Dragos B. Chirila - Gerrit Lohmann

Introduction to
Modern Fortran
for the Earth
System Sciences

@ Springer

Introduction to Modern Fortran for the Earth
System Sciences

Dragos B. Chirila - Gerrit Lohmann

Introduction to Modern
Fortran for the Earth
System Sciences

@ Springer

Dragos B. Chirila

Gerrit Lohmann

Climate Sciences, Paleo-climate Dynamics
Alfred-Wegener-Institute

Bremerhaven

Germany

ISBN 978-3-642-37008-3 ISBN 978-3-642-37009-0 (eBook)
DOI 10.1007/978-3-642-37009-0

Library of Congress Control Number: 2014953236
Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

We dedicate this text to the contributors
(too numerous to acknowledge individually)
of the free- and open-source-software
community, who created the tools that
enabled our work.

Preface

“Consistently separating words by spaces became a general custom about the tenth century
A.D., and lasted until about 1957, when FORTRAN 77 abandoned the practice.”

(Fortran 77 4.0 Reference Manual, Sun Microsystems, Inc)

Since the beginning of the computing age, researchers have been developing
numerical Earth system models. Such tools, which are now used for the study of
climate dynamics on decadal- to multi-millennial timescales, provide a virtual
laboratory for the numerical simulation of past, present, and future climate transi-
tions and ecosystems. In a way, the models bridge the gap between theoretical
science (where simplifications are necessary to make the equations tractable) and
the experimental science (where the full complexity of nature manifests itself, as
multiple phenomena often interact in nonlinear ways, to form the final signal
measured by the apparatus). Models provide intermediate subdivisions between
these two extremes, allowing the scientist to choose a level of detail that (ideally)
strikes a balance between accuracy and computational effort.

The development of models has accelerated in the last 50 years, largely due to
decreasing costs of computing hardware and emergence of programming languages
accessible to the non-specialist. Fortran, in particular, was the first such language
targeting scientists and engineers, therefore it is not surprising that many models
were written using this technology. To many, however, this long history also causes
Fortran to be associated with the punched cards of yesteryear and obsolete software
practices (hence the quotation above). A programming language, however, evolves
to meet the demands of its community, and such was also the case with Fortran:
object-oriented and generic programming, a rich array language, standardized
interoperability with the C-language, free-format (!), and many more features are
now available to Fortran programmers who are willing to take notice.

Unfortunately, many of the newer features and software engineering practices
that we consider important are only discussed in advanced books or in specialized
reference documentation. We believe this unnecessarily limits (or delays) the
exposure of beginning scientific programmers to tools, which were ultimately
designed to make their work more manageable. This observation motivated us to

vii

viii Preface

write the present book, which provides a short “getting started” guide to modern
Fortran, hopefully useful to newcomers to the field of numerical computing within
Earth system science (ESS) (although we believe that the discussion and code
examples can also be followed by practitioners from other fields). At the same time,
we hope that readers familiar with other programming languages (or with earlier
revisions of the Fortran-standard) will find here useful answers for the “How do I do
X in modern Fortran?” types of questions.

Chapters Outline

In Chap. 1, we start with a brief history of Fortran, and succinctly describe the basic
tools necessary for working with this book. In Chap. 2, we expose the fundamental
elements of programming in Fortran (variables, I/O, flow-control constructs, the
Fortran array language, and some useful intrinsic procedures). In Chap. 3, we
discuss the two main approaches supported by modern Fortran for structuring code:
structured programming (SP) and object-oriented programming (OOP). The latter
in particular is a relative newcomer in the Fortran world.

The example-programs (of which there are many in the book) accompanying the
first three chapters are intentionally simple (but hopefully still not completely unin-
teresting), to avoid obfuscating the basic language elements. After practicing with
these, the reader should be well equipped to follow Chap. 4, where we illustrate how
the techniques from the previous chapters may be used for writing more complex
applications. Although restricted to elementary numerical methods, the case studies
therein should resemble more of what can be encountered in actual ESS models.

Finally, in Chap. 5 we present additional techniques, which are especially rel-
evant in ESS. Some of these (e.g., namelists, interoperability with C, interacting
with the operating system (OS)) are Fortran features. Other topics (I/O with
NETwork Common Data Format (netCDF), shared-memory parallelization, build
systems, etc.) are outside the scope of the Fortran language-standard, but none-
theless essential to any Fortran programmer (the netCDF is ESS-specific).

Language-Standards Covered

The core of the book is based on Fortran 95." Building upon this basis, we also
introduce many newer additions (from Fortran 2003 and Fortran 20082), which
complete the discussion or are simply “too good to miss”—for example OOP,

! This was, at the time of writing, the most recent version with ubiquitous compiler support.

2 Many compilers nowadays have complete or nearly complete support for these newer language-
standard revisions.

http://dx.doi.org/10.1007/978-3-642-37009-0_1
http://dx.doi.org/10.1007/978-3-642-37009-0_2
http://dx.doi.org/10.1007/978-3-642-37009-0_3
http://dx.doi.org/10.1007/978-3-642-37009-0_4
http://dx.doi.org/10.1007/978-3-642-37009-0_5

Preface ix

interoperability with the C-language, OS integration, newer refinements to the
Fortran array language, etc.

