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Preface

Numerous unsuccessful attempts to solve certain algebraic and differential equa-
tions “in finite terms” (i.e., “explicitly”) led mathematicians to the belief that explicit
solutions of such equations simply do not exist. This book is devoted to the question
of the unsolvability of equations in finite terms, and in particular to the topological
obstructions to solvability. This question has a rich history.

The first proofs of the unsolvability of algebraic equations by radicals were
given by Abel and Galois. While thinking about the problem of explicit indefinite
integration of an algebraic differential form, Abel laid the foundations for the theory
of algebraic curves. Liouville continued Abel’s work and proved that indefinite
integrals of many algebraic and elementary differential forms are not elementary
functions. Liouville was also the first to prove the unsolvability by quadratures of
many linear differential equations.

It was Galois who first saw that the question of solvability by radicals is
related to the properties of a certain finite group (now called the Galois group
of an algebraic equation). Indeed, the notion of a finite group as introduced by
Galois was motivated exactly by this question. Sophus Lie introduced the notion
of a continuous transformation group while trying to solve differential equations
explicitly by reducing them to a simpler form. To each linear differential equation,
Picard associated its Galois group, which is a Lie group (and moreover, a linear
algebraic group). Picard and Vessiot then showed that this particular group is
responsible for the solvability of equations by quadratures. Next, Kolchin elaborated
the theory of algebraic groups, completed the development of Picard–Vessiot theory,
and generalized it to the case of holonomic systems of linear partial differential
equations.

Vladimir Igorevich Arnold discovered that many classical questions in mathe-
matics are unsolvable for topological reasons. In particular, he showed that a generic
algebraic equation of degree 5 or higher is unsolvable by radicals precisely for
topological reasons. Developing Arnold’s approach, I constructed in the early 1970s
a one-dimensional version of topological Galois theory. According to this theory,
the way the Riemann surface of an analytic function covers the plane of complex
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numbers can obstruct the representability of this function by explicit formulas. The
strongest known results on the unexpressibility of functions by explicit formulas
have been obtained in this way. I had always been under the impression that a full-
fledged multidimensional version of this theory was impossible. Then in spring
1999, I suddenly realized that, in fact, one can generalize the one-dimensional
version of topological Galois theory to the multivariable case.

This book covers topological Galois theory. First, a complete and detailed
exposition of the one-dimensional version is given, followed by a more schematic
exposition of the multidimensional version. The topological theory is closely related
to usual (algebraic) Galois theory as well as to differential Galois theory.

Algebraic Galois theory is simple, and its main ideas are connected with
topological Galois theory. In the “permissive” part of topological Galois theory, not
only is linear algebra used, but also results from Galois theory. In this book, Galois
theory and its applications to the solvability of algebraic equations by radicals
are presented with complete proofs. Apart from the problem of solvability by
radicals, other closely related problems are also considered, including the problem
of solvability of an equation with the help of radicals and auxiliary equations of
degree at most k.

The main theorems of Picard–Vessiot theory are stated without proof, and
the similarity with Galois theory is emphasized. We shall explain why, at least
in principle, Picard–Vessiot theory answers the questions of solvability of linear
differential equations in explicit form. The “permissive” part of topological Galois
theory (which proves, in particular, that linear Fuchsian equations with solvable
monodromy group are solvable by quadratures) uses only the simple, linear-
algebraic, part of Picard–Vessiot theory. This linear algebra is covered in the book.
The “prohibitive” part of topological Galois theory (which says, in particular, that
linear differential equations with unsolvable monodromy group are not solvable by
quadratures) will be explained in full detail. It is stronger than the “prohibitive” part
of Picard–Vessiot theory.

This book also discusses beautiful constructions, due to Liouville, of the class of
elementary functions, the class of functions expressible by quadratures, and so on,
and his theory of elementary functions, which had a strong impact on all subsequent
work in this area.

