} y^{n-1}+\cdots+f_{n}=0$ (the function y is not quite uniquely determined by the functions f_{1}, \ldots, f_{n}, since an algebraic equation of degree n can have n solutions).

We can now return to the definition of Liouvillian classes of functions of a single variable.

1.2.2 Elementary Functions of One Variable

List of basic functions:

- Basic elementary functions.

List of admissible operations:

- Compositions
- Arithmetic operations
- Differentiation

All elementary functions are given by formulas such as the following:

$$
f(x)=\arctan (\exp (\sin x)+\cos x)
$$

1.2.3 Functions of One Variable Representable by Quadrature

List of basic functions

- Basic elementary functions

List of admissible operations:

- Composition
- Arithmetic operations
- Differentiation
- Integration

For example, the elliptic integral

$$
f(x)=\int_{x_{0}}^{x} \frac{d t}{\sqrt{P(t)}}
$$

where P is a cubic polynomial, is representable by quadratures. However, Liouville showed that if the polynomial P has no multiple roots, then the function f is not elementary.

Generalized elementary functions of one variable This class of functions is defined in the same way as the class of elementary functions. We only need to add the operation of solving algebraic equations to the list of admissible operations.

Functions of one variable representable by generalized quadratures This class of functions is defined in the same way as the class of functions representable by quadratures. We only need to add the operation of solving algebraic equations to the list of admissible operations. Let us now define two more classes of functions similar to Liouvillian classes.

Functions of one variable representable by \boldsymbol{k}-radicals This class of functions is defined in the same way as the class of functions representable by radicals. We only need to add the operation of solving algebraic equations of degree $\leq k$ to the list of admissible operations.

Functions of one variable representable by \boldsymbol{k}-quadratures This class of functions is defined in the same way as the class of functions representable by quadratures. We only need to add the operation of solving algebraic equations of degree at most k to the list of admissible operations.

1.3 A Bit of History

The first rigorous proofs of unsolvability of some equations by quadratures and by elementary functions were obtained in the middle of the nineteenth century by Liouville (see [75-77, 86]). Later work of Chebyshev, Mordukhai-Boltovski, Ostrovskii, Ritt, Risch, Rosenlicht, Davenport, Singer, and Bronstein have elaborated on Liouville's results. A bibliography on this subject can be found in [93].

According to Liouville's theory of elementary functions, "sufficiently simple" equations have either "sufficiently simple" solutions or no explicit solutions at all. In some cases, the results go all the way to algorithms that either provide a proof of unsolvability of an equation in explicit form or construct an explicit solution.

Liouville's theory answers questions such as the following:

1. Under what conditions is an indefinite integral of an elementary function also an elementary function?
2. Under what conditions are all solutions of a linear differential equation all of whose coefficients are rational functions representable by generalized quadratures?

To demonstrate Liouville's method, we will give a proof of his theorem about integrals (see Sect. 1.6) and consider several applications of this theorem. Let $\alpha=$ $R(z, u) d z$ be a 1-form, where R is a rational function of two variables, z is a complex variable, and u is a function of z. In Sect. 1.7, we consider the case that u is the natural logarithm of a rational function f of z, that is, $u=\log f(z)$. A procedure will be explained that allows us either to find an indefinite integral of α explicitly or to prove that it is not a generalized elementary function. In Sect. 1.8, a similar result is described in the case that u is the exponential of a rational function f of z, $u=\exp f(z)$. The case of an abelian 1-form α, where u is an algebraic function of z, is considered in Sect. 1.9. Necessary and sufficient conditions for the elementarity of an abelian integral are described. These conditions are hard to verify. In this sense, the algebraic case is more complicated than the logarithmic and the exponential cases. Sections 1.6-1.9 are not necessary for understanding the remainder of the book and can be omitted. To avoid references to these sections, we repeat, in Chap. 3, simple and short computations related to adjoining an integral, an exponential of an integral, and a root of an algebraic equation to a differential field.