Disclaimers

e Given the wide range of topics covered and the aim to keep our text brief, it
is obvious that we cannot claim to be comprehensive. Indeed, good
monographs exist for many topics, which we only superficially mention
(many further references are cited in this text).

e Finally, we often provide advice related to what we consider good software
practices. This selection is, of course, subjective, and influenced by our
background and experiences. Specific project conventions may require the
reader to adapt/ignore some of our recommendations.

How to Use this Book

Being primarily a compact guide to modern Fortran for beginners, this book is
intended to be read from start to finish. However, one cannot learn to program
effectively in a new language just by reading a text—as in any other “craft”,
practice is the best way to improve. In programming, this implies reading and
writing/testing as much code as possible. We hope the reader will start applying this
philosophy while reading this book, by typing, compiling, and extending the code
samples provided.’

Readers with programming experience may also use “random access,” to select
the topics that interest them most—the chapters are largely independent, with the
exception of Chap. 5, where several techniques are demonstrated by extending
examples from Chap. 4.

Due to the “breadth” of the book, many technical aspects are covered only
superficially. To keep the main text brief, we opted to provide as footnotes sug-
gestions for further exploration. Unfortunately, this led to a significant number of
footnotes at times; the reader is encouraged to ignore these, at least during a first
reading, if they prove to be a distraction.

3 Nonetheless, the programs are also available for download from SpringerLink. The authors
also provide a code repository on GitHub: assuming a working installation of the git version-
control system is available, the code repository can be “cloned” with the command:

git clone https://github.com/dchirila/imf_ess.git |

http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://dx.doi.org/10.1007/978-3-642-37009-0_4

X Preface

Acknowledgments

The idea of writing this book crystallized in the spring of 2012. Almost 2 years
later, we have the final manuscript in front of us. Contributions from many people
were essential during this period. They all helped in various ways, through dis-
cussions about the book and related topics, requests for clarifications, ideas for
topics to include, and corrections of our English and of other mistakes, greatly
improving the end result. In particular, we acknowledge the help of many (past and
present) colleagues from the Climate Sciences division at Alfred-Wegener-Institut,
Helmholtz-Zentrum fiir Polar- und Meeresforschung (AWI)—especially Manfred
Mudelsee, Malte Thoma, Tilman Hesse, Veronika Emetc, Sebastian Hinck,
Christian Stepanek, Dirk Barbi, Mathias van Caspel, Sergey Danilov, and Dmitry
Sidorenko. We thank Stefanie Klebe for a very thorough reading of the final draft,
which significantly improved the quality of the book.

In addition to our AWI colleagues, we received valuable feedback from Li-Shi
Luo, Miguel A. Bermejo, and Dag Lohmann.

Our editors from Springer were very helpful during the writing of this book. In
particular, we thank Marion Schneider, Johanna Schwarz, Carlo Schneider, Marcus
Arul Johny, Ashok Arumairaj, Janet Sterritt, Agata Oelschlaeger, Dhanusha M. and
Janani J. for kindly answering our questions and for their support.

Finally, we would like to thank our families and friends, who contributed with
encouragement, support, and patience while we worked on this project.

Bremerhaven, Germany, May 2014 Dragos B. Chirila
Gerrit Lohmann

Contents

1 General Concepts.
History and Evolution of the Language.
Essential Toolkit (Compilers).
Basic Programming Workflow

Fortran Basics

Program Layout.
Keywords, Identifiers and Code Formatting.
Scalar Values and Constants

Declarations for Scalars of Numeric Types
Representation of Numbers and Limitations

of Computer Arithmetic
Working with Scalars of Numeric Types.
The Kind type-parameter
Some Numeric Intrinsic Functions
Scalars of Non-numeric Types.

Input/Output I/0)

List-Directed Formatted I/O to Screen/from

Keyboard
Customizing Format-Specifications.
Information Pathways: Customizing I/O Channels
The Need for More Advanced I/O Facilities

Program Flow-Control Elements (i f, case, Loops, etc.)

if Construct. e
case Construct.
Ao ConsStruct vt

Arrays and Array Notation

1.1

1.2

1.3

References

2

2.1

2.2

2.3
2.3.1
232
2.3.3
2.34
2.3.5
2.3.6

2.4
2.4.1
2.4.2
243
2.4.4

2.5
2.5.1
2.52
253

2.6
2.6.1
2.6.2
2.6.3

Declaring Arrays
Layout of Elements in Memory
Selecting Array Elements

DN W N = =

— O 00 3

—_

14
15
18
18
21

22
25
30
36
37
37
40
42
48
49
50
51

xi

http://dx.doi.org/10.1007/978-3-642-37009-0_1
http://dx.doi.org/10.1007/978-3-642-37009-0_1
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_1#Bib1
http://dx.doi.org/10.1007/978-3-642-37009-0_2
http://dx.doi.org/10.1007/978-3-642-37009-0_2
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec11
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec11
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec12
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec12
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec13
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec13
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec14
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec14
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec15
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec15
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec15
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec17
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec17
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec18
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec18
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec19
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec19
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec20
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec20
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec21
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec21
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec22
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec22
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec26
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec26
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec27
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec27
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec28
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec28
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec29
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec29

xii

2.7

264
2.6.5
2.6.6
2.6.7
2.6.8

Contents

Writing Data into Arrays.covvvnn....
/O for Arrays
Array Expressions
Using Arrays for Flow-Control
Memory Allocation and Dynamic Arrays