We will discuss three versions of Galois theory—algebraic, differential, and
topological. These versions are unified by the same group-theoretic approach to the
problems of solvability and unsolvability of equations. However, it is not true that
all results on solvability and unsolvability are related to group theory. A number
of brilliant results based on a different approach are contained in the theory of
Liouville. To give a flavor of Liouville’s theory, we provide a complete proof of his
theorem stating that certain indefinite integrals are not elementary functions (this
includes indefinite integrals of nonzero holomorphic differential forms on algebraic
curves of higher genus).

We do not always follow the historical sequence of events. For example,
the Picard–Vessiot theorem on the solvability of linear differential equations by
quadratures was proved before the main theorem of differential Galois theory.
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However, the Picard–Vessiot theorem is a direct corollary of this fundamental
theorem, and it is presented here in this way.

A few words about the bibliography: The first modern book on integration in
finite terms was written by Ritt [86]. Bronstein’s book [16] contains a modern
treatment of the subject together with many algorithms and includes much of what is
in Sects. 1.6–1.9. Algebraic Galois theory is explained well in many textbooks; see,
for example, [24,25]. A clear and concise exposition of differential Galois theory is
contained in Kaplansky’s book [43]. For a more detailed and modern treatment, see
the book [96] by van den Put and Singer. Kolchin’s theory is covered in [64–67]. An
interesting survey of work on the solvability and unsolvability of equations together
with an extensive bibliography can be found in [93, 94].

My first results in topological Galois theory appeared in the early 1970s, when
I was Arnold’s student, to whom I am greatly indebted. Unfortunately, I did not
publish my results in a timely manner: At first, I was unable to reconstruct the
complicated history of the subject, and then I became interested in a totally different
kind of mathematics. Much later, Andrei Bolibrukh convinced me to revisit the
subject. My wife, Tatiana Belokrintskaya, prepared the Russian edition of this book
for publication.

In this English-language edition, extra material has been added (Appendices A–
D), the last two of which were written jointly with Yuri Burda. Vladlen Timorin and
Valentina Kirichenko translated the Russian text into English. Michael Singer read
the book and made many useful remarks and suggestions. David Kramer performed
a careful editing of the book. I am grateful to all of them.

Toronto, Canada Askold Khovanskii
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Chapter 1
Construction of Liouvillian Classes of Functions
and Liouville’s Theory

Some algebraic and differential equations are explicitly solvable. What does this
mean? If an explicit solution is presented, the question answers itself. However,
in most cases, every attempt to solve an equation explicitly is doomed to failure.
We are then tempted to prove that certain equations have no explicit solutions. It is
now necessary to define exactly what we mean by explicit solutions (otherwise, it is
unclear what we are trying to prove).

From the modern viewpoint, the classical works on the subject lack rigorous
definitions and statements of theorems. Nonetheless, it is clear that Liouville
understood exactly what he was proving. He not only stated the problems on
solvability of equations by elementary functions and by quadratures, but he also
algebraized them. His work made it possible to define all such notions over an
arbitrary differential field. But the standards of mathematical rigor were different
in the time of Liouville. Indeed, according to Kolchin [64], even Picard failed to
give accurate, unambiguous definitions. Kolchin’s work satisfies modern standards,
but his definitions are given for abstract differential fields from the very beginning.

However, the indefinite integral of an elementary function and the solution of
a linear differential equation are functions rather than elements of an abstract
differential field. In function spaces, for example, apart from differentiation and
algebraic operations, an absolutely nonalgebraic operation is defined, namely
composition. Anyhow, function spaces provide greater means for writing “explicit
formulas” than abstract differential fields. Moreover, we should take into account
that functions can be multivalued, can have singularities, and so on.

In function spaces, it is not hard to formalize the problem of unsolvability of
equations in explicit form, and in this book, we are interested in this particular
problem. One can proceed as follows: fix a class of functions and say that an
equation is solvable explicitly if its solution belongs to this class. Different classes
of functions correspond to different notions of solvability.