In Sect. 1.4, we give significantly simpler definitions of Liouvillian classes of functions, due to Liouville (for example, that of the class of elementary functions). We explain how exactly Liouville succeeded in algebraizing the questions of solvability of equations by elementary functions or by other Liouvillian classes of functions. Liouville extensions of functional differential fields are constructed in Sect. 1.5.

In Sect. 1.10, we state some results from Liouville's theory concerning questions of solvability of linear differential equations. A more complete answer to this question is given by differential Galois theory (see Chap. 3).

1.4 New Definitions of Liouvillian Classes of Functions

Liouville algebraized the problem of solvability by elementary functions and by quadratures. The main obstacle in the algebraization is the absolutely nonalgebraic operation of composition. Liouville circumvented this obstacle in the following way: He associated to every function g from the list of basic functions the operation of postcomposition with this function. This operation takes a function f to the function $g \circ f$. Liouville noted that all basic elementary functions can be reduced to the logarithm and the exponential (see Lemma 1.2 below). The compositions $y=\exp f$ and $z=\log f$ can be regarded as solutions of the equations $y^{\prime}=f^{\prime} y$ and $z^{\prime}=f^{\prime} / f$. Thus, within Liouvillian classes of functions, it suffices to consider operations of solving some simple differential equations. After that, the solvability problem for Liouvillian classes of functions becomes differential-algebraic, and carries over to abstract differential fields. Let us proceed with the realization of this plan.

We will now continue the list of classical operations (the beginning of the list is given in the previous section).

List of classical operations (continued):
6. The operation exponentiation takes a function f to the function $\exp f$.
7. The operation of taking the logarithm, which we shall call logarithmation, takes a function f to the function $\log f$.

We will now give new definitions for transcendental Liouvillian classes of functions.

1.4.1 Elementary Functions of One Variable

List of basic functions:

- All complex constants
- An independent variable x

List of admissible operations:

- Exponentiation
- Logarithmation
- Arithmetic operations
- Differentiation

1.4.2 Functions of One Variable Representable by Quadratures

List of basic functions

- All complex constants

List of admissible operations:

- Exponentiation
- Arithmetic operations
- Differentiation
- Integration

1.4.3 Generalized Elementary Functions of One Variable and Functions of One Variable Representable by Generalized Quadratures and \boldsymbol{k}-Quadratures

These functions are defined in the same way as the corresponding nongeneralized classes of functions; we have only to add the operation of solving algebraic equations or the operation of solving algebraic equations of degree $\leq k$ to the list of admissible operations.

Lemma 1.2 Basic elementary functions can be expressed through exponentials and logarithms with the help of complex constants, arithmetic operations, and compositions.

Proof For a power function x^{α}, the required expression is given by the equality $x^{\alpha}=\exp (\alpha \log x)$. For the trigonometric functions, the required expressions follow from Euler's formula $e^{a+b i}=e^{a}(\cos b+i \sin b)$. For real values of x, we have

$$
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) \quad \text { and } \quad \cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right) .
$$

By analyticity, the same formulas remain true for all complex values of x. The tangent and the cotangent functions are expressed through the sine and the cosine. Let us now show that for all real x, the equality

$$
\arctan x=\frac{1}{2 i} \log z
$$

holds, where

$$
z=\frac{1+i x}{1-i x}
$$

Obviously,

$$
|z|=1, \quad \arg z=2 \arg (1+i x), \quad \tan (\arg (1+i x))=x,
$$

which proves the desired equality. By analyticity, the same equality also holds for all complex values of x. The remaining inverse trigonometric functions can be expressed through the arctangent. Namely,
$\operatorname{arccot} x=\frac{\pi}{2}-\arctan x, \quad \arcsin x=\arctan \frac{x}{\sqrt{1-x^{2}}}, \quad \arccos =\frac{\pi}{2}-\arcsin x$.
The square root that appears in the expression for the function arcsin can be expressed through the exponential and the logarithm: $x^{1 / 2}=\exp \left(\frac{1}{2} \log x\right)$. The lemma is proved.