More Intrinsic Procedures

2.7.1
272

References

Acquiring Date and Time Information.
Random Number Generators (RNGs)

Elements of Software Engineering.
Motivation.ttt e
Structured Programming (SP) in Fortran

3.1
32

33

34

Applications

4.1

4.2

4.3

321
322

323
324
325
3.2.6
3.2.7

Subprograms and Program Units
Procedures in Fortran

(function and subroutine)................
Procedure Interfaces
Procedure-Local Data
Function or Subroutine?
Avoiding Name Clashes for Procedures
Modules

Elements of Object-Oriented Programming (OOP)

3.3.1
332
333
334
335

Solution Process with OOP
Derived Data Types (DTs).
Inheritance (type Extension) and Aggregation
Procedure Overloading
Polymorphism

Generic Programming (GP)
References

Heat Diffusion.

4.1.1
4.1.2
413

Formulation in the Dimensionless System
Numerical Discretization of the Problem
Implementation (Using OOP).

Climate Box Model

4.2.1
422

Numerical Discretization.
Implementation (OOP/SP Hybrid).

Rayleigh-Bénard (RB) Convection in 2D.

43.1
432
433

Governing Equations
Problem Formulation in Dimensionless Form.
Numerical Algorithm Using the Lattice Boltzmann

Method (LBM)

53
56
58
60
64
67
67
68
70

71
71
72
73

75
78
&7
90
92
93

http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec30
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec30
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec37
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec37
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec43
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec43
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec44
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec44
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec47
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec47
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec48
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec48
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec49
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec49
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec50
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Sec50
http://dx.doi.org/10.1007/978-3-642-37009-0_2#Bib1
http://dx.doi.org/10.1007/978-3-642-37009-0_3
http://dx.doi.org/10.1007/978-3-642-37009-0_3
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec7
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec7
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec12
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec12
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec17
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec17
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec18
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec18
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec20
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec20
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec21
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec21
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec22
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec22
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec26
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec26
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec30
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec30
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec31
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec31
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec32
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Sec32
http://dx.doi.org/10.1007/978-3-642-37009-0_3#Bib1
http://dx.doi.org/10.1007/978-3-642-37009-0_4
http://dx.doi.org/10.1007/978-3-642-37009-0_4
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec1
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec4
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec5
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec5
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec6
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec6
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec7
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec7
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec8
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec8
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec9
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec9
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec10
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec10
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec11
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec11
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec11

Contents

4.3.4 Connecting the Numerical and Dimensionless
Systems of Units
4.3.5 Numerical Implementation in Fortran (OOP)
References

More Advanced Techniques
5.1 Multiple Source Files and Software Build Systems.
5.1.1 Object Files, Static and Shared Libraries.
5.1.2 Introduction to GNU Make (gmake)..............
5.2 Input/Outputo oi it
52.1 Namelist /O
5.2.2 /O with the NETwork Common Data Format
MmetCDF).
5.3 A Taste of Parallelization
5.3.1 Parallel Hardware Everywhere
5.3.2 Calibrating Expectations for Parallelization
5.3.3 Software Technologies for Parallelism.
5.34 Introduction to Open MultiProcessing (OpenMP)
5.3.5 Case Studies for Parallelization
5.4 Interoperability with C
5.4.1 Crossing the Language Barrier with Procedures

5.4.2 Passing Arguments Across the Language Barrier
5.5 Interacting with the Operating System (OS).
5.5.1 Reading Command Line Arguments (Fortran 2003) . . .
5.5.2 Launching Another Program (Fortran 2008).
5.6 Useful Tools for Scaling Software Projects
5.6.1 Scripting Languages
5.6.2 Software Libraries
5.6.3 Visualization
5.64 Version Control
56.5 Testing i
References

Xiii

http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec14
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec14
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec14
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec15
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Sec15
http://dx.doi.org/10.1007/978-3-642-37009-0_4#Bib1
http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec2
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec7
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec7
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec13
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec13
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec16
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec22
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec22
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec23
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec23
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec24
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec24
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec26
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec26
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec27
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec27
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec33
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec33
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec38
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec38
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec39
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec39
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec39
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec42
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec42
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec46
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec46
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec47
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec47
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec48
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec48
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec49
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec49
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec50
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec50
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec51
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec51
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec52
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec52
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec53
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec53
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec54
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Sec54
http://dx.doi.org/10.1007/978-3-642-37009-0_5#Bib1