© Springer-Verlag Berlin Heidelberg 2014
A. Khovanskii, Topological Galois Theory, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-38871-2__1
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2 1 Construction of Liouvillian Classes of Functions and Liouville’s Theory

1.1 Defining Classes of Functions by Lists of Basic Functions
and Admissible Operations

A class of functions can be introduced by specifying a list of basic functions and a
list of admissible operations. Given these two lists, the class of functions is defined
as the set of all functions that can be obtained from the basic functions by repeated
application of admissible operations. In Sect. 1.2, we define Liouvillian classes of
functions in exactly this way.

Liouvillian classes of functions, which appear in problems of solvability in finite
terms, contain multivalued functions. Thus the basic terminology should be made
clear. In this section, we work with multivalued functions “globally,” which leads
to a more general understanding of classes of functions defined by lists of basic
functions and admissible operations. In this global version, a multivalued function
is regarded as a single entity, and we can define operations on multivalued functions.

The result of such an operation is a set of multivalued functions; every element
of this set is referred to as a function obtained from the given functions by the given
operation. The class of functions is defined as the set of all (multivalued) functions
that can be obtained from the basic functions by repeated application of admissible
operations.1

Let us define, for example, the sum of two multivalued functions of one variable.

Definition 1.1 Take an arbitrary point a on the complex line, a germ fa of an
analytic function f at the point a, and a germ ga of an analytic function g at
the same point a. We say that the multivalued function ' generated by the germ
'a D fa C ga is representable as the sum of the functions f and g.

For example, it is easy to see that exactly two functions are representable in the
form

p
x C p

x, namely, f1 D 2
p
x and f2 � 0. Other operations on multivalued

functions are defined in exactly the same way. For a class of multivalued functions,
being stable under addition means that together with any pair of its functions,
this class contains all functions representable as their sum. The same applies to
all other operations on multivalued functions understood in the same sense as
above.

In the definition given above, it is not only the operation of addition that plays
a key role but also the operation of analytic continuation hidden in the notion

1If f and g are multivalued functions and ^ is, say, a binary operation, then f ^ g is a set
of multivalued functions. The class defined by a list ff1; : : : ; fng of basic functions and a list
f^1; : : : ;^mg of admissible binary operations is, by definition, the minimal set C of functions
such that all fi 2 C and f ^j g � C whenever f; g 2 C . An obvious modification can be made
to include infinite sets of basic functions and admissible functions, such as unary, ternary, etc.,
operations.
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of multivalued function. Indeed, consider the following example. Let f1 be an
analytic function defined on an open subset U of the complex line�1 and admitting
no analytic continuation outside of U , and let f2 be an analytic function on U
given by the formula f2 D �f1. According to our definition, the zero function
is representable in the form f1 Cf2 on the entire complex line. From the commonly
accepted viewpoint, the equality f1 C f2 D 0 holds inside the region U but not
outside.

In working with multivalued functions globally, we do not insist on the existence
of a common region where all necessary operations would be performed on single-
valued branches of multivalued functions. A first operation can be performed in a
first region, then a second operation can be performed in a second, different, region
on analytic continuations of functions obtained in the first step. In essence, this more
general understanding of operations is equivalent to including analytic continuation
in the list of admissible operations on analytic germs. For functions of a single
variable, it is possible to obtain topological obstructions even with this more general
understanding of operations on multivalued analytic functions.

In the sequel, in considering topological obstructions to the membership of an
analytic function of a single variable in a certain class, we will always mean this
global definition of the function class via lists of basic functions and admissible
operations.

For functions of several variables, things do not work in this general setting, and
we are forced to adopt a more restrictive formulation (see Sect. 7.1.1) dealing with
germs of functions. It is, however, no less natural, and perhaps even more so. The
only place in the book where we use this more restrictive formulation is Chap. 7, in
which we deal with multivariable functions.

1.2 Liouvillian Classes of Functions of a Single Variable

In this section, we define Liouvillian classes of functions of a single variable (for
the multivariable case, the corresponding definitions are given in Chap. 7). We will
describe these classes by lists of basic functions and admissible operations.