Theorem 1.3 For every transcendental Liouvillian class of functions, the definitions in this section and those in Sect. 1.2 are equivalent.

Proof In one direction, the theorem is obvious: it is clear that every function belonging to some Liouvillian class of functions in the sense of the new definition belongs to the same class in the sense of the old definition.

Let us prove the converse. By Lemma 1.2, the basic elementary functions lie in the class of elementary functions and in the class of generalized elementary functions in the sense of the new definition. It follows from the same lemma that the classes of functions representable by quadratures, generalized quadratures, and k-quadratures in the sense of the new definition also contain the basic elementary functions. Indeed, the independent variable x belongs to these classes, since it can be obtained as the integral of the constant function 1 , since $x^{\prime}=1$. Instead of taking the logarithm, which is not among the admissible operations in these classes, one can use integration, since $(\log f)^{\prime}=f^{\prime} / f$.

It remains to show that the Liouvillian classes of functions in the sense of the new definition are stable under composition. The reason that they are is the following: composition commutes with all other operations that appear in the new definition of function classes, except for differentiation and integration. Thus, for example, the result of the operation exp applied to the composition $g \circ f$ coincides with the composition of the functions $\exp g$ and f, i.e., $\exp (g \circ f)=(\exp g) \circ f$. Similarly,

$$
\log (g \circ f)=(\log g) \circ f
$$

$$
\begin{aligned}
\left(g_{1} \pm g_{2}\right) \circ f & =\left(g_{1} \circ f\right) \pm\left(g_{2} \circ f\right), \\
\left(g_{1} g_{2}\right) \circ f & =\left(g_{1} \circ f\right)\left(g_{2} \circ f\right), \\
\left(g_{1} / g_{2}\right) \circ f & =\left(g_{1} \circ f\right) /\left(g_{2} \circ f\right),
\end{aligned}
$$

If a function y satisfies an equation of the form $y^{n}+g_{1} y^{n-1}+\cdots+g_{n}=0$, then the function $(y \circ f)$ satisfies the equation $(y \circ f)^{n}+\left(g_{1} \circ f\right)(y \circ f)^{n-1}+\cdots+$ $\left(g_{n} \circ f\right)=0$.

For differentiation and integration, we have the following simple commutation relations with the operation of composition: $(g)^{\prime} \circ f=(g \circ f)^{\prime}\left(f^{\prime}\right)^{-1}$ (if a function f is constant, then the function $(g)^{\prime} \circ f$ is also constant), and if y is an indefinite integral of a function g, then $y \circ f$ is an indefinite integral of the function $(g \circ$ f) f^{\prime} (in other words, composing the integral of a function g with a function f corresponds to the integration of the function $g \circ f$ multiplied by the function f^{\prime}).

This implies that the Liouvillian classes in the sense of the new definition are stable under composition. Indeed, if a function g is obtained from constants (or from constants and the independent variable) by operations discussed above, then the function $g \circ f$ is obtained by applying the same operations, or almost the same as in the case of integration and differentiation, to the function f. The theorem is proved.

Remark 1.4 It is easy to see that differentiation can also be excluded from the lists of admissible operations for the Liouvillian classes of functions. To prove this, it suffices to use the explicit computation for the derivatives of the exponential and the logarithmic functions and the rules for differentiating formulas containing compositions and arithmetic operations. However, the exclusion of differentiation does not help in the problem of solvability of equations in finite terms (sometimes, the exclusion of differentiation makes it possible to state a result in a more invariant form; see the second formulation of Liouville's theorem on abelian integrals from Sect. 1.9).

1.5 Liouville Extensions of Abstract and Functional Differential Fields

A field K is said to be a differential field if an additive map $a \mapsto a^{\prime}$ is defined that satisfies the Leibniz rule $(a b)^{\prime}=a^{\prime} b+a b^{\prime}$. Such a map $a \mapsto a^{\prime}$ is called a derivation. If a particular derivation is fixed, the element a^{\prime} is sometimes called the derivative of a. The operation of taking derivatives is called differentiation.