Acronyms

ADE
ADT
API
BC
CA
CAF
CF

CFL
CLI
CPU
DAG
DSL
DT
EBM
EBNF
ESS
FD
FE
FV
GP
GPGPU
GUI
HDD
HPC
HLL
/0
IC
ID
IDE

Alternating-direction explicit
Abstract data type

Application programming interface
Boundary condition

Cellular automata

Co-array Fortran (http://www.co-array.org/)

Climate forecast (http://cf-pcmdi.llnl.gov/documents/

cf-conventions)
Courant-Friedrichs-Levy
Command line interface
Central processing unit
Directed acyclic graph
Domain-specific language
Derived Data Type

Energy balance model
Extended Backus-Naur form
Earth system science

Finite differences

Finite elements

Finite volumes

Generic programming
General-purpose graphics processing unit
Graphical user interface
Hard disk drive

High performance computing
High-level language
Input/output

Initial condition

Identifier

Integrated development environment

XV

http://www.co-array.org/
http://cf-pcmdi.llnl.gov/documents/cf-conventions
http://cf-pcmdi.llnl.gov/documents/cf-conventions

Xvi Acronyms

ILP Instruction-level parallelism
LBM Lattice Boltzmann method
LGCA Lattice gas cellular automata
LHS Left-hand side

MPI Message Passing Interface
MRT Multiple relaxation times
NAS Network-attached storage
ODE Ordinary differential equation
00)3 Object-oriented programming

OpenCL Open Computing Language
OpenMP Open MultiProcessing

oS Operating system

PDE Partial differential equation
PDF Particle distribution function
PGAS Partitioned Global Address Space (http://www.pgas.org/)
RAM Random access memory

RB Rayleigh-Bénard

RHS Right-hand side

RNG Random number generator
RPM Revolutions per minute

SIMD Single instruction, multiple data
SP Structured programming

SPMD Single program, multiple data
TDD Test-driven development

TRT Two relaxation times

Fortran Compilers

gfortran GNU Fortran Compiler (see entry on gcc)
ifort Intel Fortran Compiler® (http://software.intel.com/en-
us/fortran-compilers)

Profiling Tools

gprof GNU Profiler (part of binutils) (http://www.gnu.org/
software/binutils/)

VTune Intel VTune Amplifier XE 2013 (https://software.intel.
com/en-us/intel-vtune-amplifier-xe)

Other Software Utilities

bash Bourne-again shell (http://www.gnu.org/software/bash)
CMake Cross Platform Make (http://www.cmake.org)

http://www.pgas.org/
http://software.intel.com/en-us/fortran-compilers
http://software.intel.com/en-us/fortran-compilers
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.gnu.org/software/bash
http://www.cmake.org

Acronyms

Cygwin
gcc

1d
gmake
MinGW
SCons

Visualiz
CDO

GMT
gnuplot
NCO
ParaVie

Xvii

http://www.cygwin.com/index.html

GNU Compiler Collection (http://gcc.gnu.org)

GNU linker (http://www.gnu.org/software/binutils)
GNU Make (http://www.gnu.org/software/make)
Minimalist GNU for Windows (http://www.mingw.org)
Software Construction tool (http://www.scons.org)

ation/Post-processing Tools

Climate Data Operators (https://code.zmaw.de/projects/
cdo)
Generic Mapping Tools (http://gmt.soest.hawaii.edu)
http://www.gnuplot.info
netCDF Operators (http://nco.sourceforge.net)

w Parallel Visualization Application (http://www.paraview.org)

Operating Systems

AIX
Linux
0SX
Windows
Unix

IBM Advanced Interactive eXecutive
GNU/Linux

Mac OS X*

Microsoft Windows®
Unk®(http://www.unix.org)

Text Editors

Emacs
gedit
joe
Kate
Vim

GNU Emacs text editor (http://www.gnu.org/software/emacs)
Gedit text editor (http://projects.gnome.org/gedit)

Joe’s Own Editor (http://joe-editor.sourceforge.net)
Kate text editor (http://kate-editor.org)

Vim text editor (http://www.vim.org)

Software Libraries

ACML

ATLAS

BLAS
Boost.

Core Math Library (http://developer.amd.com/
tools/cpu-development/amd-core-math-
library-acml)

Automatically Tuned Linear Algebra Software (http://
math-atlas.sourceforge.net)

Basic Linear Algebra Subprograms
http://www.boost.org/libs/program_

Program_Options options

ESSL

Engineering Scientific Subroutine Library

http://www.cygwin.com/index.html
http://gcc.gnu.org
http://www.gnu.org/software/binutils
http://www.gnu.org/software/make
http://www.mingw.org
http://www.scons.org
https://code.zmaw.de/projects/cdo
https://code.zmaw.de/projects/cdo
http://gmt.soest.hawaii.edu
http://www.gnuplot.info
http://nco.sourceforge.net
http://www.paraview.org
http://www.unix.org
http://www.gnu.org/software/emacs
http://projects.gnome.org/gedit
http://joe-editor.sourceforge.net
http://kate-editor.org
http://www.vim.org
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml
http://developer.amd.com/tools/cpu-development/amd-core-math-library-acml
http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.boost.org/libs/program_options
http://www.boost.org/libs/program_options