1.2.1 Functions of One Variable Representable by Radicals

List of basic functions:

• All complex constants
• An independent variable x
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List of admissible operations:

• Arithmetic operations
• The operation of taking the nth root n

p
f , n D 2; 3; : : : , of a given function f

The function g.x/ D 3
p
5x C 2 2

p
x C 7

p
x3 C 3 is an example of a function

representable by radicals.
The famous problem of solvability of equations by radicals is related to this class.

Consider the algebraic equation

yn C r1y
n�1 C � � � C rn D 0;

in which the ri are rational functions of one variable. A complete answer to the
question of solvability of such equations by radicals is given by Galois theory (see
Chap. 2).

To define other classes, we will need the list of basic elementary functions.
In essence, this list contains functions that are studied in high-school and college
precalculus courses. They are the functions frequently found on pocket calculators.

List of basic elementary functions:

1. All complex constants and an independent variable x.
2. The exponential, the logarithm, and the power x˛ , where ˛ is any complex

constant.
3. The trigonometric functions sine, cosine, tangent, cotangent.
4. The inverse trigonometric functions arcsine, arccosine, arctangent, arccotangent.

Let us now proceed with the list of classical operations on functions. We begin
the list here. It will be continued in the following section.

List of classical operations:

1. The operation composition takes functions f , g to the function f ı g.
2. The arithmetic operations take functions f and g to the functions f Cg, f �g,
fg, and f=g.

3. The operation differentiation takes a function f to the function f 0.
4. The operation integration takes a function f to its indefinite integral y (i.e., to

any function y such that y0 D f ; the function y is determined by the function f
up to an additive constant).

5. The operation solving an algebraic equation takes functions f1; : : : ; fn to the
function y such that yn C f1y

n�1 C � � � C fn D 0 (the function y is not quite
uniquely determined by the functions f1; : : : ; fn, since an algebraic equation of
degree n can have n solutions).

We can now return to the definition of Liouvillian classes of functions of a single
variable.
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1.2.2 Elementary Functions of One Variable

List of basic functions:

• Basic elementary functions.

List of admissible operations:

• Compositions
• Arithmetic operations
• Differentiation

All elementary functions are given by formulas such as the following:

f .x/ D arctan.exp.sin x/C cosx/:

1.2.3 Functions of One Variable Representable by Quadrature

List of basic functions

• Basic elementary functions

List of admissible operations:

• Composition
• Arithmetic operations
• Differentiation
• Integration

For example, the elliptic integral

f .x/ D
Z x

x0

dt
p
P.t/

;

where P is a cubic polynomial, is representable by quadratures. However, Liouville
showed that if the polynomial P has no multiple roots, then the function f is not
elementary.

Generalized elementary functions of one variable This class of functions is
defined in the same way as the class of elementary functions. We only need to add
the operation of solving algebraic equations to the list of admissible operations.

Functions of one variable representable by generalized quadratures This class
of functions is defined in the same way as the class of functions representable by
quadratures. We only need to add the operation of solving algebraic equations to
the list of admissible operations. Let us now define two more classes of functions
similar to Liouvillian classes.
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Functions of one variable representable by k-radicals This class of functions is
defined in the same way as the class of functions representable by radicals. We only
need to add the operation of solving algebraic equations of degree � k to the list of
admissible operations.

Functions of one variable representable by k-quadratures This class of func-
tions is defined in the same way as the class of functions representable by
quadratures. We only need to add the operation of solving algebraic equations of
degree at most k to the list of admissible operations.

1.3 A Bit of History

The first rigorous proofs of unsolvability of some equations by quadratures and
by elementary functions were obtained in the middle of the nineteenth century
by Liouville (see [75–77, 86]). Later work of Chebyshev, Mordukhai-Boltovski,
Ostrovskii, Ritt, Risch, Rosenlicht, Davenport, Singer, and Bronstein have elabo-
rated on Liouville’s results. A bibliography on this subject can be found in [93].