An element y of a differential field K is called a constant if $y^{\prime}=0$. All constants in a differential field form a subfield, which is called the field of constants. In all cases that are of interest to us, the field of constants is the field of complex numbers. We shall always assume in the sequel that the differential field has characteristic zero and an algebraically closed field of constants.

An element y of a differential field is said to be

- An exponential of an element a if $y^{\prime}=a^{\prime} y$
- An exponential of integral of an element a if $y^{\prime}=a y$ (we use "exponential of integral" as an indivisible term)
- A logarithm of an element a if $y^{\prime}=a^{\prime} / a$
- An integral of an element a if $y^{\prime}=a$

In each of these cases, y is defined only up to an additive or multiplicative constant. Suppose that a differential field K and a set M lie in some differential field F. The adjunction of the set M to the differential field K is the minimal differential field $K\langle M\rangle$ containing both the field K and the set M. We will refer to the transition from K to $K\langle M\rangle$ as adjoining the set M to the field K.

A differential field F containing a differential field K and having the same field of constants is said to be an elementary extension of the field K if there exists a chain of differential fields $K=F_{1} \subseteq \cdots \subseteq F_{n}=F$ such that for every $i=1, \ldots, n-1$, the field $F_{i+1}=F_{i}\left\langle x_{i}\right\rangle$ is obtained by adjoining an element x_{i} to the field F_{i}, and x_{i} is an exponential or a logarithm of some element a_{i} from the field F_{i}. An element $a \in F$ is said to be elementary over $K, K \subset F$, if it is contained in some elementary extension of the field K.

A generalized elementary extension, a Liouville extension, a generalized Liouville extension, and a k-Liouville extension of a field K are defined in a similar way. In the construction of generalized elementary extensions, one is allowed to adjoin exponentials and logarithms and to take algebraic extensions. In the construction of Liouville extensions, one is allowed to adjoin integrals and exponentials of integrals. In generalized Liouville extensions and k-Liouville extensions, one is also allowed to take algebraic extensions and to adjoin solutions of algebraic equations of degree at most k. An element $a \in F$ is said to be generalized elementary (representable by quadratures, by generalized quadratures, by k-quadratures) over $K, K \subset F$, if a is contained in some generalized elementary extension (Liouville extension, generalized Liouville extension, k-Liouville extension) of the field K.

Remark 1.5 The equation for an exponential of integral is simpler than the equation for an exponential. That is why in the definition of Liouville extensions, etc., we adjoin exponentials of integrals. Instead, we could adjoin exponentials and integrals separately.

Let us now turn to functional differential fields. We will be dealing with this particular type of field in this book (although some results can be easily extended to abstract differential fields).

Let K be a subfield in the field of all meromorphic functions on a connected domain U of the Riemann sphere. Suppose that K contains all complex constants and is stable under differentiation (i.e., if $f \in K$, then $f^{\prime} \in K$). Then K provides an example of a functional differential field. Let us now give a general definition. Let V, v be a pair consisting of a connected Riemann surface V and a meromorphic vector field v defined on it. The Lie derivative L_{v} along the vector field v acts on the field F of all meromorphic functions on the surface V and defines the derivation

[^0]: © Springer-Verlag Berlin Heidelberg 2014
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

 Printed on acid-free paper
 Springer is part of Springer Science+Business Media (www.springer.com)

[^1]: ${ }^{1}$ If f and g are multivalued functions and \wedge is, say, a binary operation, then $f \wedge g$ is a set of multivalued functions. The class defined by a list $\left\{f_{1}, \ldots, f_{n}\right\}$ of basic functions and a list $\left\{\wedge_{1}, \ldots, \wedge_{m}\right\}$ of admissible binary operations is, by definition, the minimal set \mathscr{C} of functions such that all $f_{i} \in \mathscr{C}$ and $f \wedge_{j} g \subseteq \mathscr{C}$ whenever $f, g \in \mathscr{C}$. An obvious modification can be made to include infinite sets of basic functions and admissible functions, such as unary, ternary, etc., operations.