Xviii
fruit
GAMS
HDF5
JAPT
LAPACK
MKL
netCDF
netlib

Winterac
zZenity

Other Pr
C

C++
COBOL
Java
MATLAB
octave
Pascal

Python
R

Acronyms

FORTRAN Unit Test Framework (http://
sourceforge.net/projects/fortranxunit)
Guide to Available Mathematical Software (http://
gams.nist.gov)
Hierarchical Data Format—Version 5 (http://www.
hdfgroup.org/HDF5/)
Java Application Programming Interface (http: / /www.
japi.de)
Linear Algebra PACKage (http://www.netlib.
org/lapack)
Intel® Math Kernel Library (http://software.
intel.com/en-us/intel-mkl)
NETwork Common Data Format (http://www.
unidata.ucar.edu)
http://www.netlib.org

ter http://www.winteracter.com
https://help.gnome.org/users/zenity/
stable

ogramming Languages

http://en.wikipedia.org/wiki/C_ (programming_
language)
http://en.wikipedia.org/wiki/C%2B%2B

Common Business Oriented Language
http://www.java.com/en/
hdmﬁxIﬁbmﬁkﬂy®(http://www.mathworks.cono

GNU Octave (http://www.gnu.org/software/octave)
http://en.wikipedia.org/wiki/Pascal_
(programming_language)

http://www.python.org

The R Project for Statistical Computing (http://r-project.org)

Version Control Software

git

mercuria
monotone
subversi

http://www.git-scm.com

1 http://mercurial.selenic.com
http://www.monotone.ca

on http://subversion.apache.org

http://sourceforge.net/projects/fortranxunit
http://sourceforge.net/projects/fortranxunit
http://gams.nist.gov
http://gams.nist.gov
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.japi.de
http://www.japi.de
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://www.unidata.ucar.edu
http://www.unidata.ucar.edu
http://www.netlib.org
http://www.winteracter.com
https://help.gnome.org/users/zenity/stable
https://help.gnome.org/users/zenity/stable
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://www.java.com/en/
http://www.mathworks.com
http://www.gnu.org/software/octave
http://en.wikipedia.org/wiki/Pascal_(programming_language
http://en.wikipedia.org/wiki/Pascal_(programming_language
http://www.python.org
http://r-project.org
http://www.git-scm.com
http://mercurial.selenic.com
http://www.monotone.ca
http://subversion.apache.org

Acronyms Xix

Earth System Science Models

Planet http://www.mi.uni-hamburg.de/Planet-
Simulator Simul.216.0.html?&L=3

Organizations and Companies

AMD Advanced Micro Devices Inc.

ANL Argonne National Laboratory (http://www.anl.gov)
Apple Apple Inc.

ASCII American Standard Code for Information Interchange

AWI Alfred-Wegener-Institut, Helmholtz-Zentrum fiir Polar- und Meeresfors-
chung (http://www.awi .de)
GNU GNU project—software project backed by the Free Software Foundation

(FSF); the (recursive) acronym stands for GNU’s Not Unix! (http://
WWW . gnu . org)

IBM International Business Machines Inc.
Intel INTegrated ELectronics Inc.
OGC Open Geospatial Consortium (http://www.opengeospatial.

org/standards/netcdf)

UCAR University Corporation for Atmospheric Research (https://www2 .
ucar.edu)

WMO World Meteorological Organization (http://www.wmo.int)

Conventions in this Text

The following conventions are used for the code samples:

1. Formatting and color scheme
Programs and code samples that would normally be typed in an editor, are
shown in boxes, with the following conventions in place:

e keywords®: dark gray, bold font
e character strings: medium gray, normal font
e comments: medium gray, italic font

2. Code placeholders

e Optional items are emphasized using square brackets. When the reader wishes
to include them within programs, the brackets should be removed.

4 We choose to typeset Fortran keywords with lowercase letters, although the language is case-
insensitive everywhere except inside character strings (so PROGRAM, program or PrOgRaM is
all the same to the compiler).

http://www.mi.uni-hamburg.de/Planet-Simul.216.0.html?&L=3
http://www.mi.uni-hamburg.de/Planet-Simul.216.0.html?&L=3
http://www.anl.gov
http://www.awi.de
http://www.gnu.org
http://www.gnu.org
http://www.opengeospatial.org/standards/netcdf
http://www.opengeospatial.org/standards/netcdf
https://www2.ucar.edu
https://www2.ucar.edu
http://www.wmo.int

XX Acronyms

e Mandatory items that should be supplied by readers, as well as invisible
characters are emphasized using angle brackets, as in:

|if (<logical expression>) then

g P

print*, ‘‘Expression was .true.’’
end if

<Enter>
<Space>

It should be easy to infer from the context what these angle bracket expressions
should be replaced with.

e Combinations of optional and mandatory items are sometimes highlighted by
nesting of square and angle brackets, to distinguish the fact that including some
items may unlock additional possible combinations.