According to Liouville’s theory of elementary functions, “sufficiently simple”
equations have either “sufficiently simple” solutions or no explicit solutions at all.
In some cases, the results go all the way to algorithms that either provide a proof of
unsolvability of an equation in explicit form or construct an explicit solution.

Liouville’s theory answers questions such as the following:

1. Under what conditions is an indefinite integral of an elementary function also an
elementary function?

2. Under what conditions are all solutions of a linear differential equation all of
whose coefficients are rational functions representable by generalized quadra-
tures?

To demonstrate Liouville’s method, we will give a proof of his theorem about
integrals (see Sect. 1.6) and consider several applications of this theorem. Let ˛ D
R.z; u/ dz be a 1-form, whereR is a rational function of two variables, z is a complex
variable, and u is a function of z. In Sect. 1.7, we consider the case that u is the
natural logarithm of a rational function f of z, that is, u D logf .z/. A procedure
will be explained that allows us either to find an indefinite integral of ˛ explicitly
or to prove that it is not a generalized elementary function. In Sect. 1.8, a similar
result is described in the case that u is the exponential of a rational function f of z,
u D expf .z/. The case of an abelian 1-form ˛, where u is an algebraic function of z,
is considered in Sect. 1.9. Necessary and sufficient conditions for the elementarity of
an abelian integral are described. These conditions are hard to verify. In this sense,
the algebraic case is more complicated than the logarithmic and the exponential
cases. Sections 1.6–1.9 are not necessary for understanding the remainder of the
book and can be omitted. To avoid references to these sections, we repeat, in Chap. 3,
simple and short computations related to adjoining an integral, an exponential of an
integral, and a root of an algebraic equation to a differential field.
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In Sect. 1.4, we give significantly simpler definitions of Liouvillian classes of
functions, due to Liouville (for example, that of the class of elementary functions).
We explain how exactly Liouville succeeded in algebraizing the questions of
solvability of equations by elementary functions or by other Liouvillian classes of
functions. Liouville extensions of functional differential fields are constructed in
Sect. 1.5.

In Sect. 1.10, we state some results from Liouville’s theory concerning questions
of solvability of linear differential equations. A more complete answer to this
question is given by differential Galois theory (see Chap. 3).

1.4 New Definitions of Liouvillian Classes of Functions

Liouville algebraized the problem of solvability by elementary functions and by
quadratures. The main obstacle in the algebraization is the absolutely nonalgebraic
operation of composition. Liouville circumvented this obstacle in the following
way: He associated to every function g from the list of basic functions the operation
of postcomposition with this function. This operation takes a function f to the
function g ı f . Liouville noted that all basic elementary functions can be reduced
to the logarithm and the exponential (see Lemma 1.2 below). The compositions
y D expf and z D logf can be regarded as solutions of the equations y0 D f 0y
and z0 D f 0=f . Thus, within Liouvillian classes of functions, it suffices to consider
operations of solving some simple differential equations. After that, the solvability
problem for Liouvillian classes of functions becomes differential-algebraic, and
carries over to abstract differential fields. Let us proceed with the realization of
this plan.

We will now continue the list of classical operations (the beginning of the list is
given in the previous section).

List of classical operations (continued):

6. The operation exponentiation takes a function f to the function expf .
7. The operation of taking the logarithm, which we shall call logarithmation, takes

a function f to the function logf .

We will now give new definitions for transcendental Liouvillian classes of
functions.

1.4.1 Elementary Functions of One Variable

List of basic functions:

• All complex constants
• An independent variable x
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List of admissible operations:

• Exponentiation
• Logarithmation
• Arithmetic operations
• Differentiation

1.4.2 Functions of One Variable Representable by Quadratures

List of basic functions

• All complex constants

List of admissible operations:

• Exponentiation
• Arithmetic operations
• Differentiation
• Integration

1.4.3 Generalized Elementary Functions of One Variable and
Functions of One Variable Representable by Generalized
Quadratures and k-Quadratures

These functions are defined in the same way as the corresponding nongeneralized
classes of functions; we have only to add the operation of solving algebraic
equations or the operation of solving algebraic equations of degree � k to the list
of admissible operations.

Lemma 1.2 Basic elementary functions can be expressed through exponentials
and logarithms with the help of complex constants, arithmetic operations, and
compositions.

Proof For a power function x˛ , the required expression is given by the equality
x˛ D exp.˛ logx/. For the trigonometric functions, the required expressions follow
from Euler’s formula eaCbi D ea.cos b C i sin b/. For real values of x, we have

sin x D 1

2i

�
eix � e�ix

�
and cosx D 1

2

�
eix C e�ix

�
:

By analyticity, the same formulas remain true for all complex values of x. The
tangent and the cotangent functions are expressed through the sine and the cosine.
Let us now show that for all real x, the equality
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arctanx D 1

2i
log z

holds, where

z D 1C ix

1 � ix
:

Obviously,

jzj D 1; arg z D 2 arg.1C ix/; tan.arg.1C ix// D x;

which proves the desired equality. By analyticity, the same equality also holds for
all complex values of x. The remaining inverse trigonometric functions can be
expressed through the arctangent. Namely,

arccotx D �

2
� arctanx; arcsin x D arctan

xp
1 � x2

; arccos D �

2
� arcsin x:

The square root that appears in the expression for the function arcsin can be
expressed through the exponential and the logarithm: x1=2 D exp

�
1
2

logx
�
. The

lemma is proved. ut
Theorem 1.3 For every transcendental Liouvillian class of functions, the defini-
tions in this section and those in Sect. 1.2 are equivalent.

Proof In one direction, the theorem is obvious: it is clear that every function
belonging to some Liouvillian class of functions in the sense of the new definition
belongs to the same class in the sense of the old definition.

Let us prove the converse. By Lemma 1.2, the basic elementary functions lie
in the class of elementary functions and in the class of generalized elementary
functions in the sense of the new definition. It follows from the same lemma that
the classes of functions representable by quadratures, generalized quadratures, and
k-quadratures in the sense of the new definition also contain the basic elementary
functions. Indeed, the independent variable x belongs to these classes, since it can
be obtained as the integral of the constant function 1, since x0 D 1. Instead of taking
the logarithm, which is not among the admissible operations in these classes, one
can use integration, since .logf /0 D f 0=f .

It remains to show that the Liouvillian classes of functions in the sense of the new
definition are stable under composition. The reason that they are is the following:
composition commutes with all other operations that appear in the new definition
of function classes, except for differentiation and integration. Thus, for example,
the result of the operation exp applied to the composition g ı f coincides with the
composition of the functions expg and f , i.e., exp.g ıf / D .expg/ıf . Similarly,

log.g ı f / D .logg/ ı f;
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.g1 ˙ g2/ ı f D .g1 ı f /˙ .g2 ı f /;
.g1g2/ ı f D .g1 ı f /.g2 ı f /;
.g1=g2/ ı f D .g1 ı f /=.g2 ı f /:

If a function y satisfies an equation of the form yn C g1y
n�1 C � � � C gn D 0, then

the function .y ı f / satisfies the equation .y ı f /n C .g1 ı f /.y ı f /n�1 C � � � C
.gn ı f / D 0.

For differentiation and integration, we have the following simple commutation
relations with the operation of composition: .g/0 ıf D .gıf /0.f 0/�1 (if a function
f is constant, then the function .g/0 ı f is also constant), and if y is an indefinite
integral of a function g, then y ı f is an indefinite integral of the function .g ı
f /f 0 (in other words, composing the integral of a function g with a function f
corresponds to the integration of the function g ı f multiplied by the function f 0).