3. With the exception of small snippets, code listings are accompanied by a cap-
tion, indicating the corresponding file in the source code tree available for
download. Line numbers are only shown when they are specifically referenced
in the text.

4. Where interaction with the Operating System (OS) is illustrated, we describe the
process for the GNU/Linux (Linux) platform, using Bourne-again shell
(bash), since this environment is easily accessible. Commands corresponding
to such tasks are marked by a leading S$-character (default shell-prompt in
Linux); only the part after this marker should be typed.

5. Exercises are typeset on a dark-gray background, to distinguish them from the

rest of the text.

. Several notes appear as framed boxes on a light gray background.

7. Naming conventions It is usually considered good practice to adopt some rules
for naming entities that are part of the program code. Although different
developers may prefer a different set of such rules, it is generally a good idea to
use a single convention consistently within a project, to reduce the effort
required for understanding the code. Our particular conventions are explained
below.

@)}

Naming Rules for Data

e Variables (both scalars or arrays) are named as things (nouns) or attributes
(adjectives). When they consist of multiple words, camel-case is used, starting
with a lowercase letter:

(temperature, numIterations

e Variables that are part of a user-defined type follow the same rules as above,
except that the first letter is always a lowercase “m”:

LEENX , mOutFilePrefix

Acronyms Xxi

e Constants are written in uppercase, and when they are composed of multiple
words they are separated by underscores:

(PI, MAX_NUM_ITERATIONS J

e User-defined types (analogs of C++ classes) are named as variables (camel-case
nouns), except that they begin with a capital letter:

L[VecZD, OceanBox J

Naming Rules for Procedures (Functions, Subroutines)

e Normal procedures (i.e., those which are not bound to a specific user-defined
type) look similar to usual variables, except that they contain verbs, to emphasize
the function of the procedure:

L[swap, isPrime, computeAverageTemperature J

e Procedures that are bound to a specific type follow the rules above, but also have
the name of the type at the end:

L[swapReal , getMagnitudeVec2D J

This rule is introduced mostly to avoid naming collisions, when the same type-
bound procedure name makes sense for several types (but their implementation
differs). For simplifying the calling of these procedures, we usually define shorter
aliases (which omit the type-name), as explained in Chap. 3.

Naming Rules for Modules and Source Code Files

e For naming Fortran modules which do not encapsulate a user-defined type, we
use nouns and camel-case (first letter being uppercase):

(Utilities, NumericKinds J

A common guideline is to place each module in a separate file; for example,
the modules above would be placed in files | Utilities .f90| and

NumericKinds.f90 |, respectively. However, we do not adhere to this rule until

later in the book, after explaining how to work with projects composed of
multiple files, in Sect. 5.1.

http://dx.doi.org/10.1007/978-3-642-37009-0_3
http://dx.doi.org/10.1007/978-3-642-37009-0_5

XXii Acronyms

e Fortran modules that also encapsulate a user-defined type are named after the

type, with the added prefix :

L[VecQD_class, OceanBox_class J

When these are placed in distinct files, the filename is composed of the module
name, with the added extension . For example, the modules above would

be placed in files Vec2Diclass.f90‘ and ’OceanBoxiclass.f% .

Chapter 1
General Concepts

This chapter introduces the Fortran programming language in the context of numeri-
cal modeling, and in relation to other languages that the reader may have experience
with. Also, we discuss some technical requirements for making the best use of this
book, and provide a brief overview of the typical workflow for writing programs in
Fortran.

1.1 History and Evolution of the Language

In the 1950s, a team from International Business Machines Inc. (IBM) labs led by
John Backus created the Fortran (“mathematical FORmula TRANslation system”)l
language. This was the first high-level language (HLL) to become popular, especially
in the domain of numerical and scientific computing, for which it was primarily
designed. Prior to this development, most computer systems were programmed in
assembly languages, which only add a thin wrapper on top of raw machine language
(generally leading to software which is not portable and more difficult to maintain).
Fortran was widely adopted due to its increased level of abstraction, which made
Fortran programs orders of magnitude more compact than corresponding assembly
programs. This popularity, combined with intentional simplifications of the language
(for example, lack of pointer type in earlier versions), encouraged the development
of excellent optimizing compilers, making Fortran the language of choice for many
demanding scientific applications.

This is also the case for Earth system science (ESS), where Fortran is to date
the most used programming language. The reasons are simple: there is a huge body
of tested Fortran routines, and the language is very suitable for coding physical

! The reader may sometimes encounter the name of the language spelled in all capitalized (as in
FORTRAN), usually referring to the early versions of the language, which officially supported only
uppercase letters to be used in programs. This shortcoming was corrected by the later revisions,
with which we are concerned in the present text.