This implies that the Liouvillian classes in the sense of the new definition are
stable under composition. Indeed, if a function g is obtained from constants (or
from constants and the independent variable) by operations discussed above, then
the function g ı f is obtained by applying the same operations, or almost the same
as in the case of integration and differentiation, to the function f . The theorem is
proved. ut
Remark 1.4 It is easy to see that differentiation can also be excluded from the lists
of admissible operations for the Liouvillian classes of functions. To prove this,
it suffices to use the explicit computation for the derivatives of the exponential
and the logarithmic functions and the rules for differentiating formulas containing
compositions and arithmetic operations. However, the exclusion of differentiation
does not help in the problem of solvability of equations in finite terms (sometimes,
the exclusion of differentiation makes it possible to state a result in a more invariant
form; see the second formulation of Liouville’s theorem on abelian integrals from
Sect. 1.9).

1.5 Liouville Extensions of Abstract and Functional
Differential Fields

A field K is said to be a differential field if an additive map a 7! a0 is defined
that satisfies the Leibniz rule .ab/0 D a0b C ab0. Such a map a 7! a0 is called a
derivation. If a particular derivation is fixed, the element a0 is sometimes called the
derivative of a. The operation of taking derivatives is called differentiation.

An element y of a differential fieldK is called a constant if y0 D 0. All constants
in a differential field form a subfield, which is called the field of constants. In all
cases that are of interest to us, the field of constants is the field of complex numbers.
We shall always assume in the sequel that the differential field has characteristic
zero and an algebraically closed field of constants.
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An element y of a differential field is said to be

• An exponential of an element a if y0 D a0y
• An exponential of integral of an element a if y0 D ay (we use “exponential of

integral” as an indivisible term)
• A logarithm of an element a if y0 D a0=a
• An integral of an element a if y0 D a

In each of these cases, y is defined only up to an additive or multiplicative constant.
Suppose that a differential field K and a set M lie in some differential field F .

The adjunction of the set M to the differential field K is the minimal differential
fieldKhM i containing both the fieldK and the setM . We will refer to the transition
fromK to KhM i as adjoining the set M to the field K .

A differential field F containing a differential field K and having the same field
of constants is said to be an elementary extension of the fieldK if there exists a chain
of differential fieldsK D F1 � � � � � Fn D F such that for every i D 1; : : : ; n� 1,
the field FiC1 D Fi hxi i is obtained by adjoining an element xi to the field Fi , and
xi is an exponential or a logarithm of some element ai from the field Fi . An element
a 2 F is said to be elementary overK ,K � F , if it is contained in some elementary
extension of the field K .

A generalized elementary extension, a Liouville extension, a generalized Liou-
ville extension, and a k-Liouville extension of a fieldK are defined in a similar way.
In the construction of generalized elementary extensions, one is allowed to adjoin
exponentials and logarithms and to take algebraic extensions. In the construction of
Liouville extensions, one is allowed to adjoin integrals and exponentials of integrals.
In generalized Liouville extensions and k-Liouville extensions, one is also allowed
to take algebraic extensions and to adjoin solutions of algebraic equations of degree
at most k. An element a 2 F is said to be generalized elementary (representable
by quadratures, by generalized quadratures, by k-quadratures) over K , K � F ,
if a is contained in some generalized elementary extension (Liouville extension,
generalized Liouville extension, k-Liouville extension) of the field K .

Remark 1.5 The equation for an exponential of integral is simpler than the equation
for an exponential. That is why in the definition of Liouville extensions, etc., we
adjoin exponentials of integrals. Instead, we could adjoin exponentials and integrals
separately.

Let us now turn to functional differential fields. We will be dealing with this
particular type of field in this book (although some results can be easily extended to
abstract differential fields).

Let K be a subfield in the field of all meromorphic functions on a connected
domain U of the Riemann sphere. Suppose that K contains all complex constants
and is stable under differentiation (i.e., if f 2 K , then f 0 2 K). Then K provides
an example of a functional differential field. Let us now give a general definition.
Let V; v be a pair consisting of a connected Riemann surface V and a meromorphic
vector field v defined on it. The Lie derivativeLv along the vector field v acts on the
field F of all meromorphic functions on the surface V and defines the derivation