© Springer-Verlag Berlin Heidelberg 2015 1
D.B. Chirila and G. Lohmann, Introduction to Modern Fortran
for the Earth System Sciences, DOI 10.1007/978-3-642-37009-0_1

2 1 General Concepts

equations. Early model implementations based on Fortran started in the mid of last
century (see e.g. Bryan [1], Platzman [4], Lynch [3] and references therein). The
models predicted how changes in the natural factors that control climate, such as
ocean and atmospheric currents and temperature, could lead to climate change. Cli-
mate models are intended to provide a user-friendly and powerful framework for
simulating real or idealized flows over wide-ranging scales and boundary condi-
tions. With its good support for modular programming, Fortran proved to be well
suited for these tasks.

Certainly, many other languages were introduced over the last 60 years (such as
the COBOL, Pascal, C, C++, Java, etc.), some offering innovative facilities for
expressing algorithm abstractions (such as object-oriented or generic programming).
Interestingly, these languages did not supersede Fortran (at least not in the ESS
community); instead, they inspired the Fortran language-standardization committee
to incorporate such facilities through incremental revisions (Fortran 90, Fortran 95,
Fortran 2003, and Fortran 2008 at the time of writing).

1.2 Essential Toolkit (Compilers)

Fortran is a compiled language, so an ASCII text editor and a compiler should be
enough to get started. A popular compiler is the GNU Fortran Compiler (gfortran),
which is freely available as part of the GNU Compiler Collection (gcc). For users
of Unix-like systems, this should be easily available, either in the system’s package
manager (GNU/Linux (Linux)), or bundled within the XCode developer package
for Mac 0S X® (0SX). It is also possible to install gfortran on Microsoft Win-
dows® (Windows) systems, using the Minimalist GNU for Windows (MinGW) or
Cygwin systems.

Many other compilers exist, some offering useful features like more powerful code
optimizers,? convenient debugging/profiling tools, and/or a user-friendly integrated
development environment (IDE). It is not possible to cover the whole landscape
here—please consult a local expert or system administrator for advice on a suitable
compiler.

The example programs were tested with recent versions of gfortran and of
the Intel Fortran Compiler® (ifort), on Linux. However, the programs should
be easy to adapt to other recent compilers and/or platforms.

2 For most supercomputers, the compilers are usually provided by the hardware vendor, which
allows better tuning of the code to the features of the underlying machine.

1.3 Basic Programming Workflow 3

"EDIT" ___________

myProgram.fo0

"COMPILE" _____._

myProgram.o

(myProgram.obj)

library code
start—up code

"LINK" ----

myProgram

(myProgram.exe)

A4

/ "RUN & EVALUATE RESULTS" /

Fig. 1.1 Schematic of programming workflow in Fortran. Files are represented as white rounded
boxes, and external programs as green boxes

1.3 Basic Programming Workflow

From alow-level perspective (i.e. leaving more abstract issues such as program design
aside), development of Fortran programs? is represented schematically in Fig. 1.1.

3 The terms “program” and “(source) code” are used interchangeably within this book; however,
strictly speaking, “code” can also refer to program sub-modules, such as functions, while “program”
usually refers to a complete application, which yields an executable file when processed by a
compiler.

4 1 General Concepts

In the figure, the utilities are shown as green boxes. The process starts with a
text editor,* where the user enters the program code.” Then, the compiler is invoked,
passing the created file as an argument. In Linux, using gfortran, this would be
achieved by typing the following command in a terminal window:

& S gfortran -c myProgram.f90 J

At this point, an additional file (myProgram. o) will be created. This contains
machine code generated from myProgram. £90 which does not contain, however,
any code for libraries that may be needed by your program. It is the job of the linker
to find the missing pieces and to produce the final, executable file. In Linux, the
GNU linker (1d) is normally used for this purpose. For simplicity, it is better to
perform the linking stage also through the compiler, which will call the linker with
the appropriate options in the background:

s 1
k$ gfortran -o myProgram myProgram.o J

(in Windows, replace myProgram. o with myProgram. obj, and myProgram
with myProgram. exe).
This step will create the executable program, which can be run with the command:

1

(s ./myP
LL ./myProgram J

The entire workflow seems deceivingly simple. In reality, problems can appear
at any stage (especially in nontrivial programs), which trigger the need to revise the
program. These iterative improvements of the code are suggested by the dashed lines
in Fig. 1.1. First, the compiler may refuse to produce object-code if the program
does not follow the syntax of the language. Then, the linker may be unable to find
the appropriate libraries to include. Finally, the program may crash, or it may run
but produce unacceptable results. The beginner will usually encounter problems
across all of these ranges. Fortunately, with some practice, the frequency of the (less
interesting) compilation/linking errors decreases.

Compiling and linking in one step. So far, we separated the two phases for pro-
ducing the program executable, to make the reader aware of the distinction (when

4 Word processors are a poor choice here, since they focus on features like advanced formatting,
which the compiler does not understand anyway; instead, a “bare bones” text editor, but with
programming-related features like syntax highlighting and auto-completion, is recommended, for
example: gedit text editor (gedit) or Kate text editor (Kate) are good starting points; Vim text
editor (Vim), GNU Emacs text editor (Emacs) or Joe’s Own Editor (joe) are more advanced
choices, that may pay off on the longer term.

3 Files containing modern Fortran source code usually have the extension . £90, but the reader
may also encounter extensions . £77, . £, or . £or, which correspond to older standards; likewise,
some developers may use the extensions .£95, .£03, or .£08, to highlight use of features
present in the latest revisions of the language—but this practice is discouraged by some authors
(e.g. Lionel [2]). To avoid problems, filenames should also not contain whitespace.

6 Indeed, this resembles the Feynman problem-solving algorithm: (a) write down the problem,
(b) think very hard, and (c) write down the answer.

1.3 Basic Programming Workflow 5

the executable fails to build properly, it is useful as a first step to determine if we
face a compiler or linker error). However, for single-file programs, these steps can
be combined in a single command:

s 1
LL$ gfortran -o myProgram myProgram.f90 J

For programs consisting of several files, compiling and linking by hand is impractical,
and a build system becomes essential (discussed later, in Sect.5.1).

References

1. Bryan, K.: A numerical method for the study of the circulation of the world ocean. J. Comput.
Phys. 4(3), 347-376 (1969)

2. Lionel, S.: Doctor Fortran in “Source Form Just Wants to be Free” (2013). http://software.intel.
com/en-us/blogs/2013/01/11/doctor-fortran-in-source-form-just-wants- to-be-free

3. Lynch, P.: The origins of computer weather prediction and climate modeling. J. Comput. Phys.
227(7), 3431-3444 (2008)

4. Platzman, G.W.: The ENIAC computations of 1950—gateway to numerical weather prediction.
Bull. Am. Meteorol. Soc. 60(4), 302-312 (1979)

http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://software.intel.com/en-us/blogs/2013/01/11/doctor-fortran-in-source-form-just-wants-to-be-free
http://software.intel.com/en-us/blogs/2013/01/11/doctor-fortran-in-source-form-just-wants-to-be-free

Chapter 2
Fortran Basics

In this chapter, we introduce the basic elements of programming using Fortran.
After briefly discussing the overall syntax of the language, we address fundamental
issues like defining variables (of intrinsic type). Next we introduce input/output (1/0),
which provides the primary mechanism for interacting with programs. Afterwards,
we describe some of the flow-control constructs supported by modern Fortran (1 £,
case, and do), which are fundamental to most algorithms. We continue with an
introduction to the Fortran array-language, which is one of the strongest points of
Fortran, of particular significance to scientists and engineers. Finally, the chapter
closes with examples of some intrinsic-functions that are often used (for timing
programs and generating pseudo-random sequences of numbers).

2.1 Program Layout

Every programming language imposes some precise syntax rules, and Fortran is no
exception. These rules are formally grouped in what is denoted as a “context-free
grammar”,! which precisely defines what represents a valid program. This helps the
compiler to unambiguously interpret the programmer’s source code,” and to detect
sections of source code which do not follow the rules of the language. For readability,
we will illustrate some of these rules through code examples instead of the formal
notation.

Below, we show the basic layout of a single-file Fortran program, with no proce-

dures (these will be discussed later):

! For example, extended Backus-Naur form (EBNF).

2 EBNF is also useful for defining consistent data formats and even simple domain-specific lan-
guages (DSLs).

© Springer-Verlag Berlin Heidelberg 2015 7
D.B. Chirila and G. Lohmann, Introduction to Modern Fortran
for the Earth System Sciences, DOI 10.1007/978-3-642-37009-0_2

8 2 Fortran Basics

program [program name]
implicit none

[variable declarations [initializations]]
[code for the program]

end program [program name]

Any respectable language tutorial needs the classical “Hello World” example.
Here is the Fortran equivalent:

program hello_world

implicit none

print*, "Hello, world of Modern Fortran!"
end program hello_world

Listing 2.1 | stc/Chapter2/hello _world.£90 \

This should be self-explanatory, except maybe for the ’ implicit none ‘ entry,
which instructs the compiler to ensure all used variables are of an explicitly defined
type. It is strongly recommended to include this statement at the beginning of each
program.’ The same advice will apply to modules and procedures (discussed later).

Exercise 1 (7esting your setup) Use the instructions from Sect. 1.3 (adapting
commands and compiler flags as necessary for your system) to edit, compile
and execute the program above. Try separate compilation and linking first, then
combine the two stages.

2.2 Keywords, Identifiers and Code Formatting

All Fortran programs consist of several types of tokens: keywords (reserved words
of the language), special characters,* identifiers and constant literals (i.e. numbers,
characters, or character strings). We will encounter some of the keywords soon, as
we discuss basic program constructs. Identifiers are the names we assign to variables
or constants. The first character of an identifier should be a letter (the rest can be

3 This is related to a legacy feature, which could lead to insidious bugs. The take-home message

for new programmers is to always use ’ implicit none ‘ The —fimplicit—none
flag can be used, in principle, in gfortran, but this is also discouraged because it introduces an

unnecessary dependency on compiler behavior.
4 The special characters are (framed by boxes): E], s E], , , , Gl , , B,
vt [) [(&) VS B O O E 1 ana @)

Certain combinations of these are reserved for operators and separators.

http://dx.doi.org/10.1007/978-3-642-37009-0_1

